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ABSTRACT Robots play a significant-and growing-role in many practical fields, for example, the corre-
sponding application in industrial and medicine field. More importantly, for the control of a robot system,
a good control performance is natural and necessary requirements. And since the control of system is usually
realized by a digital computer, sampling is an inevitable process in actual engineering. However, it is a well
known truth that unstable zero dynamics can greatly limit the control performance of the system. This paper
investigates the stabilization of a class of robot system based on the corresponding sampled-data model,
which generated from the discretization with fractional-order hold (FROH). Further, the sampled-data model
of the two degree of freedom (DOF) robot system is obtained and the expression and stable conditions of
sampling zero dynamics are also obtained. What is more, the control strategy of the corresponding robot
system is acquired using the sampling zero dynamic stable approach. Finally, numerical example is provide
to illustrate the effectiveness of the proposed approach in this paper.

INDEX TERMS Fractional-order hold, robot system, sampled-data model, stabilization, zero dynamic.

I. INTRODUCTION
It is well known that robots have great potential application
and the fastest expansion inmany practical engineering fields.
Due to their abilities, robots can assist and even substitute
humans to accomplish assignment [1]. For instance, in mod-
ern medicine, they play an important role in training the
doctors, dentists, and nurses, and role in comforting and pro-
tecting patients. The first recorded robotic surgical procedure
– a CT-guided brain biopsy – took place on 11 April 1985,
at the Memorial Medical Center, Long Beach, CA,USA [2].
Since then, scholars have done many researches on medical
robotics [3]–[5]. In medicine, robots are classified into five
types based on the difference of actuation and applications,
such as passive robots, active robots, semi-active robots,
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synergistic and intra corporal systems [4]. Due to the spe-
cial environment and requirement of medical robots, a good
control performance of the robots is very important which
can increase the accurateness of operation and reduce human
error. Any mistake and error made during surgery may lead to
aggravate patients’ misery or even loss their lives. Similarly,
any mistake and error made during production may also lead
to significant loss of economic and property. What is more,
robot system is a highly complicated system with nonlinear
dynamics characteristic. Thus, it is important to stable the
robot systems accurately and rapidly. In addition, the research
about robot control in other areas is also very important.

For the hand of robot to have human like motion, similar
characteristics and methods of motion generation need to
be properly considered. To solve this problem, some meth-
ods have been proposed, such as single objective optimiza-
tion genetic algorithm [6] and multi objective evolutionary
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algorithm [7]. Besides, considering the truth that control
systems suffer frommany input limitations in control process.
A comprehensive control method including neural network
and robust integral term in the control law can reduce final
positioning errors due to input constraints [8], [9]. Moreover,
because of the equations of motion of the robots are highly
nonlinear, which will lead to make the control performance
worsening. Therefore, the stabilization of the robot system is
one of the hot research spots by a proper control strategy.

Since the control of plant is usually realized by a digi-
tal computer with the rapid development of microprocessor
technology, the digital electronics have been become more
and more important in the area of control engineering. In the
area of nonlinear control, more and more scholars have paid
attention to the sampled-data control [10]–[12]. However,
a good approximation of sampled-data model for design-
ing the controller based on the corresponding sampled-data
model is necessary because the exact sampled-data model
of nonlinear systems is usually difficult to obtained for con-
troller designers. Further, the results in previous research
were shown that the original exact system can be stabilized
when the more accurate sampled-data model with stabile zero
dynamics was obtained to design the corresponding control
input [13]. Thus, finding a discrete time model to represent
the original continuous time system in control process is
a good choice, where the discrete time algorithm is typi-
cally used to control the original continuous time system
[10]. Time discretization is an indispensable program for
obtaining the discrete time model and based on the discrete
time control law designed for a discrete time system is very
attractive for dealing with the issue of sampling at some
time instants [14]. what is more, because of the unstable
zero dynamics exist in the obtained sampled-data model,
the controller designed based on the sampled-data model can
not stabilize the original continuous time system [15], [16].
In order to obtain the sampled-data model from the original
continuous time system, the sampler and hold device provides
a link between of them, such as the zero-order hold (ZOH),
first-order hold (FOH) and fractional-order hold (FROH) are
the generally signal reconstruction devices. Using FROH
as control signal reconstruction, a more stable position of
discrete zeros can be achieved compared to systems that use
the more common ZOH or FOH device [17]. Therefore, this
paper has introduced the FROH as the signal reconstruction
device to discretization the robot system and analyzed the
corresponding control performance.

Zero dynamic, an important notion, of the nonlinear
sampled-data system obtained by sampling. In digital linear
technology, the control performance of linear system was
greatly limited due to the presence of unstable zeros in the
corresponding sampled-data model [15]. And it is also a
truth that unstable zero dynamics of the discrete time system
greatly limit the control performance of the original nonlinear
control system [18]–[22]. Zero dynamics of discrete time
system are usually classified into two categories [23]. One of
them is called intrinsic zero dynamic and it has counterpart

in the continuous time system. Another one is called sam-
pling zero dynamic which is generated during the sampling
process. In recent years, many scholars have introduced zero
dynamic approaches to design the controller. for instance,
the zero dynamic stable approaches were used in the control
of quad rotor [24], vertical take-off and landing [25], [26] and
multimachine power system [27].

This paper is mainly focus on the stabilization of the robot
system via sampling zero dynamic stable approach. Using
FROH as the input signal reconstruction device to discretize
the original continuous time robot system, the approximate
sampled-data model is obtained. The main contributions
of this paper are summarized to be: 1) The approximate
sampled-data model of robot systems with FROH is proposed
by using Taylor expansion method, and the order of the local
truncation error between the resulting sampled-data model
and exact sampled-data model is ri + 1 with respect to sam-
pling period T ; 2) The expression of the zero dynamics about
two degree of freedom (DOF) robot system is presented, and
the stability condition of zero dynamic is also given; 3) Using
the resulting approximate sampled-data model to design con-
trol strategy can obtain a good control performance.

The structure of this paper is organized as follows: the
next section introduces some preliminaries of FROH and the
system description of robot system; in Section III we state
the approximate sampled-data model and the local truncation
error of the robot system with FROH; zero dynamics of the
corresponding sampled-data model is shown in Section IV;
Section V provides the numerical simulation; finally, conclu-
sions are presented in Section VI.

II. PRELIMINARIES AND SYSTEM DESCRIPTION
In this section, we begin by reviewing some well-known
results and the robot system description to better understand
the results of this paper. We are interested in the properties
of discrete time model composed of a hold circuit,the contin-
uous time system and a sampler and hold device in cascade,
where the FROH [28]–[30] signal reconstruction method was
considered to generate the input of the control system. i.e.,

u(t) = u (kT )+ β
[
u (kT )− u ((k − 1)T )

T

]
(t − kT ) (1)

where kT 6 t < (k + 1)T , k = 0, 1, · · · , and β is a
changeable real parameter of a FROH and T is sampling
period. The signal reconstruction of a FROH in the case of
β = −0.5 is shown in Figure 1 [28]–[30].
Remark 1:Obviously, the FROH reduces to ZOH for β = 0

while it becomes FOH for β = 1. Thus, it is universality to
research the robot control system in FROH.

For convenience to understand the discrete time model,
we express some results using δ-operator [31]. The operator is
different from the Euler integration. In discrete time and com-
plex variable domains, the shift operator was shown in the
following and was used to obtain the corresponding results.

δ =
q− 1
T
⇔ γ =

z− 1
T

(2)
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FIGURE 1. Signal reconstruction of a fractional-order hold with β = −0.5.

Actually, the use of the δ-operator with the transformation
q = δT + 1 or δ = (q− 1)

/
T is simply a way of reparam-

eterisation any discrete time model. This reparameterisation
has the advantage of highlighting the bridge between discrete
time and continuous time domains and achieving improved
numerical properties.

The dynamic model of the robot system can be expressed
as a second order nonlinear differential equation [32]:

M (ρ) ρ̈ + C (ρ, ρ̇) ρ̇ + G (ρ)+ F (ρ̇) = u (3)

where ρ ∈ RN and ρ̇ ∈ RN are vector of the joint variable
denotes the motion of the robotic arm and the velocity vector,
respectively. N represents the degree of freedom (DOF) of
the robotic arm. M (ρ) ∈ RN×N is the symmetric positive
definite inertial matrix, C (ρ, ρ̇) ∈ RN×N is the Coriolis
and centrifugal matrix, G (ρ) ∈ RN is the gravitational force
vector, F (ρ̇) ∈ RN is the friction vector. u ∈ RN represents
the control vector of joint torque/force exerting on the arm or
the control input.

Further, the following multivariable nonlinear system is
considered [33],

ẋ = f (x)+
m∑
i=1

gi (x) ui

y1 = h1 (x)
· · ·

ym = hm (x)

(4)

where x ∈ Rn, u ∈ Rm and y ∈ Rm are the
state, input and output vectors, respectively. The vector
fields f (x) and g1 (x) , · · · , gm (x) and the output function
h1 (x) , · · · , hm (x) will be assumed to be analytic on an open
subsetM . We also assume that xe is an equilibrium vector for
the original nonlinear system (4).

Denoting by Lτ (x) λ (x) the Lie derivative of the function
λ along the vector field τ , we recall the following definition
about the relative degree of the multivariable system.
Definition 1: The multivariable nonlinear system (4) has

relative degree r1, · · · , rm about each output at the equilib-
rium if

(i) LgjL
k
f hi (x) = 0 for all 1 6 j 6 m, 1 6 i 6 m and

k < ri − 1.
(ii) The matrix A (xe) ∈ Rm×m is nonsingular.

A (x) =


Lg1L

r1−1
f h1 (x) · · · LgmL

r1−1
f h1 (x)

Lg1L
r2−1
f h2 (x) · · · LgmL

r2−1
f h2 (x)

...
. . .

...

Lg1L
rm−1
f hm (x) · · · LgmL

rm−1
f hm (x)


III. THE SAMPLED-DATA MODEL OF THE ROBOT
SYSTEMS WITH FROH
Note that the ZOH and FOH are a special case of FROH.
Thus, the research about the stabilization of a class of robot
system in FROH is more valuable. In addition, the output of
FROH has the following relations

u̇j (t) = β
[
uj (kT )− uj ((k − 1)T )

T

]
and

üj (t) = 0, j = 1, · · · ,m

In order to show the derivation process more clearly,
we have selected the DOF of the robot systems is two in this
paper [34]. Robot systems with other DOF can be expanded
using the similar method. Thus, the joint vector of the robot
system is ρ =

[
ρ1 ρ2

]
. And we let the robot system with

M (ρ) =

[
m1 + m2 cos (ρ2) m3 sin (ρ2)

m4 sin (ρ2) m5

]
C (ρ, ρ̇) =

[
c1 sin (ρ2) ρ̇2 c2 cos (ρ2) ρ̇2
c3 cos (ρ1) ρ̇2 0

]
G (ρ) =

[
g1g cos (ρ1 + ρ2)
g2g cos (ρ1 + ρ2)

]
F (ρ̇) =

[
f1ρ̇1 + f2 sin (ρ̇1)
f3ρ̇2 + f4 sin (ρ̇2)

]
those coefficients ml, l = 1, · · · , 5, ce, e = 1, 2, 3, g1, g2
and fw,w = 1, 2, 3, 4 are present the design parameters, and
g = 9.8m/s2 represents the gravitational acceleration.
Therefore, the state space of the robot system can be

expressed as follows

ẋ11 = x12
ẋ12 = b1 + a11u1 + a12u2
ẋ21 = x22
ẋ22 = b2 + a21u1 + a22u2
y1 = x11
y1 = x21

(5)

where x i1 = ρi and x
i
2 = ρi, i = 1, 2.

b1

=

−


(
m5c1 sin

(
x21
)
x22−m3c3 sin

(
x21
)
cos

(
x11
)
x22
)
x12

+ m5c2 cos
(
x21
)
x22x

2
2 + g1g cos

(
x11+x

2
1

)
+ f1x12

+ f2 sin
(
x12
)


d
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b2

=

−


(
−m4c1sin2

(
x21
)
x22 + m1c3 cos

(
x11
)
x22

+m2 cos
(
x11
)
cos

(
x21
)
x22

)
x12

− m4c2 sin
(
x21
)
cos

(
x21
)
x22x

2
2 + g2g cos

(
x11+x

2
1

)
+ f3x22 + f4 sin

(
x22
)


d

a11 = m5
/
d , a12 = −m3 sin

(
x21
)/
d , a21 = −m4 sin

(
x21
)/
d ,

a22 =
(
m1 + m2 cos

(
x21
))/

d and d represents the determi-
nant ofM (ρ). Obviously, the relative degree of the system is
r1 = r2 = 2. Then, for sufficiently small sampling period,
the different derivatives of the outputs can be obtained

ẏi = x i2
ÿi = bi + ai1u1 + ai2u2...
y i = ḃi + ȧi1u1 + ȧi2u2 + ai1u̇1 + ai2u̇2

≈ β

2∑
j=1

aij
uj (kT )− uj ((K − 1)T )

T

(6)

where i = 1, 2 and the final approximation result of
...
y i is

acquired from the fact that the fourth and fifth terms with β
is dominant for sufficiently small T .
Applying the Taylor expansion formula for a sufficiently

small sampling period T and using (6) acquired

x il+1,k+1 = y(l)i,k+1

≈ y(l)i,k + Ty
(l+1)
i,k + · · · +

T ri−l

(ri − l)!
y(ri)i,k

+
T ri−l+1

(ri−l + 1)!
y(ri+1)i,k

≈ x il+1,k + Tx
i
l+2,k

+ · · · +
T ri−l

(ri − l)!

bi,k + m∑
j=1

aki,juj,k


+

T ri−l+1

(ri−l + 1)!
β

m∑
j=1

aki,j
uj,k − uj,k−1

T

i = 1, · · · ,N . l = 0, · · · , ri − 1. (7)

where, the subscripts k − 1, k and k + 1 represent the time
instant (k − 1)T , kT and (k + 1)T , respectively.
Remark 2: From the higher-order Taylor expansion (7),

this result can be expanded to N DOF of robot system. This
paper selects two DOF as a didactic tool to simplify the
exposition of results.

Hence, the sampled-data model for (5) with FROH is
obtained as follows

Xk+1 = 8βXk +
2∑
i=1

0i,βui,k + hk

y1,k = x11,k
y1,k = x21,k

(8)

where

Xk =
[
x11,k x12,k x21,k x22,k u1,k−1 u2,k−1

]T

8β =



1 T 0 0 −
T 2β

3!
ak1,1 −

T 2β

3!
ak1,2

0 1 0 0 −
Tβ
2!
ak1,1 −

Tβ
2!
ak1,2

0 0 1 T −
T 2β

3!
ak2,1 −

T 2β

3!
ak2,2

0 0 0 1 −
Tβ
2!
ak2,1 −

Tβ
2!
ak2,2

0 0 0 0 0 0
0 0 0 0 0 0



0i,β =



T 2

2!
ak1,i +

T 2β

3!
ak1,i

Tak1,i +
Tβ
2!
ak1,i

T 2

2!
ak2,i +

T 2β

3!
ak2,i

Tak2,i +
Tβ
2!
ak2,i

0
0


hk =

[
T 2

2!
b1,k Tb1,k

T 2

2!
b2,k Tb2,k 0 0

]T
What is more, the local truncation error between the

true system outputs and the ith output of the resulting
sampled-data model is shown in following. It is assumed that
the state of the sampled-data model is the same as the true
system state at t = kT . Then, we compare the next sampling
time t = (k + 1)T of the true system outputs yi ((k + 1)T )
and the each first state x i1,k+1 of the resulting sampled-data
model.

First, on the basis of the options in [23], the true system
output yi ((k + 1)T ) can be described as

yi ((k + 1)T )

= x i1,k + Tx
i
2,k + · · · +

T ri+1

(ri + 1)!

×

ḃi,k + m∑
j=1

ȧki,juj,k +
m∑
j=1

aki,ju̇j,k


t=ξ i1

(9)

with kT < ξ i1 < (k + 1)T .
The truncation errors of the output between of two systems

are expressed as following.

eik+1 =
∣∣∣yi ((k + 1)T )− x i1,k

∣∣∣

=
T ri+1

(ri + 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

ḃi,k + m∑
j=1

ȧki,juj,k +
m∑
j=1

aki,ju̇j,k


t=ξ i1

−

 m∑
j=1

aki,ju̇j,k


t=kT

∣∣∣∣∣∣∣∣∣∣∣∣
6

T ri+1

(ri + 1)!
L
∥∥∥x (ξ i1)− x (kT )∥∥∥ (10)
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where L is the Lipschitz constant, which is determined by the
following equation.∥∥∥x (ξ i1)− x (kT )∥∥∥ 6 C ×

eL
∣∣ξ i1−kT ∣∣ − 1

L

< C ×
eLT − 1

L
= O (T ) (11)

Therefore, the local truncation error of the output between
the true system and sampled-data with FROH is order T ri+1,
which implies that the accuracy is the same order of as the
Yuz and Goodwin’s model [23]. Thus, the local error of the
robot system with two DOF using the method in this paper is
order three about small sampling period.

IV. ZERO DYNAMICS OF SAMPLED-DATA
MODEL WITH FROH
In this section, we will show the results of zero dynamics of
the sampled-data model in the previous section.

Based on the definition of the zero dynamic, we let the
outputs of the robot systems are equal to zero. Thus, setting
x11,k+1 = x11,k = 0 and x21,k+1 = x21,k = 0, then (8) leads to

x12,k+1
x22,k+1
u1,k
u2,k
0
0

 = P (β)



x12,k
x22,k
u1,k−1
u2,k−1
u1,k
u2,k

+ ψ (12)

where

P (β) =

 p21 p22 p23
0 0 I2
p11 p12 p13


and I2 represents a second order identity matrix.

p11 =
[
T 0
0 T

]
, p12 =

−
T 2β

3!
ak1,1 −

T 2β

3!
ak1,2

−
T 2β

3!
ak2,1 −

T 2β

3!
ak2,2

,

p13 =


(
T 2

2!
+
T 2β

3!

)
ak1,1

(
T 2

2!
+
T 2β

3!

)
ak1,2(

T 2

2!
+
T 2β

3!

)
ak2,1

(
T 2

2!
+
T 2β

3!

)
ak2,2

,

p21 =
[
1 0
0 1

]
, p22 =

−
Tβ
2!
ak1,1 −

Tβ
2!
ak1,2

−
Tβ
2!
ak2,1 −

Tβ
2!
ak2,2

,

p23 =


(
T +

Tβ
2!

)
ak1,1

(
T +

Tβ
2!

)
ak1,2(

T +
Tβ
2!

)
ak2,1

(
T +

Tβ
2!

)
ak2,2

,
ψ =

[
Tb1,k Tb2,k 0 0

T 2

2!
b1,k

T 2

2!
b2,k

]T
.

Moreover, noting that the order of the each variable of ψ
are higher order with respect to T than the corresponding one

of p11 and p21, applying z-transform to (12), we will obtain
the sampling zero dynamics

φβ (z) υ = 0 (13)

where

φβ (z) =

 −p11 −p12 −p13
zI − p21 −p22 −p23

0 zI −I

 , υ =

[
Z (ζk)
Z (uk)

]

and ζk =
[
x12,k x

2
2,k u1,k−1 u2,k−1

]T
, uk =

[
u1,k u2,k

]T .
where the Z [·] represents the z-transform.

Consequently, the sampling zero dynamics could come
from

∣∣φβ (z)∣∣ = 0, where the determinant
∣∣φβ (z)∣∣ can be

obtained by the following calculation process.

∣∣φβ (z)∣∣ =
∣∣∣∣∣∣
−p11 −p12 −p13

zI − p21 −p22 −p23
0 zI −I

∣∣∣∣∣∣
=

∣∣∣∣∣∣
−p11 −p12 − zp13 −p13

zI − p21 −p22 − zp23 −p23
0 0 −I

∣∣∣∣∣∣
=

∣∣∣∣ −p11 −p12 − zp13
zI − p21 −p22 − zp23

∣∣∣∣ (14)

Submitting the block matrix into (14), and using Schur
complement obtains∣∣φβ (z)∣∣ = ∣∣∣∣ (−p22 − zp23)− (zI − p21) (−p11)−1 (−p12 − zp13)

∣∣∣∣
=

T
(
(3+ β) z2 + (3+ β) z− 2β

)
6

∣∣∣∣∣ ak1,1 ak1,2
ak2,1 ak2,2

∣∣∣∣∣
(15)

Theorem 1: When a class of two DOF robot system as
shown in this paper. Then, for sufficiently small sampling
periods, the sampling zero dynamics of the corresponding
sampled-data mode (8) with the FROH to reconstruct the
control signal are determined by

(3+ β) z2 + (3+ β) z− 2β = 0 (16)

Thus, the zero dynamics of the sampled-data model with
FROH are stable if all the zero dynamics are stable and
−1 < β < 0.

Proof: The proof process of Theorem1 is not a difficult
work. From the above deduced process and the result of (14),
the result of (16) can be obtained. And then, according to the
result(16), using bilinear transformation and Jury stability test
[35] to obtain the stability condition −1 < β < 0. �
Remark 3: When the FROH signal reconstruction device

is used, the stability of sampling zero dynamics of the cor-
responding sampled-data multivariable models is only deter-
mined by the parameter β. And the conclusion of the paper
about the zero dynamics stability condition is similar to the
results of the linear multivariable case [30].
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V. NUMERICAL EXAMPLE
This section presents an interesting class of robot system as
the example to exemplify the ideas in this paper. And based on
the sampled-data model to design the stabilization controller
of the robot system when the sampling zero dynamics of
the sampled-data model is stable. The following simulation
results show that the outputs of the control system converge
to the origin in FROH case.

Consider that the robot systemwith relative degree two (5).
Further, the sampled-data model (8) of the robot system can
be equaled to

x11,k+1 = x11,k + Tx
1
2,k +

T 2

2!

(
b1,k + ak1,1u1,k + a

k
1,2u2,k

)
+
T 3

3!

 ak1,1
β

T

(
u1,k − u1,k−1

)
+ ak1,2

β

T

(
u2,k − u2,k−1

)


x12,k+1 = x12,k + T
(
b1,k + ak1,1u1,k + a

k
1,2u2,k

)
+
T 2

2!

 ak1,1
β

T

(
u1,k − u1,k−1

)
+ ak1,2

β

T

(
u2,k − u2,k−1

)


x21,k+1 = x21,k + Tx
2
2,k +

T 2

2!

(
b2,k + ak2,1u1,k + a

k
2,2u2,k

)
+
T 3

3!

 ak2,1
β

T

(
u1,k − u1,k−1

)
+ ak2,2

β

T

(
u2,k − u2,k−1

)


x22,k+1 = x22,k + T
(
b2,k + ak2,1u1,k + a

k
2,2u2,k

)
+
T 2

2!

 ak2,1
β

T

(
u1,k − u1,k−1

)
+ ak2,2

β

T

(
u2,k − u2,k−1

)


y1,k = x11,k
y2,k = x21,k

(17)

and the sampling zero dynamics of (17) are lead to

(3+ β) z2 + (3+ β) z− 2β = 0 (18)

Obviously, the sampling zero dynamics are stable if and only
if −1 < β < 0.

What is more, the model following control was consider
to converge the output of the robot sampled-data model in
this paper to the origin. Thus, a discrete model following
controller is designed using the model (17) as

u1,k =
3

3+ β
·

ak2,2
ak2,2a

k
1,1 − a

k
1,2

−b1,k − ak1,2
ak2,2

41
1,k

+41
2,k +4

1
3,k


u2,k =

3
3+ β

·
ak1,1

ak2,2a
k
1,1 − a

k
2,1

−b2,k − ak2,1
ak1,1

42
1,k

+42
2,k +4

2
3,k


where 41

1,k = −b2,k + 4
2
2,k + 4

2
3,k , 4

1
2,k =

β
3 a

k
1,1u1,k−1 +

β
3 a

k
1,2u2,k−1, 41

3,k =
2
T 2

(
−Tx12,k + (α1 − 1) x11,k

)
,

FIGURE 2. Outputs of the robot system by the stabilization controller in
the case of FROH for the first parameter group.

FIGURE 3. Outputs of the robot system by the stabilization controller in
the case of FROH for the second parameter group.

42
1,k = −b1,k + 41

2,k + 41
3,k , 4

2
2,k =

β
3 a

k
2,1u1,k−1 +

β
3 a

k
2,2u2,k−1 and 42

3,k =
2
T 2

(
−Tx22,k + (α2 − 1) x21,k

)
. The

coefficient parameters of the robot system (5) was selected
as m1 = m5 = 0.1, m2 = m3 = m4 = 0.01, g1 = g2 = 0.01,
c1 = −0.005, c2 = c3 = 0.005, f1 = f3 = 0.1 and f2 =
f4 = 0.05. Next, we have selected two groups parameters
to show the results in this paper is effective. In first group,
let T = 0.01, β = −0.45, α1 = 0.4 and α2 = 0.5, and
the second group parameters are T = 0.03, β = −0.7 and
α1 = α2 = 0.5, consequently, the simulation results are
shown in Figure 2 and Figure 3, respectively.
What is more, it can be seen from the simulation diagrams

that the convergence of the outputs to origin with FROH
is achieved. Those diagrams have also shown the control
strategy of this paper based on the sampling zero dynamic
stable approach is effective.

VI. CONCLUSION
This paper has used the sampling zero stable controller
design approach to stabilize the robot system, where the
sampled-data model of the robot system is obtained using
FROH. We have derived several results on the sampling
zero dynamic of sampled-data model for the continuous time
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robot system with FROH as the input signal reconstruction
device. The expression of the zero dynamics about two DOF
robot system is presented, and the stability condition of zero
dynamics is also obtained. The stability condition of the zero
dynamics of corresponding sampled-data system is similar
to the results of the linear multivariable case [30]. And its
effectiveness control performance is shown through simula-
tion results. In future, we will incorporate disturbance into
robot system and other input signal reconstruction device as
our research content.
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