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ABSTRACT Spectrum sensing is an indispensable technology for cognitive radio networks, which enables
secondary users (SUs) to discover spectrum holes and to opportunistically use under-utilized channels
without causing interference to primary users. Aim at improving the sensing performance, a multi-antenna
spectrum sensing scheme based on main information extraction and genetic algorithm clustering (MIEGAC)
is proposed in this paper. Specifically, in order to reduce the amount of signal that is transferred to the fusion
center, an information pre-processing scheme based on principal component analysis (PCA) is presented.
Main information from the sensing signal is extracted via PCA, which reduces the cost of the reporting
channel and the impact of interfering information on detection result. Furthermore, an information fusion
method is described in this paper, which takes the place of complicated matrix decomposition algorithms.
Moreover, inspired by machine learning, a clustering scheme based on genetic algorithm is introduced to
classify signal features, which implements the spectrum sensing decision and avoids calculating the decision
threshold. Simulation results illustrate that the MIEGAC can considerably improve the sensing performance
for spectrum sensing. Significantly, this paper provides a novel approach for the design of centralized
spectrum sensing algorithms in cognitive radio technologies.

INDEX TERMS Spectrum sensing, principal component analysis, information fusion, genetic algorithm
clustering.

I. INTRODUCTION
As the rapid development of wireless communication tech-
nologies, it is key that spectrum resources are efficiently
and reasonably utilized, particularly in the fifth generation
(5G) communication networks [1]–[3]. In cognitive radio
networks (CRN), spectrum sensing (SS) is a critical technol-
ogy to effectively improve this problem that is insufficient
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utilization for spectrum resources [4]–[6]. However, conven-
tional SS methods and technologies have some disadvan-
tages. For instance, energy detection [7] has a poor sensing
performance under uncertain noise. Moreover, matched fil-
ter detection [8] requires the prior information of primary
users (PUs) and noise power. Furthermore, single antenna
technologies have terrible quality of service and poor trans-
mission rate [9]. Recently, with the advancement of SS tech-
nologies, multi-antenna SS technologies are proposed, which
improve the capacity of wireless communication systems

119620 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0051-7224


J. Zhuang et al.: Multi-Antenna Spectrum Sensing Scheme Based on MIEGAC

and the detection performance [10], [11]. It is well known
that cooperative sensing technologies that multiple secondary
users (SUs) simultaneously detect the state of PUs are more
reliable than single-node SS schemes [12]. Motivated by
the above discussions, multi-antenna cooperative spectrum
sensing (MCSS) is considered in this article.

A. PREVIOUS WORK
The previous couple of years has witnessed the prevalence
of SS algorithms based on random matrix theory. These
algorithms has solved some disadvantages of conventional
SS schemes, which extract the eigenvalues via the sampling
covariance matrix and used the distribution of the eigenval-
ues to calculate the decision threshold [13]. Moreover, these
algorithms not only don’t require the prior information of PUs
and noise power, but also have good sensing performance
under uncertain noise. Unfortunately, these algorithms based
on random matrix theory tend to ignore other elements of
the sampling covariance matrix when these eigenvalues of
that matrix are obtained. It is worth noting that information
geometry is a theory that studies statistical issues through
modern differential geometry. And information geometry
theory turns statistical issues into geometric issues, which
intuitively analyzes statistical issues [14]. Thus, information
geometry theory provides a novel idea for studying spectrum
sensing methods. Specifically, in [15], the sampling covari-
ance matrix was mapped onto the statistical manifold via
information geometry tool; and then, the decision threshold
was derived by the distance feature between the points on the
manifold. However, the above schemes need to calculate the
decision threshold as traditional sensing schemes do. And it
is well known that a inaccurate decision threshold directly
affects the sensing performance.

Surprisingly, some novel SS schemes based on machine
learning algorithms can avoid calculating the decision thresh-
old, since some complex issues and calculations may be
solved well by machine learning [16], [17]. Usually, clus-
tering algorithms are used in SS schemes, since clustering
algorithms have excellent performance to analyze data and
divide the received signal into different classes by the simi-
larity of that signal [18]. For example, a sensing method that
signal energy features were classified by K-means clustering
algorithmwas proposed in [19], which worked better than tra-
ditional energy detection. Moreover, two-dimensional signal
feature vectors were constructed by IQ decomposition (IQ) or
decomposition and reorganization (DAR), and these feature
vectors were classified by K-means [20], [21]. Furthermore,
three-dimensional signal feature vector was obtained by IQ
and DAR, which was classified by K-means [22]. Obviously,
these mentioned algorithms have better sensing performance
than conventional SS schemes based on random matrix the-
ory. On the other hand, some SS algorithms based on informa-
tion geometry theory were proposed, such as [23] and [24].
In [23], a scheme based on information geometry and DAR
was proposed, which used Fuzzy-c-means clustering algo-
rithm to classify signal feature. In [24], a method based on

information geometry and K-medoids clustering algorithm
was proposed, which used empirical modal decomposition
algorithm to denoise the sensing signal. Undoubtedly, all of
the above SS schemes based onmachine learning improve the
sensing performance.

B. CONTRIBUTION
Given what has been discussed above, a multi-antenna spec-
trum sensing scheme based on main information extraction
and genetic algorithm clustering (MIEGAC) is proposed in
this paper. It is noted that SS schemes based on different clus-
tering algorithms have different sensing performance [20].
Genetic algorithm (GA) is an optimized search algorithm that
simulates natural evolution. And genetic algorithm cluster-
ing (GAC) works better than many non-GA-based clustering
algorithms, such as K-means, K-medoids, Fuzzy-c-means,
etc [25]. Therefore, choosing a suitable clustering algorithm
may improve the sensing performance. Different from these
algorithms based on literature [20] and [23], the MIEGAC
uses GAC algorithm to classify signal features. Moreover,
inspired by literature [26], an information fusion method is
proposed to construct signal feature vector, which is different
from these methods based on different matrix decomposition
algorithms, such as IQ and DAR. Furthermore, many exist-
ing SS algorithms directly send the observed signal or the
denoising signal to the fusion center (FC) [23], [24], which
undoubtedly increase the cost of the reporting channel. And
other schemes use hard fusion algorithm, which require SU
to have complicated signal processing capability [27]. How-
ever, a pre-processing scheme based on principal component
analysis (PCA) is proposed in the article, which decreases the
cost of the reporting channel and only requires SUs to have
simply processing capability. Different from the algorithm
based on dimensionality reduction in the density space [28],
this pre-processing scheme directly reduces the dimension of
the sensing data. And the impact of PCA on spectrum sensing
is discussed in the simulation section. Given what has been
introduced above, the main contributions of this paper are
summarized as follows:

1) A pre-processing scheme based on PCA is proposed
in this paper. This scheme not only reduces the cost of
reporting channel, but also doesn’t require SUs to have
complicated processing capabilities. Moreover, a lot of
interfering signal is filtered after PCA.

2) An information fusion method is introduced to con-
struct signal feature vectors, which can avoid compli-
cated matrix decomposition, such as IQ and DAR.

3) A new decision algorithm based on GAC algorithm
is proposed, which can avoid calculating the decision
threshold. This algorithm makes the detection more
accurate.

4) There are two conditions that are considered in exper-
iments. One is that SU collects the sensing signal with
the same SNR. Another condition is that SU gains the
observed signal with a different SNR, owing to every
SU has a different location.
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FIGURE 1. These basic processes of the MIEGAC.

These basic steps of the MIEGAC are drawn in Fig. 1. All
SUs observe the authorized channel and collect the sensing
signal. Then, SU extracts main information from the sensing
signal and sends main information to the FC. In the FC,
the stage 1 means the training processes. The GAC model is
trained in advance and a classifier is obtained after training is
completed. Particularly, this model does not train again. Fur-
thermore, the stage 2 represents the actual sensing processes,
including signal feature is obtained by information geometry
and this classifier is used to classify signal feature.

The rest of this article is listed as follows. Section II intro-
duces the MCSS scenario and signal model; and Section III
describes the pre-processing algorithm based on PCA.
In Section IV, an information fusion method and feature
extraction method are presented. The GAC algorithm is
described in Section V. Section VI shows simulation results
and analysis; and conclusions are drawn in Section VII.

Conveniently, the symbols and meanings used in this arti-
cle are explained in Table 1.

II. THE MCSS SYSTEM MODEL
A. THE MCSS SCENARIO
TheMCSS scenario is shown in Fig. 2. This paper considers a
simple cognitive radio network that consists of single PU and
M SUs as well as a FC. Assume that both PU and the FC have
one antenna, respectively; and SU has l antennas. All SUs are
around the PU. Usually, SU observes the authorized channel
and collects enough signal. And then, main information from
the sensing signal is extracted through PCA and send to the
FC. Finally, the FC detects whether the authorized channel is
available.

B. SIGNAL MODEL
The SS problem can be abstracted as a binary hypothesis:
the PU signal is present (H1) or absent (H0) [20], [21]. For
a SU, based on the above assumptions, the corresponding
mathematical model is given as

xα(t) =

{
wα(t), H0

hα(t)sα(t)+ wα(t), H1
(1)

TABLE 1. Symbols and meanings.

where α(α = 1, 2, . . . , l) indicates the αth antenna; xα(t)
represents the sensing signal observed by the αth antenna at
time t(t = 1, 2, ..,N ); wα(t) denotes Gaussian white noise
that obeys N (0, σ 2); sα(t) represents the PU signal and is
independent of the noise signal wα(t); and hα(t) indicates
the information gain of the αth antenna [29]. In addition,
the channel fading is not considered in the simulations, where
hα(t) = 1.
In the MCSS scenario, the sampling signal between dif-

ferent antennas has a certain correlation. The correlation
between the a(a ∈ α)th antenna and the b(b ∈ α)th antenna
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FIGURE 2. The MCSS scenario.

can be given by

Aab = e−23�
2( dab

λ
), (2)

where� =
√
θ2+2 cos θ−2

2θ ; dab indicates the distance between
the ath antenna and the bth antenna; λ represents the wave-
length and θ denotes the propagation direction of antenna.
The correlation is the greatest (i.e., Aab is largest) when λ =
2dab and θ →0 rad ; and it can be considered as an ideal
condition that sa(t) = sb(t) = s(t) [30]. Thus, under the
ideal condition, the MCSS signal model based on (1) can be
defined as

xαj (t) =

{
wαj (t), H0

s(t)+ wαj (t), H1
(3)

where j(j = 1, 2, ...,M ) means the jth SU; xαj (t) represents
the sensing signal observed by the αth antenna of the jth SU;
and s(t) indicates the PU signal. Therefore, a l × N matrix
that obtained by the jth SU can be expressed as

Xj(t) =


x1j (1) x1j (2) · · · x1j (N )
x2j (1) x2j (2) · · · x2j (N )
...

...
. . .

...

x lj (1) x lj (2) · · · x lj (N )

 . (4)

III. PRE-PROCESSING SCHEME BASED ON PCA
PCA is an important technique to process data. Its purpose
is that removes redundancy via reducing dimensions of data
and extracts important information of data [31]. Motivated by
PCA, this paper proposes a new scheme that main informa-
tion of the sensing signal is extracted after SU collects signal.
Notably, this scheme can control the amount of main infor-
mation through the parameter β. Thus, choosing a suitable
parameter β is one of critical steps for the MIEGAC. Next,
the following will introduce how PCA works.

Based on (4), a covariance matrix from the jth SU is given
as follow:

Rj = E[Xj(Xj)H ], (5)

where E[·] represents mathematical expectation and (·)H

indicates complex conjugate transpose. Based on the assump-
tion that the PU signal and the noise signal are independent
of each other, (5) can be written as

Rj = Rs + Rw. (6)

In (6), Rs represents the PU signal covariance matrix; Rw
indicates the noise signal covariance matrix. And Rw = σ

2
wI,

where I denotes a unit matrix. Furthermore, (3) now becomes

Rj =

{
σ 2
wI, H0∑l

α=1
(µα − σ 2

w)vαv
T
α + σ

2
wI, H1

(7)

whereµα means the αth eigenvalue ofmatrixRj and vα repre-
sents theαth eigenvector corresponding to theαth eigenvalue.
Arranging these eigenvalues from large to small, we can
obtain

µ1 ≥ µ2 ≥ · · · ≥ µβ ≥ µβ+1 = · · · = σ
2
w. (8)

Thus, we also obtain{
H0 : µ1 = µ2 = · · · = µβ = µβ+1 = · · · = σ

2
w,

H1 : µ1 ≥ µ2 ≥ · · · ≥ µβ ≥ µβ+1 = · · · = σ
2
w.

(9)

The larger eigenvalue is, the more obvious the signal fea-
ture will be [30]. Therefore, select β the largest eigenvalues
and the rest are set to zero. For the jth SU,Xj is reconstructed
into a β × N matrix Xj. Xj is expressed as

Xj(t) =


x1j (1) x1j (2) · · · x1j (N )
x2j (1) x2j (2) · · · x2j (N )
...

...
. . .

...

xβj (1) xβj (2) · · · xβj (N )

 , (10)

where β ∈ [1, l]. Consequently, important information is
extracted by these above steps after the jth SU obtains the
observed signal.

It is no difficult job for us to find that the parameter
β can determine the size of matrix Xj(t). And the size of
matrix Xj(t) indicates the amount of main information that
is transmitted to the FC. Accordingly, a suitable parameter
β can save the cost of the reported channel. For instance,
SU sends the main signal collected by an antenna to the FC
when β = 1. Moreover, SU sends all the sensing signal
collected by all antennas to the FC when β = l. Furthermore,
SU sends the main signal collected by β antennas to the
FC when β ∈ [1, l]. Briefly, these basic processes of PCA
algorithm are given in Algorithm 1.
Algorithm 1: PCA algorithm for the MIEGAC
Step 1. The signal matrix Xj from jth SU is constituted a

covariance matrix Rj by (5).
Step 2. Calculate Rj to obtain the eigenvalues µα and the

eigenvectors vα .
Step 3. The eigenvalues µα are listed from large to small;

select β the largest eigenvalues and the rest are set to zero.
Step 4. Reconstruct Xj into a new matrix Xj.
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IV. SIGNAL FEATURES EXTRACTION
A. AN INFORMATION FUSION METHOD
There are some algorithms that use DAR or IQ to con-
struct a two-dimensional signal feature vector [20], [23].
However, to avoid the complicated matrix decomposition
algorithms, an information fusion method is used to obtain
a two-dimensional feature vector. Specifically, the received
signal is divided into two groups Y1 and Y2 according to the
information fusion method. And the following will introduce
the information fusion method.

Suppose that there areM (M ≥ 2) SUs. The received signal
is given by

Y = [X1(t),X2(t), . . . ,XM (t)]T. (11)

And Y is divided into Y1 and Y2 when M is even, where
Y1 = [X1,X3, . . . ,XM−1]T and Y2 = [X2,X4, . . . ,XM ]T,
respectively. Similarly, whenM is odd and β is even, Y1 and
Y1 can be expressed as

Y1 = [X1,X3, . . . ,XM−2,X
β
2
M ]T (12)

and

Y2 = [X2,X4, . . . ,XM−1,X
β−

β
2

M ]T, (13)

respectively. Moreover, when both M and β are odd, Y1 and
Y2 can be written as

Y1 =



x11 (1) x11 (2) · · · x11 (N )
...

...
...

...

xβ1 (1) xβ1 (2) · · · xβ1 (N )
...

...
...

...

x1M−2(1) x1M−2(2) · · · x1M−2(N )
...

...
...

...

xβM−2(1) xβM−2(2) · · · xβM−2(N )
x1M (1) x1M (2) · · · x1M (N )
...

...
...

...

x
β−1
2

M (1) x
β−1
2

M (2) · · · x
β−1
2

M (N )



(14)

and

Y2 =



x12 (1) x12 (2) · · · x12 (N )
...

...
...

...

xβ2 (1) xβ2 (2) · · · xβ2 (N )
...

...
...

...

x1M−1(1) x1M−1(2) · · · x1M−1(N )
...

...
...

...

xβM−1(1) xβM−1(2) · · · xβM−1(N )

x
β−

β−1
2

M (1) x
β−

β−1
2

M (2) · · · x
β−

β−1
2

M (N )
...

...
...

...

xβM (1) xβM (2) · · · xβM (N )



,

(15)

respectively.

After the received signal is divided into two groups,
the covariance matrix R1 and R2 from Y1 and Y2 can be
obtained, which are expressed as

R1 = E[Y1YH
1 ] (16)

and

R2 = E[Y2YH
2 ], (17)

respectively.

B. INFORMATION GEOMETRY THEORY
Definition 1: Define a set

M = {p(g, δ)|δ ∈ 2 ∈ Rn
}, (18)

where p(g, δ) represents probability density function; g is a
sample of random variables; 2 indicates the open set on the
European space Rn; the M denotes a statistical manifold
when a differential structure is created in setM; and δ means
the coordinate on the statistical manifold [23]. On the M,
the probability distributions,W(n,L1) andW(n,L2), can be
determined by L1 and L2, respectively, where L1 and L2 are
positive definite matrices. According to information geom-
etry theory, PD(n,R) represents a positive definite matrix
manifold, which is a manifold composed of all n× n positive
definite symmetric matrices; and SPD(n,R) is the tangent
space of the manifold PD(n,R) [32]. The statistical manifold
can be described as SPD(n,R), because the parameter space
2 of the zero-mean multivariate Gaussian distribution is
isomorphic to SPD(n,R).
Assume that there are two points, δc and δd , on the man-

ifold, and there are multiple curves connecting these points.
The geodesic means the shortest curve among these curves.
And the Riemann distance is the length of the geodesic, which
can be used to analyze the similarity between distributions.
Thus, in the SPD(n,R), the Riemann distance between two
points can be defined as

D2(Rc,Rd ) = ‖ log2(R
−

1
2

c RdR
−

1
2

c )‖

= ‖ log(R−1c Rd )‖2

= Tr[log2(R−1c Rd )]

=

n∑
u=1

log2(ηu), (19)

where ‖ · ‖means the Frobenius norm; Rc and Rd denote the
coordinates of points on the manifold, respectively; Tr[·] rep-
resents the trace of matrix; and ηu indicates the uth eigenvalue

of the matrix R
−

1
2

c RdR
−

1
2

c .
Suppose that there are multiple points on the manifold,

in order to analyze the similarity between these points,
we tend to use a reference point to calculate the Riemann
distance. In addition, the Riemann mean is used to obtain
the reference point. Assume that there are Q points, Rq(q =
1, 2, . . . ,Q), on the manifold, and the objective function of
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the Riemann mean can be given by

8(Rq) =
1
Q

Q∑
q=1

D2(Rq,R), (20)

where R is a point on the manifold when 8(·) takes the
smallest value. And R can be expressed as

R = argmin8(R). (21)

There are two points, R1 and R2, on the manifold when
Q = 2, and (21) can be written as

R = R
1
2
1 (R
−

1
2

1 R
1
2
2R
−

1
2

1 )
1
2R

1
2
1 . (22)

It is noted that (22) is no longer applicable when
Q > 2. Furthermore, the gradient descent algorithm is used
to calculate R, which is given by

Rh+1 = R
1
2
h e
−τ

∑Q
q=1 log(R

−
1
2

h R
1
2
q R
−
1
2

h )R
1
2
h , (23)

where τ (τ > 0) indicates the speed of iteration; and h
represents the numbers of iteration. The Riemann mean R =
Rh+1 when the gradient descent algorithm is successful. The
gradient descent method is given in Algorithm 2.
Algorithm 2: The gradient descent algorithm is used to

calculate the Riemann mean
Step 1. Input Rq(q = 1, 2, . . . ,Q) and τ .
Step 2. Calculate the gradient of the objective function

∇f =
Q∑
q=1

log(R
−

1
2

h R
1
2
qR
−

1
2

h ). (24)

Step 3. Rh+1 is calculated by (23).
Step 4. Update the numbers of iteration h = h+ 1.
Step 5. Output R(R = Rh+1) if the algorithm converges;

otherwise it continues.

C. EXTRACT SIGNAL FEATURE VECTORS
In this section, we will introduce how to extract a
two-dimensional signal feature vector. Firstly, SUs collect the
noise signal and perform PCA when the PU signal is absent.
Moreover, the received signal is divided into Yw1 and Yw2 in
the FC, and Rw1 and Rw2 are gained. Similarly, these above
steps are performed many times and multiple matrices, Rw1

i
and Rw2

i , can be obtained. Furthermore, all Rw1
i and Rw2

i are
mapped to the statistical manifold. Indeed, the Riemannmean
Rw1 and Rw2 are given by Algorithm 2, respectively.

Next, SUs observe the authorized channel and collect sig-
nal. After PCA, the main signal is sent to the FC. And then,
the covariance matrices,R1 andR2, are obtained and mapped
onto the statistical manifold. According to the binary hypoth-
esis of spectrum sensing, the distribution of covariancematrix
Rz(z=1,2) on the manifold is similar to the distribution of Rwz

when the PU signal is absent; otherwise, the distribution of
Rz is different from the distribution of Rwz. Thus, the state of
a PU can be detected by this difference. Significantly, using

FIGURE 3. These basic steps of the GAC algorithm.

Rwz as a reference point, the Riemann distance d1 and d2 are
calculated by (19). d1 and d2 are given by

d1 = D2(Rw1,R1) (25)

and

d2 = D2(Rw2,R2), (26)

respectively.
As a result, a two-dimensional signal feature vector, T =

[d1, d2], can be obtained. How to use signal feature vectors to
train the GAC model will be described in Section V.

V. SPECTRUM SENSING BASED ON GAC ALGORITHM
How the GAC algorithm works will be presented in this
section. It is also one of vitally steps for the MIEGAC to
make a precise decision. And these basic steps of the GAC
algorithm are described in Fig. 3 [33].

It is key that the FC fits in the GAC model well. Firstly,
a feature set T̂ that has enough signal feature vectors tend
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to be needed, which is used to train the GAC model. Then,
the parameters of the GAC algorithm are initialized, such
as maximum iteration, population size, the probability of
cross and the probability of mutation. Moreover, the fitness
is calculated and the best fitness is record, after selection and
crossover as well as mutation are carried out [32]. Finally,
the GAC model is gained when maximum iteration is sat-
isfied. Interestingly, the GAC model is successfully trained,
two cluster centers with the best clustering effect are obtained.
A classifier based on these cluster centers can directly detect
the state of a PU.And themathematical model of the classifier
can be written as

ϒ(Ti) =
‖Ti −91‖

mink=2,3,...,k ‖Ti −9k‖
≥ ϑ, (27)

where T̂ indicates feature vector set, T̂ = [T1,T2, . . . ,Ti];
9k denotes the centroid and k represents the number of
classes; ϑ is a parameter that controls the probability of
missed detection (Pm) and the probability of false alarm (Pf ).
If ϒ(Ti) ≥ ϑ , it means that the PU signal is present and the
authorized channel is unavailable. Otherwise, it denotes the
PU signal is absent and the authorized channel is available.
The GAC model doesn’t train again after it is obtained.
Apparently, this model can be directly used to detect the state
of a PU next time.

VI. SIMULATION RESULTS AND ANALYSIS
Simulation results of the MIEGAC are described here, where
the performance of the MIEGAC is evaluated and discussed
according to the experiment results. It is noted that two condi-
tions are considered in the simulations. One is that SU collects
the sensing signal with the same SNR. Another condition
is that SU gains the observed signal with a different SNR,
owing to every SU has a different location. In Section VI-A,
therefore, the parameters of the MIEGAC are discussed; and
theMIEGAC is evaluated whether it has the best performance
than some popular sensing algorithms in Section VI-B.

Suppose that the PU signal is AM signal under the ideal
Gaussian white noise. To show the experiment results well,
a feature set T̂ = [T̂1, T̂2, . . . , T̂2000] formed by 2000 sig-
nal features is to train the GAC model and a feature set
T̃ = [T̃1, T̃2, . . . , T̃5000] formed by 5000 signal features is
to evaluate the sensing performance of the classifier. Assume
that both feature sets, T̃ and T̂ , have two status of the PU
signal (H1 and H0).

A. PERFORMANCE ANALYSIS OF THE MIEGAC WITH
DIFFERENT PARAMETERS
The impact of parameters on the MIEGAC performance is
discussed here, such as the parameter β, number of antennas
L and number of SUs M . It is known that the evaluation of
spectrum sensing performance is mainly measured by (Pf )
and the probability of detection (Pd ) [20]. Firstly, the impact
of parameter β on the MIEGAC performance is analyzed.
And simulation results of different β are displayed in Fig. 4,
Fig. 5 and Fig. 6.

FIGURE 4. The ROC curves under different β and SNR = −19 dB.

FIGURE 5. The ROC curves under different β and SNR = −21 dB.

FIGURE 6. The ROC curves under different β and SNR ∈ [−21,−18].

As can be apparently seen in Fig. 4 and Fig. 5, no matter
what the value of β is, the MIEGAC always works better
than the scheme based on information geometry (IG) and
Fuzzy-c-means clustering algorithm (FCM) [23] when SNR
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is identical. And simulation results also show that the GAC
algorithm has better detection performance than FCM when
β = L. Less main signal is transmitted to the FC and the
MIEGAC has poor performance when β = 1, as a lot of both
useful signal and interfering signal are rejected after PCA.
And the FC can’t make a accurate decision by a small amount
of signal. Moreover, all the sensing signal is transmitted to the
FCwhen β = L. And it doesn’t make the FC tomake accurate
decisions, too. Clearly, it is concluded from the above ROC
curves that the MIEGAC has the best performance when
β = 2, because enough the main signal is extracted and a
lot of interfering signal is rejected.

It is suggested from Fig. 6 that the MIEGAC also works
better than the scheme based on IG and FCM when SNR of
SUs are −18 dB, −19 dB, −20 dB and −21dB, respectively.
Surprisingly, under SNR of SUs are different, the MIEGAC
work well when β = 2, too. Given what has been analyzed
above, the MIEGAC has good performance when β = 2.
Furthermore, the MIEGAC works better than the algorithm
based on IG and FCM.

Next, it should be analyzed whether the MIEGAC has
different performance when L is different. The ROC curves of
theMIEGACwith different L are given in Fig. 7 under β = 2,
M = 6 and SNR=−20 dB. As can be clearly seen in Fig. 7,
the MIEGAC has poor performance where L = 1, but it
has the best performance where L = 8. For multi-antenna
technology, it can make full use of spatial multiplexing and
spatial diversity to improve the sensing performance. Thus,
the MIEGAC could work well when many antennas observe
the authorized channel together.

FIGURE 7. The ROC curves under different L and SNR = −20 dB.

Finally, the sensing performance with differentM is tested
when β = 2, L = 5 and SNR = −21 dB. And simulation
results are presented in Fig. 8. Obviously, theMIEGACworks
well whenM = 14. However, it has relatively terrible perfor-
mance whenM = 6. The MIEGAC performance is improved
when many SUs participate in spectrum sensing together,
since the spatial diversity is exploited through cooperative
sensing technology.

FIGURE 8. The ROC curves under different M and SNR = −21 dB.

In a word, theMIEGAC has the best detection performance
when β = 2. And it reduces the cost of the reporting channel
when l > 2 and β < l, because a lot of interfering signal is
eliminated. Besides, it also works better when SU has more
antennas or more SUs participate in spectrum sensing.

B. PERFORMANCE COMPARISON OF THE MIEGAC AND
OTHER ALGORITHMS
In this part, simulations results are used to compare the
MIEGAC with some popular algorithms. Firstly, a feature
set T̂ is obtained under SNR = −13 dB, β = 2, M = 2,
L = 3. And all elements in the set T̂ can be represented on
a two-dimensional plane, as shown in Fig. 9. After the GAC
model is successfully trained by the set T̂ , the classification
effect could be observed in Fig. 10. Apparently, the distance
on the manifold between the feature vectors and the reference
point is small when the PU signal is absent, since the refer-
ence point is the Riemannmean calculated by the noise signal
features. On the contrary, the distance is large. Givenwhat has
been explained above, 91 indicates the noise signal centroid
and 92 denotes the PU signal centroid, as shown in Fig. 10.

FIGURE 9. The picture of the training signal features.
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FIGURE 10. The clustering drawing.

Specifically, the MIEGAC is compared with some pub-
lished algorithms [20], such as the difference of maximum
and average eigenvalue (DMAE), the difference between
maximum and minimum eigenvalue (DMM), the ratio of
maximum eigenvalue to the trace (RMET), the ratio of max-
imum and minimum eigenvalue (MME). And simulation
results are drawn in Fig. 11 and Fig. 12.

FIGURE 11. The MIEGAC vs different algorithms under SNR = −14dB.

Undoubtedly, simulation results reveal that the MIEGAC
works better than other algorithms when SNR of SUs are
identical, as it takes great advantage of the received signal
information through information geometry and removes a
lot of interfering information through PCA. While the MIE-
GAC performance is relatively close to others when SNR =
−14 dB, the MIEGAC has the best performance. Notably,
the MIEGAC performance is significantly better than others
when SNR = −16 dB. Thus, it is stated that the MIEGAC
can work well at low SNR.

In Fig. 13, SNR of SUs are −18 dB, −17 dB, −16 dB
and −15 dB, respectively. And in Fig. 14, SNR of SUs are
−21 dB,−19 dB,−17 dB and−15 dB, respectively. Accord-
ing to the above ROC curves that are shown in Fig. 13 and
Fig. 14, it is easily job for us to conclude that the MIEGAC
has markedly better performance than other schemes when
SNR of SUs are different.

FIGURE 12. The MIEGAC vs different algorithms under SNR = −16dB.

FIGURE 13. The MIEGAC vs different algorithms under SNR ∈ [−18,−15].

FIGURE 14. The MIEGAC vs different algorithms under SNR ∈ [−21,−15].

To sum up, the MIEGAC improves spectrum sensing per-
formance under the condition that SNR of SUs are identical
or different.

VII. CONCLUSION
Aim at improving the sensing performance, a multi-antenna
spectrum sensing scheme based on main information extrac-
tion and genetic algorithm clustering is proposed in this
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paper. Specifically, a scheme based on PCA is proposed to
reduce the cost of the reporting channel, since β can control
the amount of the main signal that is transmitted to the
FC. And a lot of interfering signal is filtered after PCA.
According to the simulation results, the impact of parameter
β on the sensing performance is discussed and the MIEGAC
has the best sensing performance when β = 2. Moreover,
an information fusion method is described, which avoids
IQ and DAR. Furthermore, a decision method based on the
GAC algorithm is presented to improve the sensing accuracy.
Particularly, it is considered in the simulations that SU gains
the observed signal with a different SNR. Eventually, all
simulation results reveal that the MIEGAC can work better
than recently popular spectrum sensing methods.
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