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ABSTRACT The complex environment background, lighting conditions, and other action-irrelevant visual
information in the video frame bring a lot of redundancy and noise to the action spatial features, which
seriously affects the accuracy of action recognition. Aiming at this point, we propose a recurrent region
attention cell to capture the action-relevant regional visual information in the spatial feature, and according
to the temporal sequential natures of the video, on the basis of the recurrent region attention cell, a Recurrent
Region Attention model (RRA) is proposed. The recurrent region attention cell in the RRA iterates according
to the temporal sequence of the video, so that the attention performance of the RRA is gradually improved.
Secondly, we propose a Video Frame Attention model (VFA) that can highlight the more important frames
in the whole action video sequence, so as to reduce the interference caused by the similarity between the
heterogeneous action video sequences. Finally, we propose an end-to-end trainable network: Two-level
Attention Model based video action recognition network (TAMNet). We experimented on two video action
recognition benchmark datasets: UCF101 and HMDB51. Experiments show that our end-to-end TAMNet
network can reliably focus on the more important video frames in the video sequence, and effectively capture
the action-relevant regional visual information in the spatial features of each frame of the video sequence.
Inspired by the two-stream structure, we construct a two-modalities TAMNet network. In the same training
conditions, the two-modalities TAMNet network achieved optimal performance on both datasets.

INDEX TERMS Action recognition, LSTM, recurrent region attention, video frame attention.

I. INTRODUCTION
Video action recognition has always been a research hotspot
in the field of computer vision, with the goal of analyzing
the action which is ongoing in an unknown video or image
sequence. Identifying the action in a video is one of the
basic abilities of human beings. Humans can combine the
action-relevant spatial images in the video and the context
between the images to identify and infer the category towhich
the action belongs.

Convolutional neural networks can learn the discrimina-
tive spatial representation of raw visual data with the help
of large-scale supervised datasets. In recent years, with its
excellent modeling capabilities, it has achieved great success
in the recognition and classification tasks in the field of still
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it for publication was Jingchang Huang.

images [1]–[6], [42], and gradually introduced into the video
field to solve video-based action recognition problem [7],
[8], [10], [11]. However, the convolutional neural networks
focus on local patterns, and its improvement in recognition
accuracy for action video with temporal sequential natures
is not as remarkable as image recognition. The long-term
structure plays an important role in learning the continu-
ity of action videos. Therefore, recurrent neural networks,
especially LSTM networks, can be invoked to better capture
long-range temporal patterns and contexts.

Combining the convolutional neural network with the
LSTM network [15], the end-to-end joint training directly on
the dataset can better learn the spatio-temporal information
of the action video sequence. However, as shown in Figure 1,
the environment where the action in video frame located in
is complex, and the proportion of the action subject, light-
ing conditions change frequently, which brings redundancy
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FIGURE 1. The environment where the action in video frame located in is
complex, and the proportion of the action subject, lighting conditions
change frequently.

FIGURE 2. Different classes of action videos may have similar context in
temporal sequence.

and noise to the spatial information. Secondly, as shown
in Figure 2, different classes of action videos may have sim-
ilar context in temporal sequence, making LSTM network
prediction errors.

In order to address these challenges, in this paper, we have
made the following contributions:

(1) We propose a recurrent region attention cell, which can
effectively capture the action-relevant regional visual
information in the spatial features of video frames in
order to reduce the interference of redundant informa-
tion and noise information on action spatial features.
Then, according to the temporal sequential natures of
the video, we propose a Recurrent Region Attention
model (RRA) based on the recurrent region attention
cell. The recurrent region attention cell in RRA iterates
according to the temporal sequence of the video, so that
the RRA can effectively capture the action-relevant
regional visual information in the spatial features of
each frame of the action video sequence.

(2) We propose a Video Frame Attention model (VFA)
to highlight the more important frames in the entire
video sequence to reduce the interference caused by
the similarity between the heterogeneous action video
sequences.

(3) We propose a Two-level Attention Model based video
action recognition network (TAMNet) which can be
end-to-end trained.

Sparse Temporal Sampling strategy [11] was adopted to
obtain a subset of action video sequence as input to the
TAMNet network, enabling TAMNet to model the long-range
temporal pattern of the entire video sequence.

Inspired by the two-stream architecture, we fuse the video-
level prediction of the RGB modality TAMNet with the
video-level prediction of the optical flow modality TAMNet
to produce the final action category prediction. The structure
of the two-modalities TAMNet network is shown in Figure 3.

The remainder of the paper is organized as follows.
In section 2, the popular video action recognition methods
and the attention mechanisms used in action recognition
and other fields are introduced. In section 3, we elaborate
on the details of our proposed Two-level Attention Model
based video action recognition network (TAMNet), and intro-
duce our two-modalities fusion method. In Section 4, we
discuss experiments that validate the effectiveness of our
proposed method. In Section 5, we first summarize the work,
then provide constructive comments and suggestions for
future work.

II. RELATED WORKS
With the development of deep learning algorithms in recent
years, convolutional neural networks have excellent feature
extraction ability for unstructured data, and has achieved
remarkable success in image recognition and classifica-
tion [1]–[6], [42], it is also gradually being used in video
action recognition tasks.

A. VIDEO ACTION RECOGNITION
Early video action recognition technology directly applied
2D CNN to RGB video frames. Karpathy et al. [7] divided
the video into fixed-length segments, and designed several
temporal sampling methods, including single-fusion, late-
fusion, early-fusion, and slow-fusion, to pooling local spatio-
temporal information of RGB video frame to expand the
connectivity of CNN in temporal dimension. However, this
method does not bring a remarkable promotion in recogni-
tion performance compared to using only the single frame
method.

In order to overcome the shortcomings of 2D CNN in
the temporal dimension, Simonyan and Zisserman [8] pro-
posed a Two Stream Network. The spatial stream 2D CNN
is applied to process the RGB video frames to obtain the
spatial information of the action, the temporal stream 2D
CNN processes the stacked optical flow field composed of
consecutive multiple frames of dense optical flow graph [9]
to obtain motion information, then fuse the probability scores
of the two networks. The final recognition result is obtained
using the method of averaging or SVM (the SVM is more
accurate in the experiment). They show that even if the
probability scores of the two networks are simply combined,
the accuracy of action recognition is significantly improved,
indicating that the optical flow provides high quality motion
information.

On the basis of [8], Feichtenhofer et al. [10] studied the
convolutional fusion method on spatial stream and temporal
stream, and proposed a new convolutional neural network
structure to make better use of spatio-temporal information.
They show that the spatial stream network and the temporal
stream network are fused into the last convolutional layer,
and the abstract convolutional features are pooled in the
spatio-temporal neighborhood, which not only reduces the
number of the network parameters, but also further improves
the performance of the network.
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FIGURE 3. Overview of two-modalities TAMNet network. The red dotted coil in the right half is the two-level attention model proposed by us. First,
we use the Temporal Segment strategy to segment action video sequence, and multiple consecutive frames are sampled in each snippet that obtained
after the Temporal Segment, to acquire a segmental-input sequence for each snippet. The set of all segmental-input sequences is the input sequence of
the single-modality TAMNet network. The following operations are performed on the input sequence of each modality: Utilizing the convolutional neural
network to obtain the spatial-feature sequence of each segmental-input sequence, and then our proposed Recurrent Region Attention model is used to
capture the action-relevant regional visual information in each segmental-spatial-feature sequence. All of the segmental-spatial-feature sequences
generated by the RRA are stacked and fed into the Video Frame Attention model. Feeding the action spatial-feature sequence generated by the VFA into
the Bidirectional LSTM, making prediction at each moment with Bidirectional LSTM. Utilizing the Segmental Consensus Function to get the video-level
prediction. Finally, the video-level predictions of the two modalities were fused to obtain the final prediction about the action category.

In recent years, many methods based on two-stream 2D
CNN have been proposed to improve the accuracy of video
action recognition. However, these methods have limited
access to the temporal context of video sequence, mainly
because the spatial stream 2D CNN is only applied to
single-frame RGB video frame, and the temporal stream
2D CNN is only applied to single-stack optical flow stack,
ignoring the temporal sequential nature of video.

In response to the above problems, Wang et al. [11]
proposed a Temporal Segment Network (TSN) based on
long-range temporal structure and Sparse Temporal Sampling
strategy. The TSN is also composed of a spatial stream net-
work and a temporal stream network. But unlike previous
input forms for two-stream networks [8], [10], the TSN per-
forms Sparse Temporal Sampling strategy on the entire video
sequence, and takes the sampled video snippets as inputs to
the network. Each snippet will get its preliminary prediction
about the action class through the network, and then get
the video-level prediction of the whole video through the
Segmental Consensus Function.

The input of the temporal stream network is the optical
flow features obtained from the original action videos. The
optical flow features provide high quality motion informa-
tion, and the introduction of optical flow features brings a
remarkable improvement in the accuracy of action recogni-
tion. Another way to obtain motion information is the C3D
network proposed by Tran et al. [12]. The spatial features
and temporal features of the video sequence are extracted by
the 3D convolutional kernel to compensate for the lack of 2D
CNN in the temporal dimension. This network can generate
multi-channel information from consecutive video frames,

and then perform convolution operation and down-sampling
operation for each channel separately. Finally, all channel
information is combined to obtain a final feature description.
Instead of repeating the process for spatio-temporal models,
Carreira and Zisserman [29] inflate all the filters and pooling
kernels of 2D ConvNets, endow them with an additional
temporal dimension. Designed an I3D network by inflating
2D ConvNets into 3D ConvNets. Wang et al. [40] believe
convolutional and recurrent operations can only process one
local neighborhood at a time. Inspired by the classical non-
local means method in computer vision, they present a
non-local operation as a generic family of building blocks
that can capture long-range dependencies and compute the
response at a position as a weighted sum of the features at
all positions. Tran et al. [41] empirically demonstrate the
accuracy advantages of 3D CNNs over 2D CNNs within
the framework of residual learning and design a new spatio-
temporal R(2+1)D convolutional block, this block divide the
3D convolution into 2D spatial convolution and 1D temporal
convolution. Compared with 3D convolutional networks with
the same structural parameters, R(2+1)D can achieve lower
training error, which is easier to optimize.

The method of using convolutional neural networks to
recognize action in video is mainly focused on the short-term
pattern of the video, and it is difficult to directly capture the
long-term pattern of the video. Recurrent neural networks,
especially the LSTM [13] networks, are considered to be
effective models for processing long-term sequence data.
Ng et al. [14] designed several feature fusion methods to fuse
the convolutional features of each frame in the video, and
then used 5-layer LSTMs to extract the depth features of the
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video spatial features obtained after the fusion, finally, made
predictions at each moment. In combination with CNN and
LSTM, Donahue et al. [15] proposed an LRCN model capa-
ble of end-to-end training, using RGB modality and optical
flow [16] modality as input to the LRCN. Finally, the outputs
of RGBmodality LRCN and optical flowmodality LRCN are
averaged to obtain the final classification result.

However, the method of simply combining convolutional
neural network and LSTM network ignores the spatial redun-
dancy and noise caused by action-irrelevant visual informa-
tion, such as environment backgrounds, lighting conditions,
etc. It also neglects the interference caused by the similar
context of heterogeneous action videos. In view of these prob-
lems, we can focus on the spatial information and temporal
information of action video sequence.

B. ATTENTION MECHANISM
When humans view visual images, the visual system does
not process the entire image at the same time, but by quickly
scanning the global image to obtain the target region which
needs to be focused on. Then invest more attention resources
in this region to get more details of the desired target and to
suppress the impact of other useless information on current
target. This visual attention mechanism of humans greatly
improves the efficiency and accuracy of visual information
processing.

Inspired by human visual attention mechanism,
Xu et al.[17] introduced a soft attention mechanism in image
caption. This soft attention mechanism is then applied to
the video analysis tasks. Sharma et al. [18] proposed a soft
attention LSTM model based on multi-layer recurrent neural
networks, which selectively focuses on some of the video
frames in the video sequence to improve the ability of the
model to identify action in the video.

Liu et al. [19] proposed a Global Context-Aware Atten-
tion LSTM network. They obtain the initial global con-
text memory by averaging the hidden representations of all
spatio-temporal steps in the first LSTM layer. Then, the infor-
mativeness gate (score) for each spatio-temporal input is
calculated by the input of each spatio-temporal step and
the global context memory generated by the previous atten-
tion. The hidden state of the spatio-temporal LSTM unit in
the second layer is updated by using the learned informa-
tiveness score. Finally, the output of the last spatio-temporal
step in the second spatio-temporal LSTM layer is used to
refine the global context memory. Through multiple iter-
ations, the global context makes the classification more
discriminative.

Yan et al. [20] proposed a novel Hierarchical Multi-scale
Attention Network by combining Hierarchical Multi-scale
RNN and attention mechanism. They used the newly pro-
posed gradient estimation method for stochastic neurons,
namely Gumbel-softmax, to implement temporal boundary
detectors and the stochastic hard attention mechanism.

Wang et al. [21] proposed a Hierarchical Attention
Network. They consider that although optical flow features

and RGB features capture different aspects of a video frame,
the attention location on the video is same. Moreover,
the RGB features and optical flow features provide com-
plementary information to each other, making predictions
more accurate. Therefore, at each moment, they combine the
hidden state of the RGB modality LSTM with the hidden
state of the optical flow modality LSTM as an input to the
hierarchical attention mechanism.

Yu et al. [22] proposed a novel high-level action repre-
sentation using the joint spatial-temporal attention model.
In spatial, inspired by ResNet, they built spatial convolu-
tion (2D) branch to obtain spatial attention guidance. Then,
considering the temporal coherence in the short video clip,
an extra temporal convolution (1D) branch is constructed.
The two branches are integrated into a spatial-temporal unit,
and a spatial attention gate is obtained by the softmax func-
tion. Finally, a two-level global attention branch is applied
to get a better spatial attention guide. In temporal, they use
a bidirectional LSTM to build a temporal attention model.
Then use the sigmoid and softmax functions to convert
the hidden state of the bidirectional LSTM into a temporal
attention score.

However, these attention models are highly integrated with
the recurrent neural networks, and the computational process
is complicated, which brings expensive computational cost
to the training process of the network. In order to avoid
the heavy computational burden of the training process of
the network, we respectively propose one novel, simple, and
effective attention model for the spatial information and tem-
poral information of the action video sequence.

III. PROPOSED METHOD
In this section, we describe our proposed Two-level Attention
Model based video action recognition network (TAMNet)
in detail, and introduce our two-modalities fusion method.
Figure 4 shows the structure of our TAMNet model.

Our proposed TAMNet consists mainly of three parts:
convolutional neural network, two-level attention, and
Bidirectional LSTM. First, we use the Temporal Segment
strategy to segment action video sequence, and multiple con-
secutive frames are sampled in each snippet that obtained
after the Temporal Segment, to acquire a segmental-input
sequence for each snippet. The set of all segmental-input
sequences is the input sequence of the TAMNet network.
Secondly, we utilize the convolutional neural network to
obtain the spatial-feature sequence of each segmental-input
sequence, and then our proposed Recurrent Region Atten-
tion model (RRA) is used to capture the action-relevant
regional visual information in each segmental-spatial-feature
sequence. All of the segmental-spatial-feature sequences gen-
erated by the RRA are stacked and fed into the Video
Frame Attention model (VFA). Finally, we feed the action
spatial-feature sequence generated by the VFA into the
Bidirectional LSTM, making prediction at each moment
with Bidirectional LSTM. Utilizing the Segmental Consen-
sus Function to get the video-level prediction of action
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FIGURE 4. The structure diagram of TAMNet.

video sequence. Next, we will explain in detail each compo-
nent of our proposed TAMNet network model in turn.

A. NETWORK INPUT
Assuming that a video sequence V has a total of T frames,
we represent the video sequence as:

V = {F1,F2, . . . ,Ft , . . . ,FT } , t ∈ T

Then, using the Temporal Segment idea proposed by
Wang et al. [11], the entire action video sequence is equally
divided into I segments, and l consecutive video frames are
randomly sampled in each snippet, and the sampled video
sequence subset is used as the input to the TAMNet network.
The input to the network is expressed as:

v = {P1,P2, . . . ,Pi, . . . ,Pl,

Pl+1,Pl+2, . . . ,Pl+i, . . . ,P2l, . . . ,PI×l} ,

v ∈ V , i ∈ l, I × l ∈ T

B. RECURRENT REGION ATTENTION MODEL
We first proposed a recurrent region attention cell, which
can capture the action-relevant regional visual information in
the spatial feature of the video frame, thereby reducing the
influence of redundant information and noise information on
the action spatial feature. It is worth noting that the internal
structure of recurrent region attention cell is its characteristic.
The output of this recurrent region attention cell is not only
passed to the neural cells of the next layer, but also passed
back to the recurrent region attention cell of this layer. This
way of passing constitutes the loop of data. Figure 5 shows in

FIGURE 5. The internal structure diagram of the recurrent region
attention cell.

detail the internal structure of the recurrent region attention
cell and the flowing way of the data.

Inspired by LSTM network, according to the temporal
sequential natures of the video, on the basis of the recurrent
region attention cell, we propose a Recurrent Region Atten-
tion model (RRA). It should be noted that different from the
common existing spatial attentionmodels at present, the RRA
model proposed by us takes into account the temporal sequen-
tial characteristic of video and has temporal sequential nature.
Therefore, it is possible to better capture action-relevant
regional visual information through the temporal sequen-
tial affiliation between video frames. The recurrent region
attention cell in the RRA iterates according to the temporal
sequence of the video (the iterative approach of recurrent
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FIGURE 6. The RRA structure diagram that unfolded according to the input sequence length. The spatial feature of the current frame (current moment)
and the region attention weights of the previous frame (previous moment) are used as the input of the recurrent region attention cell of the current
moment. The probabilities obtained by softmax function inside the recurrent region attention cell are the attention weights of region features of current
frame. The weighted sum of the region features is the spatial feature that highlights the action visual information.

region attention cell is similar to the LSTM cell), so that
the attention performance of the RRA on the action-relevant
regional visual information is gradually improved. Different
from the soft attention mechanisms [19], [21], [23], [35] used
in action recognition, machine translation, and image caption,
which takes the hidden state of the LSTM networks as one of
inputs and integrates with the LSTM cell, and also different
from the spatial attention mechanism of [39], which only uses
the spatial feature of image as input, takes the convolutional
layer with 1 × 1 kernel as calculate operation and does not
consider temporal affiliation between video frames, however,
the RRA proposed by us is a neural network model which
takes into account the temporal sequential characteristic of
video, has temporal sequential nature, and takes the spatial
feature of the current frame (current moment) and the region
attention weights of the previous frame (previous moment)
as input, only relies on the recurrent region attention cell to
form a directed annular connection between neural cells in the
layer. The RRA does not belong to the feedforward neural
network, mainly because the output of the recurrent region
attention cell in the RRA is transmitted in both the depth
direction of network and the temporal direction. In order
to clearly express the recurrent characteristic of the RRA,
in Figure 6, we unfold it according to the length of the input
sequence. When unfolded, the RRA can be viewed as the
array composed of the recurrent region attention cells. In
this array, the recurrent region attention cells of the previous
moment (previous frame) and the next moment (next frame)
are connected to each other.

The spatial feature fi of a certain video framePi in the video
sequence subset v is extracted by using the convolutional neu-
ral network, the shape of which is [height,width, channel].
Where height represents the height of the spatial feature fi,

width represents the width of the spatial feature fi, and chan-
nel represents the number of channels of the spatial feature fi.
For a certain frame Pi in the video sequence subset v,

we can get a spatial region feature set
{
r i1, r

i
2, . . . , r

i
N

}
for

this frame, where N represents the total number of regions of
the spatial feature of the video frame Pi. N can be calculated
by the follow:

N = height × width (1)

Weighted summing these region features with the region
attention weights, the spatial feature of the video frame gen-
erated by RRA can be obtained by the follow:

f ri =
N∑
j=1

pijr
i
j (2)

Then, the spatial feature sequence of the video sequence
subset v is represented as vr =

{
f r1 , f

r
2 , . . . , f

r
i , . . . , f

r
I×l

}
,

where r ij represents the j-th region feature of the i-th frame, pij
is the attention weight of the j-th region in the spatial feature
of the i-th frame corresponding to r ij , f

r
i represents the spatial

feature of video frame after capturing the action-relevant
regional visual information through the RRA.pij is calculated
by the follows:

uij = ω
r tanh

(
W rr ij + U

rpi−1j

)
+ br (3)

pij =
exp

(
uij
)

N∑
j=1

exp
(
uij
) (4)

where W r , U r , ωr , and br are shared parameters learned by
the RRA. The action-relevant regional visual information in

VOLUME 7, 2019 118393



H. Sang et al.: TAMNet

the i-th frame is captured by pij. In this way, the interference
brought by action-irrelevant visual information such as the
complex environment background and lighting conditions
can be reduced. pi−1j represents the region attention weight
of the j-th region of the previous frame. Therefore, the region
attention weights of the i-th frame are determined by the spa-
tial feature of current frame and the region attention weights
of previous frame. We hope the RRA proposed by us can
reduce the impacts of spatial noisy and spatial redundancy
on the accuracy of recognition. At the same time, the feature
ambiguity caused by the spatial similarity between frames
and frames can be solved, so that the spatial feature has the
ability to correctly represent action. Algorithm 1 shows the
working process of our RRA.

Algorithm 1 The Working Process of Our RRA
Input: Segmental spatial feature sequence
{f1, f2, . . . , fi, . . . , fl}
Output: Segmental spatial feature sequence{
f r1 , f

r
2 , . . . , f

r
i , . . . , f

r
l

}
after capturing action-relevant

regional visual information through RRA
(1) Randomly initialize the region attentionweights p0 ={

p00, p
0
1, . . . , p

0
N

}
(2) for i = 1,2,. . . ,l
(3) Calculate the region attention weights pi ={

pi0, p
i
1, . . . , p

i
N

}
of the i-th frame using equa-

tions (3)-(4)
(4) Weighted summing the spatial region features of

the i-th frame with attention weights pi using equa-
tion (2), to obtain the spatial feature f ri generated by
recurrent region attention cell.

(5) i+1, repeat step (3) and step (4)
(6) endfor

C. BIDIRECTIONAL RECURRENT NEURAL NETWORK
The architecture of TAMNet build upon the LSTM [13].
Figure 7 shows the internal structure of the LSTM cell. The
output of the LSTM cell contains a memory vector. This
memory vector represents the new memory obtained at the
current moment by the LSTM cell after synthesizing the
memory of the previous moment and the input of the current
moment. Even if the length of the input sequence is long,
the LSTM cell can always transmit the information of the past
moments, avoiding the loss of the sequence information and
solving the long-term dependency problem.

The input of the LSTM cell is the state vector ht−1 of the
hidden layer of the previous moment, the memory vector ct−1
obtained at the previous moment, and the input vector xt of
the current moment. The output of the LSTM cell is the state
vector ht of the hidden layer of the current moment and the
memory vector ct of the current moment.
Given a feature sequence {x1, x2, . . . , xi, . . . , xI×l} as input

to the LSTM cell, then the corresponding hidden states
{h1, h2, . . . , hi, . . . , hI×l} can be obtained by repeating the

FIGURE 7. The internal structure diagram of the LSTM cell.

FIGURE 8. The Bidirectional LSTM structure diagram that unfolded
according to the temporal.

follows:

ft = σ (Wf ht−1 + Uf xt + bf ) (5)

it = σ (Wiht−1 + Uixt + bi) (6)

mt = tanh(Wmht−1 + Umxt + bm) (7)

ct = ft � ct−1 + it � mt (8)

ot = σ (Woht−1 + Uoxt + bo) (9)

ht = ot � tanh(ct ) (10)

where Ws, Us, and bs are shared parameters learned by
the network, σ (·) is the sigmoid function, and

⊙
denotes

elementwise multiplication.
The action in the video sequence is coherent, so it is not

rigorous to make prediction at the current moment based only
on action information of the past moments. The LSTM cell
only considers the effect of the inputs from the past moments
on the output of the current moment, however the output we
need is dependent on the entire video sequence. In order to
consider the impact of future action information on the output
of the current moment, we use the idea of Bidirectional RNN
[24] to combine a LSTM cell that moves from the beginning
of the sequence (Forward LSTM) with another LSTM cell
that moves from the end of the sequence (Backward LSTM)
to form a Bidirectional LSTM, making full use of the front
and back dependencies in the video sequence. Figure 8 shows
a Bidirectional LSTM structure that unfolded according to the
temporal.

The input vector xt of the current moment is input to the
Forward LSTM and the Backward LSTM respectively, and
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FIGURE 9. The structure diagram of VFA.

correspondingly generates a forward hidden state vector hFt
and a backward hidden state vector hBt of the current time,
then the output of the Bidirectional LSTM is represented as
ht =

[
hFt , h

B
t
]
, [·] means concatenating two hidden state

vectors.

D. VIDEO FRAME ATTENTION MODEL
Although the Bidirectional LSTM can fully learn the con-
textual correlation of a certain class action video sequence,
there may be a majority of consecutive similar frames in cer-
tain parts of the temporal sequence between heterogeneous
action videos, this similar correlation in temporal will cause
errors in predictions of the Bidirectional LSTM. Therefore,
we propose a Video Frame Attention model (VFA) that high-
lights the more important frames in the whole video sequence
to reduce the interference caused by the similar contexts
between the different classes of action video sequences. It is
worth noting that different from the temporal attention mech-
anism of [39], the temporal attention of [39] combined the
hidden state of the LSTM cell, built upon the LSTM cell, and
integrated with the LSTM cell, the attention mechanism of
this structure such as [19], [21], [23], [35], [39] brings a lot
of computation to the network and slows down the speed of
the network, however, our VFA only takes the stacked output
of RRA as input and separates from the LSTM cell. The VFA
proposed by us not only reduces the amount of calculation,
but also speeds up the calculation of the network and also
improves the performance of the network. The data transfer
process between RRA and VFA can be viewed in Figure 4.
And the structure of Video Frame Attention model is shown
in Figure 9.

Given the spatial feature sequence vr = {f r1 , f
r
2 , . . . ,

f ri , . . . , f
r
I×l} of the video sequence subset v to the VFA, then

the spatial feature sequence x = {x1, x2, . . . , xi, . . . , xI×l}
generated by the VFA can be obtained by the follow:

x = αT vr (11)

where α = {α1, α2, . . . , αi, . . . , αI×l} is the frame weights
of the spatial feature sequence vr of the video sequence

subset v, can be obtained by the follows:

q = uT tanh(W vvr + bv) (12)

α = soft max(q) (13)

where W v, bv, and u are shared parameters learned by
the VFA.

We hope that the VFA can reduce the interference
brought by the similar contexts of heterogeneous action video
sequences in temporal. Algorithm 2 shows the working pro-
cess of our VFA.

Algorithm 2 The Working Process of Our VFA

Input: Spatial feature sequence
{
f r1 , f

r
2 , . . . , f

r
i , . . . , f

r
I×l

}
for a video sequence subset
Output: Spatial feature sequence
{x1, x2, . . . , xi, . . . , xI×l} obtained by VFA
(1) Calculate the frame weights
{α1, α2, . . . , αi, . . . , αI×l} of the spatial feature
sequence

{
f r1 , f

r
2 , . . . , f

r
i , . . . , f

r
I×l

}
using

equations (12) and (13)
(2) Calculate the action spatial feature sequence
{x1, x2, . . . , xi, . . . , xI×l} generated by VFA using
equation (11)

E. VIDEO LEVEL PREDICTION
Different from the past methods which used the output of
the last moment of the LSTM for classification, we first
pass the output of each moment of the Bidirectional LSTM
to the fully connected layer to generate preliminary pre-
diction of each moment about the action category. Then
continue the Segmental Consensus Function proposed by
Wang et al. [11], so that the preliminary prediction of each
moment in the sequence can reach a consensus and generate
a video-level prediction result. The Segmental Consensus
Function is defined as follow:

Ŷ = Consensus (̂y1, ŷ2, . . . , ŷI×l) (14)

F. PARAMETERS UPDATE
Assume that there are K video sequence samples in the
training set, we denote the authentic class label of the i-th
video sequence sample as Yi and its video-level prediction is
expressed as Ŷi. We can update the network parameters by
minimizing the cost function (15):

J =
1
K

K∑
i=1

[
−Y T

i log(Ŷi)− (1− Yi)T log(1− Ŷi)
]

(15)

G. MODALITIES FUSION
Previously, we described the structure of single-modality
TAMNet in detail. In order to make full use of the spatio-
temporal information and motion information provided by
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the action video sequence, we consider fusing the video-level
predictions of the RGB modality TAMNet and the optical
flow modality TAMNet.

Since our TAMNet is an end-to-end network, we chose
probability fusion method to fuse the video-level predictions
of different modality TAMNet networks.

Probability fusion method is essentially an integrated
approach. We first train a separate model for each modal-
ity input sequence. Then we perform probability fusion to
fuse the video-level predictions of different modality mod-
els. We denote the video-level prediction of RGB modality
TAMNet as ŶRGB and the video-level prediction of opti-
cal flow modality TAMNet as Ŷoptical . Then the final pre-
diction generated by the probability fusion method can be
obtained by (16). Where λ represents the fusion weight of
the RGB modality TAMNet video-level prediction ŶRGB.The
specific probability fusion will be detailed in the experiment
in Section 4.

ŶFusion = λ ∗ ŶRGB + (1− λ) ∗ Ŷoptical (16)

IV. EXPERIMENTS
In this section, we first introduce the evaluation dataset and
the implementation details of the proposed method, and then
verify the effectiveness of our proposed two-level attention
on improving the recognition accuracy and the recognition
performance of the TAMNet network. Finally, the perfor-
mance of the two-modalities TAMNet network is evaluated
and compared with the SOTA methods.

A. DATASETS
We evaluated and compared the performance of our proposed
TAMNet network on two popular video action recognition
datasets.

UCF101[25] is a video action dataset with 101 categories
collected from YouTube. It contains 13320 videos, and the
average length of each video is 180 frames. UCF101 pro-
vides the greatest diversity in action categories, including
daily activities in life and even extreme sports. And there is
camera motion in the video, and the change of object scale,
environment backgrounds, and the lighting conditions is also
large, so UCF101 is a challenging dataset. Each video comes
with a class label. We will report the average accuracy of
the three train/test splits according to the original evaluation
scheme of the dataset.

HMDB51 [26] is a video action dataset consisting
of 6676 videos from various sources (such as movies and
YouTube videos) with 51 action categories. We will follow
the suggested evaluation scheme and report the average accu-
racy over the three train/test splits.

B. EXPERIMENTAL ENVIRONMENT
We used the Tensorflow framework to complete this work on
a computer with two NVIDIA RTX2080Ti GPUs and 32G
RAM.

C. EXPERIMENTAL DETAILS
Take the experiment of the UCF101 dataset as an example.
In the experiment, different from the previous input-form
of two-stream networks, we first convert the optical flow
graphs [16] into a video file through OpenCV, and then
convert the original video files and optical flow video files of
UCF101 into a binary TFRecord format through Tensorflow
and OpenCV. Due to the binary format of files, the training
speed is greatly accelerated and the memory usage of the
computer is reduced. The video sequence of each modality
is sampled by the Sparse Temporal Sampling strategy [11],
and the sampled video subsequence is used as the input of the
single-modality TAMNet network. We use the convolutional
neural network as feature extractor to extract the spatial fea-
tures of the video frames and use theMomentum optimization
algorithm to optimize the network parameters. The Batchsize
is set to 32, the momentum is set to 0.9, the network input
dimension is set to 15, and the snippet sequence length is
set to 5. That means the video sequence is equally divided
into 3 segments, and then 5 consecutive video frames are
sampled in each snippet. The final video-level prediction
of the RGB modality TAMNet or the optical flow modality
TAMNet is obtained using the average Segmental Consensus
Function [11].

For the RGB modality TAMNet network, we use the
pre-trained model from ImageNet [27] to initialize the
weights of the convolutional neural network. The initial learn-
ing rate is set to 0.001, and then judge whether the learning
rate is reduced to its 1/10 according to the absolute value
of the difference between the average loss of the previous
epochs and the current epoch loss. The number of hidden
units in the VFA is set to 256, the number of hidden units
in the LSTM is set to 256, and the entire training process is
stopped in 120 epochs.

For the optical flow modality TAMNet network, since the
distribution of optical flow field is different from the RGB
images, we use the linear transformation to discretize the opti-
cal flow field into the same 0-255 interval as the RGB images.
Then use the Cross Modality Pretraining method to initialize
the weights of the convolutional neural network in the optical
flow modality TAMNet by utilizing the convolutional neu-
ral network in the RGB modality TAMNet, which not only
reduces the training duration of the optical flow modality, but
also appropriately avoid overfitting. The number of hidden
units in the VFA is set to 256, the number of hidden units in
LSTM is set to 256.The learning rate is initialized to 0.005,
the learning rate attenuation strategy is consistent with the
RGB modality TAMNet, and the maximum iteration is set to
250 epochs.

In order to avoid overfitting caused by the complexity of
model during training, we use technology such as random
cropping, horizontal flipping, corner cropping [11], and scale
jittering [2] to augment data and add a Dropout layer after
the bidirectional LSTM. The dropout rate of RGB modality
TAMNet is set to 0.5, and the dropout rate of optical flow
modality TAMNet is set to 0.7.
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To speed up the training, we used a multi-GPU parallel
strategy. The training time of the UCF101 dataset on the RGB
modality TAMNet is about 50 hours, and the training time on
the optical flow modality TAMNet is about 90 hours.

D. PERFORMANCE EVALUATION
1) TAMNET PERFORMANCE EVALUATION
In this section, we first make an experiment to choose which
convolutional neural network can be used as a feature extrac-
tor for TAMNet, and then verify the effectiveness of our
proposed RRA and VFA on improving network recognition
performance, finally we verify the recognition performance
of single-modality TAMNet network.

Since our RRA focuses on the spatial features extracted by
the convolutional neural network (feature extractor), whether
the spatial features extracted by the convolutional neural net-
work have strong spatial representation ability directly affects
whether RRA can be fully played its role. Therefore, we will
experiment with which convolutional neural network can be
chosen as the feature extractor for TAMNet. We use VGG16,
ResNet50, and BN Inception as candidate feature extractor
for TAMNet because the input sizes of these convolutional
neural networks are 224×224, comparing the feature extrac-
tion ability of these convolutional neural networks with the
same input size is more convincing. Secondly, we only use
the RGB modality of UCF101 as input, and use the settings
in the above experimental details to group experiments on the
three feature extractors. We use the pre-trained model from
ImageNet [27] to initialize the weights of the convolutional
neural network. Each group of experiments consisted of the
basic model: ConvNet + BDLSTM, the model with RRA:
ConvNet + RRA + BDLSTM, the model with VFA: Con-
vNet + VFA + BDLSTM, and TAMNet (ConvNet + RRA
+ VFA + BDLSTM). The test results of each group on the
RGB modality of UCF101 dataset are shown in Table 1. The
recognition accuracy of each group is the average accuracy
of the three train/test splits of the UCF101 dataset.

As shown in the results of Table 1, the addition of RRA and
VFA improves the recognition performance of each group.
Among them, by comparison, it can be found that the per-
formance improvement provided by RRA and VFA for the
BN Inception feature extractor group is far more than that
of VGG16 feature extractor group and ResNet50 feature
extractor group. Therefore, we believe that BN Inception can
obtain more representative spatial features to fully exploit the
recurrent region attention performance of RRA. In the end,
we chose BN Inception as the feature extractor for TAMNet.

Through the ablation studies, it can be found that the
addition of RRA component and VFA component brings
different extents of performance improvement to the base
model in each group. Among them, the performance improve-
ment of ConvNet + RRA + BDLSTM compared to the
basic model is much higher than that of ConvNet + VFA
+ BDLSTM. Meanwhile, the performance improvement of
TAMNet (ConvNet + RRA + VFA + BDLSTM) compared

TABLE 1. The average recognition accuracy of each group on the RGB
modality of UCF101 dataset.

TABLE 2. The average recognition accuracy of various methods on the
UCF101 dataset.

with the recognition performance of the basicmodel is greater
than the sum of the above two models. We believe that
this situation is mainly caused by the RRA between the
position of CNN feature extractor and that of the VFA in
the network structure. Compared to focusing on the spatial
features with action-irrelevant visual information, such as
redundancy and noise, it is more meaningful for VFA to focus
on the action-relevant regional visual information calculated
by RRA in temporal. In this way, the RRA can also assist the
VFA in reducing the prediction errors of BDLSTM caused
by the similar context of heterogeneous action video in tem-
poral. The ablation studies and the above analysis proved
that both RRA and VFA are indispensable components in the
TAMNet model.

Then we verify the effectiveness of our proposed
two-level attention on improving the recognition accuracy
and the recognition performance of the TAMNet network.
We transferred the weights learned by BN Inception [5] on the
ImageNet [27] dataset to the UCF101 dataset. For fair com-
parison, we used pre-trained method to experiment only on
the RGB modality input of the UCF101 dataset to highlight
the promotion in recognition performance by RRA and VFA.

The experiment results are summarized in Table 2. The
recognition accuracy of each method is the average accu-
racy of the three train/test splits of the UCF101 dataset, and
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FIGURE 10. The visualized heat maps of RRA and the score bar chart of each frame calculated by VFA.

the network model is grouped according to the pre-trained
dataset. The last three lines in the table are our basic model:
BN Inception + BDLSTM, the network model with RRA:
BN Inception + RRA + BDLSTM, and the final network
model with two-level attention: TAMNet. Compared with our
basic model, the recognition accuracy is improved by 2.4%
with the addition of RRA, and the recognition accuracy is
improved by 3.5% with the addition of two-level attention.

By comparing the recognition accuracy of the three mod-
els, we can see that the proposed RRA and VFA have
brought significant promotion to the network recognition
performance.

In order to more intuitively reflect the improvement that
our RRA and VFA bring to the recognition performance of
network, we have visualized the attention effect of RRA and
graphicalized the score of each frame calculated by VFA.
The visualized heat maps of RRA (upper part of each action
sequence) and the score bar chart of each frame calculated
by VFA (below part of each action sequence) are shown
in Figure 10. It can be clearly observed that the attention
resource of our RRA is mainly focused on the spatial regions
associated with the action, thus reducing the interference
caused by the action-irrelevant visual information such as the
complex background and lighting conditions. And it also can
be clearly observed that video frames which better reflect
action trait get higher scores than other frames in the video
sequence. Such as the frame in which the subject is swiveling

FIGURE 11. The training durations of the three models on split1 of the
UCF101 dataset.

jump in the BalanceBeam, the frame in which the subject
is punching the bag in the BoxingPunchingBag, and the
frame in which the subject is quickly raising his arm in the
BoxingSpeedBag. The VFA catches the video frames which
can highlight the action trait, thereby reducing the inter-
ference caused by similar contexts between heterogeneous
action videos.

We also compared the training durations of our three
network models on the split1 of the UCF101 dataset under
the same number of training (epochs =120). The training
durations of the three models on split1 of the UCF101 dataset
is shown in Figure 11. Through the comparison of the training
durations of these three models, it can be clearly reflected
from the side that our proposed RRA and VFA only bring a
small amount of computation to the network.
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FIGURE 12. The 3D line charts of the two-modalities fusion results of UCF101 dataset in regard to different fusion weights.

FIGURE 13. The 3D line charts of the two-modalities fusion results of HMDB51 dataset in regard to different fusion weights.

From what has been discussed above, the proposed RRA
and VFA not only bring considerable promotion to the recog-
nition performance of the network, but also do not bring
an expensive computational burden to the network training
process.

Then we compare the performance of TSN(RGB)-
BN Inception [11], Multimodal Fusion Network(RGB)-
ResNet152 [34], and TAMNet(RGB)-BN Inception in
Table 2, all of these models are pre-trained on the ImageNet
dataset. It can be seen that our TAMNet(RGB) outperforms
TSN(RGB) by 3.9% and outperforms Multimodal Fusion
Network(RGB) by 3.4% on the UCF101 dataset. This supe-
rior performance shows that the spatio-temporal represen-
tations learned by our TAMNet are more efficient than the
TSN and Multimodal Fusion Network when using only RGB
modality input for transfer learning. Our TAMNet network
achieves the best performance with the same pre-trained
settings.

2) TWO-MODALITIES TAMNET PERFORMANCE
EVALUATION
In this section, we validated the two-modalities fusion perfor-
mance of the TAMNet network on the UCF101 dataset and
the HMDB51 dataset.

In this paper, we use the probability fusion method
to fuse the video-level predictions of RGB modality
TAMNet and optical flow modality TAMNet. We first
research the fusion weights of probability fusion. The
3D line charts of the two-modalities fusion results of the
3 splits of UCF101 dataset and the HMDB51 dataset with
respect to different fusion weights are shown in Figure 12

TABLE 3. Comparison of two-modalities performance between TAMNet
and SOTA methods.

and Figure 13. The λ in the figure represents the fusionweight
of the video-level prediction of the RGB modality TAMNet
network.When λ is 0.3, the two-modalities TAMNet network
achieves optimal recognition performance on both the three
splits of the UCF101 dataset and the HMDB51 dataset.
Therefore, we finally chose the fusion weight that λ = 0.3
to fuse the video-level predictions of the two-modalities
TAMNet.

Finally, we compare the two-modalities fusion perfor-
mance of our proposed TAMNet network with the current
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SOTA methods on the UCF101 dataset and the HMDB51
dataset. Since our network adopts RGB modality and opti-
cal flow modality as input, in order to fairly compare the
recognition performance of the network, for the network
which adopts multi-modalities as input, we select the two-
modalities fusion performance of it to compare the recogni-
tion performance with our network. The results are shown
in Table 3. On the UCF101 dataset, the performance of
our proposed TAMNet network outperformed TSN [11] by
1.7%, outperformed theMultimodal FusionNetwork [34] and
ResNet+ TSN [36] by 0.9%, which is better than TVNets+
IDT [37] by 0.3%, exceeding the performance of the current
SOTA methods. The performance on the HMDB51 dataset
outperformed TSN [11] by 6.8%, outperformed ResNet +
TSN [36] by 3.5%, outperformed TVNets + IDT [37] by
2.7%, which is better than Pillar Networks++ [38] by 1.7%.
This indicates that the TAMNet proposed in this paper has
good generalization ability.

V. CONCLUSION
In this work, our proposed Recurrent Region Attention and
Video Frame Attention have brought significant improve-
ments to the accuracy of video action recognition. The
two-modalities recognition performance of the proposed
TAMNet network has reached a new level of technology on
both the UCF101 dataset and the HMDB51 dataset. Since
our TAMNet network is an end-to-end network, we only use
the probability fusion method to fuse the outputs of two-
modalities TAMNet. In this fusion method, each modality
model can only access the features of the current modality
and cannot learn the interaction between different modalities.
In the subsequent works, we will also try to use different
fusion methods to conduct more comprehensive modality
fusion at different locations of the model to achieve higher
recognition performance.
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