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ABSTRACT Modern distribution power system has become a typical cyber-physical system (CPS), where
reliable automation control process is heavily depending on the accurate measurement data. However,
the cyber-attacks on CPS may manipulate the measurement data and mislead the control system to make
incorrect operational decisions. Two types of cyber-attacks (e.g., transient cyber-attacks and steady cyber-
attacks) as well as their attack templates are modeled in this paper. To effectively and accurately detect these
false data injections, a multivariate Gaussian based anomaly detection method is proposed. The correlation
features of comprehensive measurement data captured by micro-phasor measurement units (µPMU) are
developed to train multivariate Gaussian models for the anomaly detection of transient and steady cyber-
attacks, respectively. A k-means clustering method is introduced to reduce the number of µPMUs and select
the placement of µPMUs. Numerical simulations on the IEEE 34 bus system show that the proposed method
can effectively detect the false data injections on measurement sensors of distribution systems.

INDEX TERMS Cyber-physical system, cyber-attack, anomaly detection, distribution grid, machine
learning.

I. INTRODUCTION
Information technology plays a critical role in the automatic
control of modern distribution power systems, which consist
of a large number of computation systems, local sensors,
and communication networks. With the increasing and deep
interaction between physical flow and cyber flow, the modern
distribution system becomes a typical cyber-physical sys-
tem (CPS) [1], [2]. The core of CPS in power grids is to
achieve high-sensitivity awareness and real-time automation
of physical processes through the integration and coordi-
nation of 3C (Computation, Communication, and Control)
technology [3]–[5]. The integration of cyber networks and
physical systems has significantly enhanced the efficiency
and reliability of distribution system operations. However,
the strong interdependence between cyber networks and
physical power grids can bring more potential risks through
complex communication links, which are significantly vul-
nerable to cyber security threats [6]. In addition, both the
privatization of energy industries and the standardization of
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communication technologies facilitate opponents to tamper
cyber networks in power system. The existence of cyber
threats in CPS, such as cyber components failures, security
risks, and cyber-attacks, can readily lead to the abnormal
operation or even cascading outages of the entire power grid
by propagating from a single point failure in cyber networks.
For example, the ‘‘Ukrainian Blackout’’ [7] in 2015 was a
typical cyber-physical cascading failure caused by malicious
cyber-attacks, which aroused widespread concerns in the
cyber security of power system operations.

The existing researches investigate the countermeasures
against cyber-attacks from different approaches, such as vul-
nerability assessment [8], anomaly detection [9]–[11], and
attack mitigation [12], [13]. From the perspective of anomaly
detection, the identification methods of corrupted measure-
ment data have widely attracted interests of worldwide schol-
ars. Game theories are introduced to quantify the security
risk in cyber networks [9], [14]. Petri net is leveraged to
describe the information flows among the components in CPS
of power systems [10], [15]. Also, some statistical methods
are investigated in the detection of false measurement data.
For example, Cui et al. [11] developed a machine learning
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based anomaly detection method for tampered load forecast-
ing data. Wang et al. [16] established a distributed framework
based on the deep auto-encoder to detect the manipulated
data. Esmalifalak et al. [17] utilized both supervised and
unsupervised learning methods for the detection of stealthy
attack. Among these statistical methods, comprehensive vari-
ables of essential measurement data are the key feature for
successfully identifying CPS anomalies. However, compared
with the transmission-level grid, the real-time condition in
distribution grids is not sufficiently monitored by distribution
system operators (DSOs). To acquire situational awareness on
the CPS of distribution grids, there is a growing need in the
enhancement of sensors.

Recently, micro-phasor measurement units (µPMUs) have
been widely developed to capture operational states in the
distribution-level systems. Compared with the traditional
supervisory control and data acquisition (SCADA) system
with minute-level power flow sampling rates, µPMUs can
capture the voltage and current phasors with significantly
higher sampling rates [18], e.g., 30 Hz in [19], 50 Hz in [20],
60 Hz in [21], 100 Hz in [22], and 120 Hz in [23]. The
applications of µPMUs and PMUs have been discussed in
plenty of literatures [18], [23]–[25]. Cui et al. [18] proposed
a novel event detection methodology using huge amount of
PMU data. Jamei et al. [23] established an abnormal behavior
detection framework based on optimal placement of µPMUs
in distribution grid. Gomez et al. [24] trained a support vec-
tor machines classifier to predict post-fault transient stabil-
ity status based on the transient data acquired from PMU.
Li and Yang applied an ensemble of OS-extreme learning
machine with binary Java based feature selection to predict-
ing the transient stability status of power system by using
PMU data [25]. However, there are few applications for the
anomaly detection of CPS in distribution systems by using
µPMUs data as the analytical and statistical basis.

In this paper, we mainly focus on two types of false data
injection attacks (i.e., transient attacks and steady attacks)
in CPS of distribution grids. A multivariate Gaussian based
anomaly detection method is proposed to identify abnormal
CPS events by using variables of measurements acquired
from µPMUs. Firstly, the templates of two types of false
data injection cyber-attacks are introduced and modeled in
Section II. In Section III, a multivariate Gaussian based
machine learning method is developed for the CPS anomaly
detection considering both transient and steady cyber-attacks.
Section IV provides a method for the selection of µPMU
placement to reduce the number of µPMU devices in dis-
tribution systems. Case studies as well as numerical results
are discussed in Section V. Conclusions are summarized
in Section VI.

II. CYBER-ATTACK TEMPLATE
According to the IEEE PES Distribution automation working
group [26], the modern distribution system is automatically
controlled to enable DSOs to remotely monitor, coordinate,
and operate local distribution devices and components in

a real-timemode. Thus, the opponents maymislead the DSOs
into inaccurate operational decisions by stealthily injecting
false data into local measurement sensors. In this paper, two
types of false data injection attacks (i.e. transient attacks
and steady attacks) are investigated. Inspired by cyber-attack
templates mentioned in [11], the templates of transient attack
and steady attack are considered as step attack and ramping
attack, respectively.

A. STEP ATTACK
The representative template of transient cyber-attack is a step
attack, which modifies the measurement values in a specific
duration multiplied by a parameter ps:

Ṁt = (1+ ps)×Mt , for ts ≤ t ≤ te (1)

where Ṁt is the tampered measurement value at time t .Mt is
the original measurement value at timet . ts and te are the start
and end time of one transient cyber-attack, respectively.

FIGURE 1. Examples of (a) transient cyber-attack and (b) steady
cyber-attack.

The aim of transient cyber-attacks is to simulate a ‘‘system
fault’’ by injecting step overcurrent or low-voltage data into
correspondingmeasurement sensors, as shown in Fig. 1a. The
duration of transient cyber-attack is so short (e.g., 0.1s∼0.2s)
that the SCADA cannot detect this anomaly event. However,
if the step parameter is selected sophisticatedly and imple-
mented on the critical sensors of protection system, the fault
detector would be deceived with the tampered transient mea-
surements to alarm a fault. Under this situation, the distribu-
tion automation system would be misguided to isolate ‘‘fault
area’’ by tripping the protective relays, which would cause
unnecessary outages in distribution systems.

B. RAMPING ATTACK
The steady cyber-attack can be represented as a slowly ramp-
ing attack, which modifies the measurement values to rise
(or decline) gradually with time:

Ṁt =

{
[1+ (t − ts)pr ]×Mt , for ts ≤ t ≤ te
[1+ (te − ts)pr ]×Mt , for t > te

(2)

where pr is the ramping parameter. pr > 0 denotes an
up-ramping cyber attack, while pr < 0 represents a down-
ramping attack.
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Unlike transient cyber-attacks, steady cyber-attacks may
not show distinct transient features. Instead, they inject
consistent and slowly ramping false data into measurement
sensors, which are more challenging to be detected by visu-
alization. Due to the false data tampered by cyber attackers,
the control center in distribution systems may send incorrect
operational decisions from DSOs. For instance, as shown
in Fig. 1b, if the value of voltage V1 is manipulated by a
ramping attack, the control center would be deceived under
the ‘‘over voltage’’ condition. The transformer tap would be
changed to lower the system’s voltage, which may further
decrease the voltage V2 to the low-voltage condition.

III. ANOMALY DETECTION METHOD
In this section, we assume that it is unrealistic for oppo-
nents to implement successful cyber intrusion in each vari-
able of measurements simultaneously. The most economical
way is to manipulate some critical measurement data that
can influence the estimation of automatically controlled sys-
tem. Under this circumstance, the correlations between vari-
ables of comprehensive measurements captured by µPMUs
can be investigated to detect the anomalies. In this section,
a machine learning based anomaly detection method using
the multivariate Gaussian model is proposed to detect tran-
sient and steady cyber-attacks according to different corre-
lation features. Two design methods of features for transient
and steady cyber-attack detection are illustrated as follows.

Algorithm 1 Greedy Search Pseudo-Code for Threshold ε
Selection

1. x̂CV = Feature vectors in cross-validation set;
2. ŷCV = Anomaly flags matched with x̂CV ;
3. bestF1 = 0; // Initialization of F1 score
4. ε = 0; // Initialization of threshold
5. Given x̂CV , calculate p̂CV = p(x̂CV );
6. stepsize = (max(p̂CV )− min(p̂CV ))/100000;
7. for eps = min(p̂CV ) : stepsize : max(p̂CV ) do
8. ŷPR = p̂CV < eps;
9. given ŷPR and ŷCV , calculate F1;
10. if F1 > bestF1 then
11. bestF1 = F1;
12. ε = eps;
13. end if
14. end for

A. MULTIVARIATE GAUSSIAN MODEL
In probability theory and statistics, the multivariate Gaus-
sian distribution is a generalization of the one-dimensional
Gaussian distribution to higher dimensions. Compared with
one-dimensional Gaussian model, multivariate Gaussian
model can capture the correlations between variables from
different dimensions by formulating and calculating a covari-
ance matrix. In the field of applications, the multivariate
Gaussian model has been widely used in the abnormal signal
detection [27], [28]. The basic idea is to train a multivariate

FIGURE 2. Flowchart of transient event detection.

Gaussian model of the samples with multiple features, and
judge whether a new sample is homogenous or abnormal by
measuring its probability. As shown in Fig. 2, an example
of two-dimensional Gaussian distribution is presented. The
anomaly event is flagged when the joint probability is below
a threshold. It should be noted that the algorithm defaults to
Gaussian distribution for all features. If the samples do not
present a Gaussian distribution on a certain feature, they can
be converted to a Gaussian distribution, such as log trans-
formation, square root transformation, reciprocal transforma-
tion, etc. If the distribution of a feature is too complicated to
be converted to a Gaussian distribution, especially when the
distribution of the feature has multiple extremums, it can not
be trained in the multivariate Gaussian model.

Given a training set
{
x̂(1), x̂(2), · · · , x̂(NT )

}
, a multivariate

Gaussian model p(x̂) is fitted by:

p(x̂) =
1

(2π )
NT
2 |6|

1
2

exp(−
1
2
(x̂ − x̂m)T6−1(x̂ − x̂m))

(3)

x̂m =
1
NT

NT∑
i=1

x̂(i) (4)

6 =
1
NT

NT∑
i=1

(x̂(i) − x̂m)(x̂(i) − x̂m)T (5)

where NT is the number of training set. x̂ is the feature vector.
x̂m is the mean vector of the training set. 6 is the covariance
matrix. Given a new example x̂, we can compute p(x̂) by
using (3). An anomaly event would be flagged if p(x̂) < ε,
where ε is the threshold used for anomaly detection.

119806 VOLUME 7, 2019



Y. An, D. Liu: Multivariate Gaussian-Based False Data Detection Against Cyber-Attacks

A greedy algorithm is applied to select the threshold ε.
First, we calculate p(x̂CV ) through a cross-validation set
{(x̂(1)CV , y

(1)
CV ), (x̂

(2)
CV , y

(2)
CV ), · · · , (x̂

(NCV )
CV , y(NCV )CV )}, where NCV

is the number of cross-validation set. x̂CV is the feature
vector in the cross-validation set. yCV is the anomaly flag
that yCV = 1 for abnormal features and yCV = 0 for
normal features. For each ε ∈ [min(p(x̂CV )),max(p(x̂CV ))],
we can evaluate the performance of ε through a matching set
{(p(x̂(1)CV ), y

(1)
CV ), (p(x̂

(2)
CV ), y

(2)
CV ), · · · , (p(x̂

(γ )
CV ), y

(γ )
CV )} by calcu-

lating F1 score:

F1 =
2 · fp · fr
fp + fr

(6)

fp =
ntp

ntp + nfp
(7)

fr =
ntp

ntp + nfn
(8)

where fp is the precision metric. fr is the recall metric. ntp is
the number of true positives that indicate p(x̂CV ) = 1 and
yCV = 1. nfp is the number of false positives that indicate
p(x̂CV ) = 1 and yCV = 0. nfn is the number of false negatives
that indicate p(x̂CV ) = 0 and yCV = 1. For different ε ∈
[min(p(x̂CV )),max(p(x̂CV ))], we can get different F1 scores.
Theεwith amaximumF1 score is finally used as the threshold
for the anomaly detection.

B. TRANSIENT CYBER-ATTACK DETECTION
Based on the high sampling rate of µPMU, the transient
event on measurements can be readily captured and detected.
In this section, an anomaly detection method is proposed
for transient cyber-attacks, which aims to simulate system
faults by injecting transient measurements. In this study, the
monitored measurements are the magnitudes of three-phase
voltage, three-phase current, three-phase active power, and
three-phase reactive power. There are 12 types of measure-
ment data monitored for cyber-attack detection.

Let [M1M2 · · ·MNS ]
T denotes a sequence of captured mea-

surements, where NS is the number of captured samples in a
data sequence. A transient event is alarmed if there exists a
data point i ∈ {1, 2, · · · ,NS} for which any of the following
holds:

Mi ≤ M̄ − 3σ

Mi ≥ M̄ + 3σ (9)

where M̄ is the mean value of data sequence. σ is the sample
standard deviation of the data sequence.

The flowchart of a transient event detection is presented
in Fig. 2. At each instant of time, the readings (a data sequence
with a predefined window) are calculated according to (9).
Once a transient event is found, the start time ts and the end
time te are recorded, and the data sequence from ts to te is
leveraged to develop the transient feature. The fluctuation
1M in this data sequence is determined by:

1M = max
{∣∣Mi −Mj

∣∣} , for i, j ∈ [ts, te] (10)

where |�| denotes the absolute value. For a three-phase
measurement, the maximum fluctuation in the three-phase
measurement is regarded as a transient feature.

The transient feature vector x̂T in this paper is a four-
dimensional vector, which includes transient voltage feature,
transient current feature, transient active power feature, and
transient reactive power feature. To train a multivariate Gaus-
sian model, all of the system faults (including single phase
to ground fault, 2-phase to ground fault, phase-phase fault,
and 3-phase fault) at different locations as well as some tran-
sient cyber-attack templates are simulated to acquire transient
features x̂T . A suspicious transient cyber-attack is alarmed if
p(x̂T ) < ε.

C. STEADY CYBER-ATTACK DETECTION
In the steady operation, the voltage values of buses may be
tempered and modified by the opponent, which aims to mis-
lead operational decisions of the control center. An anomaly
detection method for steady cyber-attacks on voltage is pro-
posed in this section to alarm when the suspicious voltage
value is detected.

Under n different network conditions, the voltage of
busi can be represented as a n-dimensional vector v̂i =
[Vi1Vi2 · · ·Vin]T , where Vij is the voltage value of bus i
under network condition j(j = 1, 2, · · · n). Assume two
of these buses are matched into a pair set (v̂A, v̂B), where
v̂A = [VA1VA2 · · ·VAn]T and v̂B = [VB1VB2 · · ·VBn]T denote
n-dimensional voltage vectors for bus A and bus B, respec-
tively. A linear correlation between bus A and bus B can be
built by using {(VA1,VB1)(VA2,VB2) · · · (VAn,VBn)} as train-
ing set. Therefore, the voltage value of bus B can be predicted
by the monitored voltage value of bus A with the linear
regression model:

V̇B = VAa+ b (11)

where V̇B is the predicted voltage value of the bus B. VA is
the monitored voltage value of bus A. a and b are the linear
regression parameters for the pair set. Assume there are m
linear regression models, a m-dimensional steady feature x̂S
can be established based on the prediction errors, given by:

x̂S = v̂PB − v̂B (12)

where v̂PB = [V̇ (1)B V̇ (2)B · · · V̇
(m)
B ]

T
is the vector of pre-

dicted voltage values of bus B in m pair sets. v̂B =

[V (1)B V (2)B · · ·V
(m)
B ]

T
is the vector of monitored voltage values

of bus B in m pair sets. x̂S is a m-dimensional feature vector
that is used for steady cyber-attack detection. The number of
pair sets is determined by the placement of µPMUs. In this
paper, the adjacent buses equipped with µPMUs are matched
into a pair set. The placement selection ofµPMU is illustrated
in Section IV.

IV. PLACEMENT SELECTION FOR µPMU
It is challenging to place µPMU at each bus in a large-scale
distribution grid due to the cost. Thus, it is necessary to
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select specific buses for the placement of limited µPMUs.
For a radial distribution network, the voltage profiles at dif-
ferent nodes are generally determined by the node position,
load fluctuations, and renewables fluctuations, etc. Therefore,
the voltage profiles at the same branches or areas would
be similar. In this section, a k-means clustering method is
leveraged to divide the distribution network into multiple
areas, where the voltage profiles are similar. The bus with
centroid voltage in each cluster set is placed at least one
µPMU to represent the characteristics of this area.

Given a distribution grid with L buses, voltages of L buses
under n different load conditions are observed as (v̂1v̂2 · · · v̂L),
where each v̂i = [Vi1Vi2 · · ·Vin]T is a n-dimensional voltage
vector for bus i. The observation sets (v̂1v̂2 · · · v̂L) can be
divided into multiple clusters by using k-means clustering
method, which can partition L bus voltage vectors into K
voltage cluster sets C = {C1C2 · · ·CK } by minimizing the
within-cluster sum of squares:

min
C

K∑
i=1

∑
v̂∈Ci

∥∥v̂− µ̂i∥∥22 (13)

µ̂i =
1
ni

∑
v̂∈Ci

v̂ (14)

where µ̂i is the centroid voltage vector in the i-th voltage clus-
ter set Ci (i= 1, 2, · · ·K ). K is the number of voltage cluster
sets. v̂ is the n-dimensional voltage vector in voltage cluster
set Ci. ni is the number of voltage vectors in cluster set Ci.
‖�‖22 denotes the squared Euclidean distance.

There is at least one µPMU for each voltage cluster set Ci.
The bus with the most similar voltage profile as the centroid
voltage vector is selected as the centroid bus for the placement
of µPMU. This objective can be achieved by selecting the
minimal squared Euclidean distance between the bus’s volt-
age vector and the centroid voltage vector:

j = argmin
v̂j∈Ci

∥∥v̂j − µ̂i∥∥22 (15)

where v̂j is the voltage vector of bus j in cluster set Ci. Then
bus j will be selected for the placement of µPMU.
To estimate the number of cluster sets in the k-means

clustering method, set a cost function of K :

WK (K ) =
K∑
i=1

∑
v̂j∈Ci

∥∥v̂j − µ̂i∥∥22 (16)

where WK (K ) represents the pooled within-cluster sum of
squares around K centroids. K is the number of cluster sets.
µ̂i is the centroid voltage vector in the i-th voltage cluster
setCi. v̂j is the voltage vector of bus j in cluster setCi.Ci is the
i-th voltage cluster set that is divided by the k-means cluster-
ing method.

By plotting the curve of WK with K as the abscissa,
the elbow point should be the number of clusters. In this
paper, 500 load conditions in an unbalanced distribution grid
(IEEE 34 bus system) are considered and simulated through

FIGURE 3. Find the elbow point of the pooled within-cluster sum of
squares around centroids based on different numbers of the clusters in
k-means clustering method.

OpenDSS [29], [30] for the bus’s voltage clustering. There-
fore, the voltages on the buses are 500-dimensional vectors.
These voltage vectors can be divided into K clusters based on
the k-means clustering method. With different number of the
clusters, the functionWK (K ) in (16) is plotted in Fig. 3. As the
increase of the number of the cluster sets, the value of the cost
function decreases, and the elbow point is foundwhenK = 6.
Therefore, the IEEE 34 bus system is divided into 6 areas,
as shown in Fig. 4. According to (15), the centroid buses are
bus 808 for area 1, bus 816 for area 2, bus 820 for area 3, bus
854 for area 4, bus 890 for area 5, and bus 834 for area 6.
It should be noted that if the budget allows, the proposed
method would perform better when multiple µPMUs are
placed in the same area. In this paper, each area is placed with
only one µPMU at each centroid bus.

FIGURE 4. Topology of the IEEE 34 bus system.

V. NUMERRICAL TEST
The proposed method is tested on IEEE 34 bus system as the
Fig. 4, where 6 µPMUs are placed on bus 808, bus 816, bus
820, bus 854, bus 890, and bus 834, respectively. The numer-
ical simulation is conducted on a 64-bit computer with an
Intel Core i5 CPU of 2.30GHz and 8GB RAM. The proposed
algorithms are implemented in the MATLAB platform.

A. TRANSIENT ATTACK DETECTION
In this section, 10 types of faults, including single phase
(a, b, and c) to ground fault, phase to phase (a-b, b-c,
and c-a) fault, 2 phase (ab, bc, and ca) to ground fault, and
3 phase fault, are simulated at each node and each distribution
lines of the IEEE 34 bus system. Therefore, a multivariate
Gaussian model p(x̂T ) is derived from the transient features,
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such as maximum current fluctuation, maximum current fluc-
tuation, maximum active power fluctuation, and maximum
reactive power fluctuation, based on 400 different system
fault conditions. In cross-validation, 100 system fault con-
ditions and 100 transient false data injection conditions are
simulated to select the threshold. For each transient false data
injection condition, the measurements of current, voltage,
active power and reactive power under the normal condition
are randomly selected to be injected with simulated false
data under the fault condition. The threshold is determined
as 0.99× 10−3.
A transient even is firstly captured by the µPMUs, which

then input the transient features to the trained multivariate
Gaussian model p(x̂T ) to identify whether it is a system fault
or cyber-attack. For instance, a single phase (a-phase) to
ground fault is simulated on line 824-828 at 0.1s and cleared
at 0.2s. The transient event captured by µPMU 1 at bus
808 is shown in Fig. 5. With the captured start time ts and
the captured end time te, the measurement sequence between
ts and te is leveraged to establish the transient features x̂T .
By comparing p(x̂T ) and the threshold, the anomaly would
be flagged.

FIGURE 5. Anomalies captured by µPMU under a single phase (a-phase)
to ground fault.

FIGURE 6. Test results of transient cyber-attack detection.

To validate the effectiveness of the trained multivariate
Gaussian model p(x̂T ), 200 system fault conditions as well
as 100 transient false data injection conditions are simulated.
The test result is shown in Fig. 6. According to the calculation

results of multivariate Gaussian model, there is a significant
distinction in the value of probability p(x̂T ) between system
fault conditions and cyber attacked conditions. In Fig. 6,
the anomalies that represent cyber attacked conditions have
extreme small values of probabilities (between 0.99 × 10−5

to 0.99× 10−5), while the most probabilities of system fault
conditions are around 0.99× 10−3 to 1.

B. STEADY ATTACK DETECTION
In this section, 500 cases of IEEE 34 bus system under
different load conditions are considered and simulated based
on the OpenDSS platform. The voltage values of 6 centroid
buses under 500 network conditions are presented in Fig. 7.
As shown in Fig. 7, there are many scenarios where
the voltages of centroid buses exceed the upper boundary
of 1.1 p.u. or drop below the lower boundary of 0.9 p.u.
Thus, the opponent can inject false voltage data into mea-
surement sensors of centroid buses to pretend a low-voltage
condition or over-voltage condition, which may mislead the
control center to change the transformer tap and influence the
system’s voltage under normal operations.

FIGURE 7. Voltage values of centroid buses under 500 network
conditions.

To detect the abnormal voltage data that is tampered with
false data, we developed 5 linear regression models to create
the correlations between the voltages of adjacent centroid
buses (V808 − V816, V816 − V820, V816 − V854, V854 − V834,
and V854 − V890) based on 500 load conditions. The linear
correlations between voltages of centroid buses are shown in
Fig. 8. The good fit results indicate that the voltage value
of a centroid bus can be predicted by the adjacent centroid
bus with a linear regression model, which can be leveraged
to predict the voltages and detect the anomalies based on the
prediction errors. The steady features are established from the
prediction errors calculated from (17), (18)

V̇816 = −2.0299+ 2.9790V808
V̇820 = −0.8581+ 1.8124V816
V̇854 = −0.3435+ 1.3097V816
V̇834 = −0.3847+ 1.4246V854
V̇890 = −0.4265+ 1.3547V854 (17)

x1 = V̇816 − V816
x2 = V̇820 − V820
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FIGURE 8. Results of 5 linear regression models.

x3 = V̇854 − V854
x4 = V̇834 − V834
x5 = V̇890 − V890 (18)

where x̂S = [x1x2x3x4x5]T is the prediction error vector as
well as the feature vector for steady cyber-attack detection.
V808, V816, V820, V854, V834, and V890 are the monitored
voltage values of bus 808, bus 816, bus 820, bus 854, bus 834,
and bus 890, respectively. V̇816, V̇820, V̇854, V̇834, and V̇890 are
the predicted voltage values of bus 816, bus 820, bus 854, and
bus 890, respectively.

There are 500 feature vectors developed based on simula-
tion results of the IEEE 34 bus system under different load
conditions, and 400 of these feature vectors are leveraged to
train a multivariate Gaussian model. The other 100 feature
vectors of normal load conditions with another created
100 cyber-attack conditions are used for cross-validation. The
cyber-attack conditions are created based on the attack tem-
plate of ramping attacks, where the deviation range of tam-
pered voltage data is randomly changed between 0.01 to 0.1.
With 100 abnormal features and 100 normal features in cross-
validation test, 1.99 × 10−8 is chosen as the threshold to
identify the steady cyber-attacks.

A sensitivity test for the selected threshold to flag an
anomaly is implemented in this section. The result is shown
in Fig. 9. The voltage data of the centroid bus (V816, V820,
V854, V834, and V890) is manipulated and increased grad-
ually from 0 to 0.02. With the increase of the deviation
between tampered voltage data and predicted voltage value,
the probabilities calculated by p(x̂S ) are reduced. As shown
in Fig. 9, with the increasing deviation of tampered voltage
data, the value of p(x̂S ) is decreasing severely. The most
sensitive buses are V816 and V854, because they are used
most frequently in the linear regression models and influence
more features in multivariate Gaussian model. The V890 is
the least sensitive because the prediction of V890 based on
V854 is the most inaccurate among 5 linear regression models,
as shown in Fig. 8. This is because the bus 854 and bus

FIGURE 9. Results of sensitivity test for tampered voltage value with
different degrees of deviation.

890 belong to the different voltage levels, which cause a
weaker correlation compared with other pair sets. However,
the detection performance is still good as the anomaly of V890
is flagged when the tampered deviation exceeds 0.014 p.u.,
within which the tampered voltage value cannot mislead the
voltage control. Thus, the detection sensitivity of a specific
bus can be improved when a more accurate linear regression
model is developed.

FIGURE 10. Detection results under 500 different normal conditions.

Fig. 10 shows the results under 500 normal operation con-
ditions. As seen in this figure, 3 representative false positive
results are marked. Compared with the results of sensitiv-
ity test in Fig. 9 and the results of normal condition test
in Fig. 10, it can be observed that the detection is more
accurate but less sensitive with the decrease of the threshold.
Thus, the threshold should be determined experientially to
obtain a better compromise between detection accuracy and
detection sensitivity.

C. DISCUSSION
The proposed method can detect the false data by training
one classifier (one multivariate Gaussian model), because
the multivariate Gaussian model can capture the correlations
between variables from different dimensions by itself with
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TABLE 1. Nomenclature.

the covariance matrix. In MATLAB, the training of a mul-
tivariate model with 1000 10-dimensional training samples
costs less than 5 seconds. Concretely, in this paper, there are
600 4-dimensional samples (400 training samples and
200 cross-validation samples) of the transient cyber-attacks,
and 600 5-dimensional samples (400 training samples and
200 cross-validation samples) of the steady cyber-attacks.
The proposed approach is computationally effective to be
used in practical applications as the model training can be
accomplished by off-line calculation with historical data.

In the result of the transient cyber-attacks detection, both
the accuracy and precision perform well as the distinction
of the probabilities between system fault conditions and
cyber-attack conditions is significant (as shown in Fig. 6).
The reason is that we assume it unrealistic for opponents
to implement successful cyber intrusion in each variable of
measurements simultaneously. If any of the monitored mea-
surement is not tampered, the feature of the normal opera-
tion fluctuations would lead to very small probability value
in the multivariate Gaussian distribution. However, in the
result of the steady cyber-attacks detection, the feature is
established based on the prediction error, which can be influ-
enced by some extraordinary network conditions. Generally,
the threshold should be determined experientially to obtain
a better compromise between the detection accuracy and the
detection sensitivity. In this paper, the threshold is determined
by maximizing the F1 score in (6). From the comparison
between Fig. 9 and Fig. 10, when the threshold is set higher,
the detection is more sensitive to both the anomalies and the
normal conditions with higher prediction errors. Therefore,
an improved regression model with lower prediction errors
can contribute to the detection accuracy based on the multi-
variate Gaussian model.

VI. CONCLUSION
This paper studies the detection of false data injected in
the measurement sensors of CPS in distribution systems.
A multivariate Gaussian based anomaly detection method is
developed to identify transient and steady cyber-attacks. The
comprehensive measurements in distribution systems can be

acquired by µPMUs for statistical analysis. The multivariate
features are established by formulating correlations among
different variables of measurement data. A cyber-attack event
is flagged when its probability in the multivariate Gaussian
distribution is below a selected threshold. The threshold is
determined by maximizing the F1 score. The k-means clus-
tering method is used to divide the distribution system into
areas with similar voltage profiles, which are leveraged to
formulate the linear regression models between the adjacent
centroid voltage buses placed with the µPMUs. The numer-
ical test is simulated on the IEEE 34 bus system. The test
result has shown the proposed approach is sensitive to the
false data injection and is computationally effective to be used
in practical applications. In this paper, there is a trade-off
between the detection accuracy and the detection sensitivity
when selecting the threshold. In the future studies, the regres-
sion model should be improved to decrease prediction errors,
which can contribute to more accurate regression model will
contribute to the detection accuracy as well as the detection
sensitivity.

APPENDIX
The nomenclature used in this paper is given in Table 1.
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