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ABSTRACT In order to improve the classification accuracy of patients with autism based on the full Autism
Brain Imaging Data Exchange dataset, a total of 501 subjects with autism and 553 subjects with typical
control across 17 sites were involved in the study. Firstly, we applied the resting-state functional magnetic
resonance imaging data to calculate the functional connectivity (FC) based on the automated anatomical
labeling atlas with 116 brain regions. Secondly, we adopted the support vector machine-recursive feature
elimination algorithm to select top 1000 features from the primitive FC features. Thirdly, we trained a stacked
sparse auto-encoder with two hidden layers to extract the high-level latent and complicated features from the
1000 features. Finally, the optimal features obtainedwere fed into the softmax classifier. Experimental results
demonstrate that the proposed classification algorithm is able to identify the autism with a state-of-the-art
accuracy of 93.59% (sensitivity 92.52%, specificity 94.56%).

INDEX TERMS Autism, fMRI, deep learning, SVM-RFE, classification.

I. INTRODUCTION
Autism spectrum disorders (ASD) are a cluster of neurode-
velopmental conditions associated with core deficits in social
communication, social interaction, and restricted and repeti-
tive behaviors [1]. The prevalence of ASD has dramatically
increased recently, reaching estimates of 1 in 59 children in
the USA and 1% to 1.5% of children and adults worldwide
according to the most recent investigation of the Centers for
Disease Control and Prevention. It is regrettable that the exact
etiopathogenesis of ASD remains unclear. Currently, diagno-
sis for ASD is solely behavior-based and relies on symptom-
based clinical criteria which cannot well distinguish patients
from typical controls (TC).

Recently, machine learning (ML) method has been wildly
applied to extract biological information from magnetic res-
onance imaging (MRI) data, classify individuals with ASD
and TC and further predict the tendency of the disease.
The previous studies that utilized ML attained a relatively
high classification accuracy of 65%-96.27% on the small
dataset with less than 200 samples [2]–[11]. The classi-
fication algorithms in the related studies include support

The associate editor coordinating the review of this article and approving
it for publication was Longzhi Yang.

vector machine (SVM), logistic regression, random forests,
linear discriminant analysis and deep belief network. Among
numerous ML algorithms, SVM was the most prevalent clas-
sification method and obtained the highest accuracy in ASD
classification (accuracy = 96.27%) based on a small dataset
with only 117 samples [7]. One common limitation of these
studies is the aggregation of a large number of features on
an under-powered sample size, leading to models overfitting
to the small dataset and generalizing poorly to a large data
sample [12].

The Autism Brain Imaging Data Exchange (ABIDE) [13]
consortium collected the MRI data consisting of 539 ASD
and 573 matched controls across 17 independent sites, pro-
viding an unprecedented opportunity for a large-scale inves-
tigation of ASD. In [14], Abraham et al. demonstrated the
feasibility of inter-site classification of neuropsychiatric sta-
tus, with an application to the ABIDE database. By building
participant-specific connectomes from functionally-defined
brain areas, they achieved a classification accuracy of 67% in
the full ABIDE dataset. In [15], the ABIDE dataset was inves-
tigated for functional connectivity of the regions of the brain
as specified by the Craddock 200 template, Heinsfeld et al.
applied the method of deep learning to obtain an accuracy
of classification of 70% based on the whole ABIDE dataset.
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However, large multi-site datasets increase sample size at the
cost of uncontrolled heterogeneity. The heterogeneity means
some disturbances to data samples as well as some loss in
classification accuracy.

In order to improve the classification accuracy on the
full ABIDE dataset, in this paper, we proposed a novel ML
framework to distinguish autistic patients from normal con-
trols. Firstly, we applied the resting-state functional magnetic
resonance imaging (rs-fMRI) data to calculate the functional
connectivity (FC) based on the automated anatomical label-
ing (AAL) atlas with 116 brain regions. Secondly, we adopted
the support vector machine-recursive feature elimination
(SVM-RFE) algorithm to select top 1000 features from the
primitive FC features. Thirdly, we trained a stacked sparse
auto-encoder (SSAE) with two hidden layers to extract the
high-level latent and complicated features from the 1000 fea-
tures. Finally, the optimal features obtained were fed into
the softmax classifier. Experimental results demonstrate that
the proposed classification algorithm is able to identify the
autism with a state-of-the-art accuracy of 93.59% (sensitiv-
ity 92.52%, specificity 94.56%), which is an inspiring result
for auxiliary clinical diagnosis of patients with ASD.

This paper is organized as follows: related work is
introduced in Section II and the dataset used, the feature
extraction and the proposed method are described in
Section III; Section IV describes the main results from this
study and a comparison with recent similar studies, followed
by conclusion in Section V.

II. RELATED WORK
A. SVM-RFE
The SVM-RFE is a kind of backward elimination methods
which starts with a full set of all features and then removes
the most irrelevant features one by one [16]–[19]. The top
ranked features removed in the last iteration of SVM-RFE
are the most important, while the bottom ranked ones are the
least informative and removed in the first iteration. In detail,
the SVM-RFE algorithm can be expressed as follows:

Let X = {x(1), x(2), . . . , x(N )
} be the dataset contain-

ing N initial features and class labels be denoted by Y =
{y(1), y(2), . . . , y(N )

}, y(i) ∈ {−1, 1} and i ∈ {1, 2, . . . ,N }.
Step 1: Training of an SVM on the initial features set:

L =
1
2

N∑
i=1

N∑
j=1

αiαjy(i)y(j)[k(x(i), x(j))+λδij]−
N∑
i=1

αi

(1)
N∑
i=1

aiy(i) = 0and0 ≤ αi ≤ C, (i = 1, 2, . . . ,N ) (2)

Eq. (1) is to be minimized subject to Eq. (2). In Eq. (1)
and Eq. (2) k(x(i), x(j)) is a kernel function, δij is the
Kronecker symbol (δij = 1 if i = j and 0 otherwise), and
α = {α1, α2, . . . , αN } are the parameters to be determined,
and λ and C are positive constants that ensure convergence

even when the problem is non-linearly separable or poorly
conditioned.

Step 2: Computation of the weight vector and the ranking
criteria according to:

wi =
N∑
i=1

αiy(i)x(i) (3)

ci = w2
i (4)

Step 3: Find the feature with smallest ranking criterion and
eliminate it.

Step 4: Update of the features dataset and N = N − 1.
Step 5: Repetition of Steps 1-4 until the features set is

empty.
The pseudo code of SVM-RFE algorithm can be expressed

as Table 1.

TABLE 1. SVM-RFE algorithm.

Notably, when the F is not empty, the iteration can also
stop. The stopping criterion could be the desired number of
features users want to keep. Meanwhile, the rank of features
was also obtained.

B. AUTO-ENCODER
An auto-encoder (AE) neural network is an unsupervised
learning framework that applies back propagation, setting
the target values to be equal to the inputs. For a set of m
unlabeled training examples{x(i)|x(i) ∈ Rn+1, i = 1, . . . ,m},
with x(i)0 = 1 related to the bias input, the AE tries to learn an
approximation function hW ,b(x) ≈ x such that the output is
close to input, as depicted in Fig. 1.

The overall cost function of a sparse AE (SAE) is defined
as

Jsparse (W , b) = J (W , b)+ β
s2∑
j=1

KL
(
ρ
∥∥ρ̂j ) (5)

J (W , b) =

[
1
m

m∑
i=1

(
1
2

∥∥∥hW ,b(x(i))− x(i)∥∥∥2)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)
ji

)2
(6)
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FIGURE 1. The structure of an AE.

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ)log

1− ρ
1− ρ̂j

(7)

ρ̂j =
1
m

m∑
i=1

a(2)j (x(i)) (8)

where the parameter β in Eq. (5) controls the weight of the
sparse penalty term; the first term in Eq. (6) is an average
sum-of-square error term; the second term in Eq. (6) is a
regularization term that tends to decrease themagnitude of the
weights and helps prevent overfitting; the parameter λ con-
trols the relative importance of the two terms;m is the number
of training samples; nl is the number of layers in the network;
sl is the number of nodes of layer l; ρ̂j denotes the average
activation of the hidden unit j; ρ is a sparse parameter. The
target is to minimize Eq. (5) by resorting to an iterative
optimization algorithm such as Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) [20], [21].

C. SOFTMAX REGRESSION
Let {(x(1), y(1)), (x(2), y(2)), . . . .(x(m), y(m))} be a set of m
labeled training examples and x(i) ∈ Rn, y(i) ∈ {1, 2, . . . , k}.
We want to estimate the probability of the class label taking
on each of the k different possible values. The hypothesis
hθ (x) of softmax takes the form:

hθ
(
x(i)
)
=


p
(
y(i)=1

∣∣x(i) ; θ)
p
(
y(i)=2

∣∣x(i) ; θ)
...

p
(
y(i)=k

∣∣x(i) ; θ)
 = 1

k∑
j=1

eθ
T
j x

(i)


eθ

T
1 x

(i)

eθ
T
2 x

(i)

...

eθ
T
k x

(i)


(9)

here θ = (θT1 , θ
T
2 , . . . , θ

T
k )

T denotes the parameter set of the
model and is usually represented as a k × (n + 1) matrix
obtained by stacking up θj, j = 1, · · · , k with θj ∈ Rn+1 in
rows.

The cost function is

J(θ)=−
1
m


m∑
i=1

k∑
j=1

1
{
y(i) = j

}
log

eθ
T
j x
(i)

k∑
l=1

eθ
T
l x
(i)

+ λs2
k∑
i=1

n∑
j=0

θ2ij

(10)

where 1{·} is the indicator function, the weight decay term
λs
2

k∑
i=1

n∑
j=0
θ2ij is used to penalize large values of the parameters

and make J (θ) strictly convex.

III. MATERIALS AND METHODS
A. PARTICIPANTS AND DATA PREPROCESSING
The original fMRI and demographic data were collected
from the ABIDE which allows unrestricted usage for non-
commercial research purpose. The scanning parameters
of these institutes and composition of subjects are listed
in Table 2. The Preprocessed Connectomes Project (PCP)
opened sharing of preprocessed neuroimaging data from
ABIDE [22]. All data in the study were preprocessed by
the DPARSF [23] pipeline in the PCP. Specifically, after a
dropout of the first 4 volumes, slice timing correction, head-
motion realigned and intensity normalized. Nuisance sig-
nals removal was performed to clean confounding variation
due to physiological processes (heart beat and respiration),

TABLE 2. Scanning parameters and composition of subjects in different
sites.
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head motion, and low frequency scanner drifts. A band-pass
filtering (0.01 – 0.1 Hz) was applied after nuisance vari-
able regression. A transform from original space to tem-
plate (MNI152) space was calculated for each dataset by a
combination of functional-to-anatomical and anatomical-to-
template transforms. According to literature [24], the head
movement had no significant effect on the classification accu-
racy of the autism. Therefore, we only excluded the subjects
whose structural images were not covered completely after
preprocessing. Thus, 501 ASD and 553 TC across 17 sites
were involved in the study.

B. CONNECTIVITY MEASURES AND FEATURE MATRICES
The AAL atlas [25], which divides the brain into 116 regions,
is a standard brain template for creating intrinsic connectivity.
Time courses were extracted from each of the 116 regions
and averaged within each region. Pearson’s correlation coef-
ficients (R(i, j)) were computed between these average time
courses according to:

R(i, j) =
C(i, j)

√
C(i, i)C(j, j)

(11)

where, C(i, j) denotes the correlation coefficient between
time-courses i and j.
In order to make it more statistically significant, Fisher’s z

transformation was implemented according to:

Z (i, j) =
1
2
× log

[
(1+ R(i, j)
(1− R(i, j)

]
(12)

So, the Fisher’s z-transformed correlation coefficients were
represented in a 116×116 matrix (13,456 features), which
was symmetric with regard to the diagonal. The values within
upper triangles and the main diagonal of the matrix were
removed. Therefore, the number of remaining effective cells
in the lower triangle of the matrix was 6670. We flattened the
remaining triangle (i.e. collapsed it into a one-dimensional
vector) to retrieve a vector of features, with the purpose of
using it for classification.

C. FEATURE SELECTION BASED ON SVM-RFE
The FC mentioned above resulted in 6670 features while
the sample size was 1054. So, this was summarized in the
expression ‘‘high dimensions, small samples’’. It was difficult
to learn the most discriminative feature that the 6670 fea-
tures were directly fed to SAE in the case of small samples.
SVM-RFE could pre-eliminate some meaningless features.
So, we applied the SVM-RFE to select the top 1000 ones
in 6670 initial features in order to make the SAE learning
high-level features well. The top 1000 features were selected
by the SVM-RFE in 6670 FC set, as shown in Fig. 2.

D. FEATURE SELF-TAUGHT LEARNING AND CLASSIFI-
CATION
In order to extract the high-level latent and complicated
features of FC, we constructed a feature self-taught learn-
ing network consisting of two layers of SAE in which the

FIGURE 2. The top 1000 FC features selected by SVM-RFE.

outputs of the first layer are wired to the inputs of the sec-
ond layer. Let W (k,1), W (k,2),b(k,1),b(k,2) denote the weight
parameters and bias for the kth SAE, respectively. A good
way to obtain good parameters for an SAE is to use a
greedy layer-wise training [26]. To do this, the first layer
is trained firstly on raw input to learn parameters W (1,1),
W (1,2), b(1,1) and b(1,2). The first layer transforms the raw
input into a vector consisting of activations of the hidden
units. The second layer is then trained on this vector to
learn parameters W (2,1),W (2,2),b(2,1) and b(2,2). This training
process is repeated for subsequent layers by using the output
of each layer as input for the subsequent layer. The network
constructed in this way by two or more SAE is called stacked
sparse auto-encoder (SSAE).

As shown in Fig. 3, the feature self-taught learning system
based on SSAE was configured as 1000-200-100. The top
1000 features selected by the SVM-RFE were fed into the
first SAE with 200 hidden units in which 200 high-level
features were learned. The 100 sophisticated features were
learned in turn by the second SAE. The features self-taught
learning extracted from the two successive SAE are shown
in Fig. 4 and Fig. 5 respectively.

FIGURE 3. The structure of SSAE consisting of two SAE.

The outputs of the SSAE, used as features, were fed into the
softmax classifier generalized by the logistic regression [27].
The total pattern recognition scheme is showed in Fig. 6.
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FIGURE 4. The features learned firstly.

FIGURE 5. The features learned again.

FIGURE 6. Pattern recognition schemes for ASD and TC.

For the SSAE, the sparse parameter ρ, the weight decay
parameter λ, the weight of the sparse penalty terms β and
the number of iterations, are set to be 0.08, 1e-4, 2 and
200, respectively. For the softmax classifier, the weight decay
parameter λs is 1e-4 and the number of iterations is 100.
In addition, we made use of fine-tuning to improve the per-
formance of the SSAE after pre-training.

IV. RESULTS AND DISCUSSION
The study was carried out on the full ABIDE dataset. The
dataset of 1054 samples (501 ASD, 553 TC) were randomly
split with k equally sized subsets and fed into the proposed
pattern recognition network. The classification quality was
assessed by the following performance indices:

Accuracy = (TP+ TN )/(TP+ FN + TN + FP) (13)

Sensitivity = TP/(TP+ FN ) (14)

Specificity = TN/(TN + FP) (15)

PPV = TP/(TP+ FP) (16)

NPV = TN/(TN + FN ) (17)

where, true positive (TP), false negative (FN), true nega-
tive (TN), and false positive (FP) denote, respectively, the
number of ASD correctly classified, the number of ASD pre-
dicted to be TC, the number of TC correctly classified, and the

number of TC predicted to be ASD. The results of recognition
for ASD and TC are listed in Table 3 in terms of different fold
cross-validation (CV). The values of various indicators such
as accuracy are very stable even if k is different. The average
classification accuracy achieves up to 93.59%.

TABLE 3. Results of classification with different CV.

The sensitivity measured the proportion of ASDs that were
correctly identified and specificity measured the proportion
of TCs that were correctly identified. To assess a realistic
prospect of how our model would behave in the real clinical
world, we calculated PPV and NPV respectively. The pro-
posed method attained a relatively high PPV of 94.01% and
an NPV of 93.41%. Based on the literature, this is the best
result of classification achieved so far.

Furthermore, if the SSAEwas configured 6670-200-100 or
6670-3072-1024-512-100, that is, original FC features were
entered into the SSAE without selection by the SVM-RFE,
the classification accuracy was only 63.37% and 64.01%
respectively. Although the number of hidden layer of SSAE
was increased, it was difficult for the SSAE to extract themost
discriminatively features in the case of ‘‘high dimensions,
small samples’’. In addition, if the 1000 or 100 FC features
selected by the SVM-RFE were directly entered into the soft-
max classifier without the SSAE, the classification accuracy
was only 67.25% and 63.12% respectively.

The result of identification was dissatisfactory only relying
on deep learning since the sample was small relative to the
size of FC features even if the sample came from the whole
ABIDE dataset. Also, the classification accuracy was unsatis-
factory only relying on the SVM-RFEwithout the SSAE. The
issue about ‘‘high dimensions, small samples’’ was addressed
well by combining the SVM-RFE with SSAE. Using the
SVM-RFE to pre-eliminate some meaningless features could
reduce some noise for the SSAE. Some high-level latent
features could be learned by the SSAE based on the features
selected by the SVM-RFE. At a higher abstract level, these
transformations created representations that were used for the
classification task.

Compared with the recent similar studies, the proposed
method performs better than literature [14] and [15] based
on the same large multi-site dataset. The comparison of clas-
sification accuracy by different methods is shown in Table 4.

In addition, the receiver operating characteristic (ROC)
curve of the proposed method, the method of the literature 14
and the method of the literature 15 are shown in Fig.7, from
which it can be seen that for all classifiers the true positive
rate increases with the increase of the false positive rate,
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TABLE 4. Results of classification with different methods.

FIGURE 7. The ROC curves of different algorithms.

while the proposed method achieves the largest area under
the curve (AUC).

The proposed method is completely data-driven without
any prior knowledge. The initial FC features in this study
come from the regions of total brain rather than local regions
such as the default mode network. Some selected regions
are not really linked with ASD according to the existing
literatures [28]–[33], but it is possible that these regions play
some unrecognized roles in autism. It is perhaps the reason
that the data-driven method can address well the uncontrolled
heterogeneity generated by different equipment and demo-
graphics in the large multi-site dataset. As a result, doing
more conveying on unrecognized regions would be essential
for further development of ASD diagnosis.

V. CONCLUSION
In this study, a deep learning method combined with
SVM-RFE was proposed to improve the classification accu-
racy of ASD based on the whole ABIDE dataset. The pro-
posed method used SVM-RFE to pre-eliminate some mean-
ingless features in order to enable the SSAE to extract well
the sophisticated features in the case of ‘‘high dimensions,
small samples’’. A total of 501 subjects with autism and
553 subjects with typical control across 17 sites were involved
in the study. The state-of-the-art average accuracy of 93.59%,
ROC and AUC are all better than that in recent similar studies
on the largest dataset of autism. The experimental results
demonstrate that some selected ROIs by the proposed method
might play some unrecognized roles in autism although these

ones are not really linked with ASD according to the existing
literatures. It does show that the data-driven method can
address well the uncontrolled heterogeneity generated by
different equipment and demographics in the large multi-site
dataset. It is an inspiring result for auxiliary clinical diagnosis
of patients with ASD.

Further research is necessary to combine multiple indices
of brain imaging such as grey matter volume and cortex
thickness with the FC, which might lead to better results of
identification.
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