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ABSTRACT In the era of 5G and beyond, heterogeneous network orchestration has become a tremendous
issue. The dilemma facing future systems is how to allocate integrated resources to satisfy multifarious
services, which is an imperative but arduous task in forming a systematic mathematical model and quanti-
fying the model with its multi-layer uncertainty characteristics. Aiming at the statistical representation and
optimization inmultimodal heterogenous networks for 5G and beyond, we propose a novel hybrid probability
process (HPP) as a generalized surrogate model and a weighted degenerated upper confidence bound
(WDUCB) criterion for Bayesian optimization (BO). We apply the proposed HPP-WDUCB combination to
our developed simulation platform and configure several applications of the integration of space information
network in next generation communication systems. And we compared the proposed method with other
surrogate models and acquisition strategies from a range of perspectives. The experiment results yield
significant applicability and excellent performance in multimodal system representation and optimization
which provides an effective statistical modeling and orchestration references for network tuning.

INDEX TERMS Bayesian optimization, heterogeneous network orchestration, 5G and beyond, hybrid
probability process, weight degenerate upper confidence bound.

I. INTRODUCTION
Information network technological innovation with wireless
architectural evolution has been flourishing in the past few
decades. The widespread proliferation of coexisting hetero-
geneous networks, which are oriented by different network
providers and network architectures with a large number of
heterogeneous applications, as well as sparse features and
disparate users, has been experienced [1].

Specifically, focusing on 5G and beyond communication
systems, heterogeneous network orchestration has become
a tremendous issue as the orientation of technology of
the next-generation information society in the next decade.
However, it is difficult to integrate and utilize resources
between contrasting sub-systems. Due to the high complex-
ity and uncertainty of multimodal heterogeneous networks
themselves and the sparse and bursty nature of potential
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users’ personalized services, the potential indicators of het-
erogeneous systems are intertwined. The design elements
in the specific multi-service scenarios are intermingled and
decrease the system efficiency and the users’ quality of
service (QoS).

In general, network modeling and optimization through
mathematical models are extremely costly, and these models
work only under ideal conditions with strong hypotheses.
To address this quantity dilemma, we obtained inspiration
from the Bayesian posterior method, and we introduced
sequential model Bayesian optimization [2] as a global opti-
mization method that widely emerges in these myriad of
orchestration problems. The general method provides a way
to estimate the optimal design by greedy iteration strategies
with generic agents [3]. However, the initial proxy model
cannot be reasonably applied to act as a surrogate model of
most heterogeneous network systems with composite multi-
modal features and leads to anonymous fitting failure during
network orchestration.
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In this paper, to combine a universal representation of
heterogeneous networks implying a relationship between sys-
tem performance indicators and design elements with the
optimization of multi-service schemes in 5G and beyond, our
main contributions can be summarized as follows:

1) A novel hybrid probability process (HPP) surrogate
model is proposed. The intermediate features of the cluster
procedure are included in the final fitting process, and we
optimize the computational complexity with an approximate
calculation and feature extraction approach. The proposed
HPP model can be treated as a generalized multimodal exten-
sion of the Gaussian mixture distribution with a sequential
stochastic process.

2) To fit the structure of the HPP model, we combine the
convergence weight with the exploration-exploitation strat-
egy. A hyperparameter insensitive weighted degenerate upper
confidence bound (WDUCB) criterion is guaranteed, and we
design a well-balanced strategy to control the iteration under
a small computational complexity.

3) From the above proposal, a distributed network sim-
ulation platform and a self-configuring HPP-based Bayesian
optimization iterative process module are
established. We apply the module to a typical multi-service
application scenario of 5G and next-generation systems to
integrated LEO satellite communication constellation and
remote sensing systems in different design dimensions. Com-
pared with several primitive method combinations, the results
are shown to exhibit the gains of our proposed model from
multiple perspectives.

The remainder of this paper is organized as follows.
In Section II, a brief overview of the architecture design and
development of heterogeneous networks and the development
and restriction of Bayesian optimization are discussed. The
design and fitting process of the hybrid probability process
model with weight degenerate upper confidence bound crite-
rion for multimodal heterogeneous network systems is given
in detail in Section III. Section IV describes the specific use
case scenario, and experimental results are provided. The
conclusion follows in Section V.

II. RELATED WORKS
A. HETEROGENEOUS NETWORKS
With the rapid development of mobile communication net-
works and Internet technology, mobile communication gen-
erations are advancing approximately every 10 years [4]. For
5G and beyond, a large number of different heterogeneous
information networks have emerged. Users are exposed to
a complex heterogeneous resource environment. The signif-
icance of information acquisition and transmission and the
importance of resource efficiency and allocation mechanisms
have changed greatly.

From a terrestrial perspective, research is mainly aimed
at different types of information system resource integra-
tions and service reliability between different communication
regularities. The concept of heterogeneous networks can be
traced back to the 1970s, from the integration of services to

the concept of Next-Generation Network (NGN) [5] to the
end of the last century; this is the first time the prospect
of heterogeneous information network convergence based
on unified IP technology has been presented. The BRAIN
project proposes an open architecture for the integration of
a wireless local area network (WLAN) and a general mobile
communication system (UMTS) [6]. The Ambient Network
project (AN) [7] was a large-scale cooperative project under
the Sixth Framework Plan of the European Union; its goal
is to promote effective interconnection between wireless net-
work collaborators. The Mobile and wireless communica-
tions Enablers for the Twenty-twenty Information Society
(METIS) [8] project envisions a 5G system concept that effi-
ciently integrates new applications developed in the METIS
horizontal topics and evolves versions of existing services
and systems. Some early efforts have been dedicated to
HetNets [9] to satisfy these more stringent demands.

Concerning the other prospect within space seg-
ment, the next generation of mobile communication has
strived to achieve full coverage of the time and space
dimensions [10], therein providing services with high-
efficiency spectrum sharing and multi-access assurance. The
objectives and characteristics of space-terrestrial integrated
systems are summarized [11]. Some newly featured archi-
tectures attempt to satisfy the requirements for terrestrial-
mobile and space-satellite systems (TMSs) [12] in future
networks. These topics correspond to not only the network
transmission function but also the cooperation of collabo-
rative services [13], thus providing efficient service mech-
anisms for applications in the next generation of space
information networks. Aiming at the integration of point-
ing, navigating, timing, remote sensing, and communication
resources, a novel architecture for a space resource integrated
information platform was proposed in 2015 [14] for the
enhancement of basic mission protection. For the era of 5G
and beyond, multiple network standards, such as long-term
evolution advanced (LTE-A) [15], the green network [16] and
network-2030 [17], have been proposed and will coexist with
each other for a period of time.

We need to find an appropriate pattern to build opti-
mized heterogeneous services; however, this issue is rarely
the subject of attention. Current researchers primarily focus
on mathematical model analysis and resource allocation at
the technical level for a specific case. Most currently pro-
posed converged networks only remain at the architecture
design stages, therein neglecting the impact of future ser-
vice resource scheduling and the complex orchestration of
heterogeneous networks. A lack of a universal approach to
the model representation of heterogeneous network perfor-
mance at the system level exists. Therefore, we introduce the
Bayesian optimization method for systematic heterogeneous
research.

B. BAYESIAN OPTIMIZATION
Bayesian optimization is a powerful tool for the joint
optimization of design choices and has gained substantial
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popularity in recent years. As a global model-free optimiza-
tion algorithm, the objective of BO is to build the surrogate
model and find the global optimal solution of the following
formula.

x∗ = argmaxx∈A∈Rd f (x) (1)

The framework of a typical BO consists of two core parts:
a surrogate model and an acquisition function. Through the
Bayesian posterior probability formula, the surrogate model
is used as an agent for the black-box function, while the
acquisition function is provided to balance the criterion for
searching the query point through iteration. In contrast to
other model-free global optimization methods, BO utilizes
prior knowledge and a weak hypothesis, and it constructs the
surrogate agent with minimal cost [2].

Bayesian optimization-based methods are effectively used
to solve the problem of orchestration and optimization in
decision theory. Companies such as Google and Microsoft
use BO technology to recommend news articles to sub-
scribers based on the content of their websites, videos, music,
etc [18]. Bergstra et al. used BO to automatically adjust
the hyperparameters of neural networks and deep belief net-
works [19] [20]. Snoek et al. used Bayesian optimization
to automatically adjust the hyperparameters in convolutional
neural networks [21]. Mahendran et al. proposed an adaptive
Markov chain Monte Carlo algorithm based on Bayesian
Optimization [22]. Thornton et al. applied BO to propose
an automatic model selection and hyperparameter adjustment
method for the Auto-WEKA classification algorithm [23].
Wang et al. improved the efficiency of the solver by adjusting
the parameters of the mixed integer programming solver
through Bayesian optimization [24]. Xia et al. used Bayesian
optimization to adjust the super-parameters in a decision
tree to improve the accuracy of credit evaluation [25], and
Klein et al. proposed a fast Bayesian optimization method
that can adjust the hyperparameters of machine learning
algorithms on large-scale datasets [26]. Zhang et al. used a
Bayesian optimization-based peak searching algorithm for
clustering in wireless sensor networks to optimize the sensor
position [27]. Candelieri et al. used Bayesian optimization in
water distribution systems to operation pump systems [28].
Deepmind proposed conditional neural processes (CNPs)
combined with a stochastic process with deep neural net-
works to obtain the benefits of both methods [29]. Obviously,
BO has become a mainstream approach in the fields of artifi-
cial intelligence, robotics, industrial manufacturing, etc.

Bayesian optimization shows remarkable prospects in a
wide range of engineering applications. Machines can pre-
dict future data according to the probability framework and
make decisions based on the predicted data. Ghahramani
notes that Bayesian optimization is one of the most advanced
and promising technologies in probabilistic machine learn-
ing and artificial intelligence [3]. However, from the system
model perspective, typical Bayesian optimization does not
solve the problem of the credibility of the expression of an
uncertain function. Simultaneously, in specific multi-modal

FIGURE 1. The iteration process for heterogeneous networks.

system environments, particularly heterogeneous networks,
the original BO surrogate model is not applicable.

III. METHODS
A. A GENERAL SEQUENTIAL BAYESIAN OPTIMIZATION
FOR HETEROGENEOUS NETWORKS SCHEME
We start with the limitations mentioned above. In this section,
we detail a universal Bayesian optimization approach for
uncertainty modeling and a sequential optimization paradigm
for the multimodal heterogeneous network representation
with optimization. As the core part of the optimization system
shown in the frame in Fig. 1.

To escape from the ambiguous and inordinate cost in a spe-
cific theoretical model, we adapt the method to general het-
erogeneous network multi-service scenarios embedded into
network simulations. The proposed iteration process controls
the direction of the system parameter design.

Individually, we introduce the novel hybrid probability
process (HPP) model and weighted degenerate upper confi-
dence bound (WDUCB) criterion into the iteration process.
The Latin hyperspace sampling (LHS) method [30] is applied
to select the prior observations. Therefore, we obtain the
prior train data and characteristics from the statistics of the
system distribution. We rebuild the posterior surrogate model
by fitting the performance appraisal of a specific scenario.
The general procedure for the uncertainty analysis and opti-
mization of heterogeneous network scenarios is as follows:

1)We chose the design elements x and performance param-
eters y in the specified scenarios.
2) We pre-sample from the element dimension using LHS

and obtain the prior observations by simulation.
3) We apply the HPP surrogate model fitting process.
4) The WDUCB acquisition function chooses the optimal

combination of design parameters (query point).
5) We set the loss function, and the query points are

fed back to the simulation component. The new posterior
observations are used to update the surrogate model, and the
process iterates from step 3 to step 4.

6) After the cost function reaches the threshold, the itera-
tion is stopped, and we obtain the optimized estimation and
the representation model of the heterogeneous systems.

B. HYBRID PROBABILITY PROCESS
Considering a general multimodal hybrid probability pro-
cess model applicable to key components for the sequential
BO method, we propose a novel hybrid probability process
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FIGURE 2. The fitting process of hybrid probability process.

model. In our weak hypothesis, the parameter dimension of
the system is finite and sequential. The fitting process is
shown in Fig. 2.
Just as the Gaussian process can be seen as an extension

of the multivariate Gaussian distribution, we envisage the
hybrid probability process as the extension of the multi-
variate Gaussian mixture distribution over the variables, and
we aggregate the detailed distribution information into the
stochastic process. The basic component unit in the mixed
distribution can generally be any distribution. Considering the
calculation cost of the hybrid model and the applicability of
the features, we choose the Gaussian probability distribution
as the meta-component, and the distribution features of the
raw data can be fine grained and easily obtained.

Combining the mixture distribution model with the
stochastic process, the mixture distribution is used over the
specified random variable, with a variable combination x, and
the Gaussian mixture model can be written as follows:

p (x) =
K∑
k=1

ρk∅(x|µk , σ 2
k ) (2)

The ∅(x|µk , σ 2
k ) denotes the k-th cluster of the distribution

component in the mixture model.
ρk corresponds to the weight of each component. Thus,
∅(x|µk , σ 2

k ) can be expressed as the specific probability
distribution function form:

∅(x|µk , σ 2
k ) =

1
√
2πσk

exp

[
−
(x − µk)2

2σ 2
k

]
(3)

The Gaussian mixture model is composed of several Gaus-
sian distributions, which can accurately represent a complex
probability distribution.Meanwhile, the intermediate features
are extracted for subsequent modeling.

As the observation dataset

D1:t = {(x1, y1) , (x2, y2) , . . . , (xt , yt)} (4)

xt denotes the t-th parameter combination of the design, xt =
{x1, x2, . . . , xn}. For the vector xt , xn is the n-th element of xt .
yt denotes the collected observation data of the exact xt ,

where yt = {yt1, yt2, . . . , ytm}. For the yt , ytm represents
the m-th observation of xt . Therefore, under each design
combination x, we need to use the observation points yt to
obtain the characteristics of the network performance.

With the influence of the implicit variables ρk , the expected
maximum clustering algorithm is adapted to iteratively fit the
model. Generally, we suppose that the mixture distribution

has k components to find the implicit category z of each
sample inD1:t , and p (y, z) can be maximized. The maximum
likelihood estimates of p (y, z) are as follows:

l (θ) =
m∑
i=1

log p (yti; θ) =
m∑
i=1

log
∑
z

p (yti, z; θ) (5)

LetQj (z) be the distribution of the implicit variable z; thus,
z∑
j=1

Qj (z) = 1, 0 ≤ Qj (z) ≤ 1 (6)

The following formulas can be derived from the previous
explanations:

m∑
i=1

log p (yti; θ) =
m∑
i=1

log
∑
zi

p
(
yti, zi; θ

)
(7)

=

m∑
i=1

log
∑
zi

Qi
(
zi
) p (yti, zi; θ)

Qi
(
zi
) (8)

≥

m∑
i=1

∑
zi

Qi
(
zi
)
log

p
(
yti, zi; θ

)
Qi
(
zi
) (9)

The origin of the above inequalities lies in the Jensen
inequalities. Hence, the likelihood function’s lower bound
is found considering that, in the Gaussian mixture model,
wijmeans the probability that the observation yti belongs to the
j-th cluster as follows: wij = Qi

(
zi = j

)
= p

(
zi = j|yti; θj

)
.

Thus, we fix Qi
(
zi
)
and maximize l (θ) as follows:

m∑
i=1

∑
zi

Qi
(
zi
)
log

p
(
yti, zi; θ

)
Qi
(
zi
) (10)

=

n∑
i=1

k∑
j=1

Qi
(
zi= j

)
log

p
(
yti, zi= j; θj

)
p
(
zi= j; θj

)
Qi
(
zi = j

) (11)

θj indicates the characteristics of the mixture distribution

parameters θj =
(
ρj, µj, σ

2
j

)
, while

=

m∑
i=1

k∑
j=1

wijlog

1
√
2πσj

exp
[
−
(x−µj)

2

2σ 2j

]
ρj

wij

Fixing variables to derive µ, we obtain the iterative objec-
tive function of µ:

µj =

∑n
i=1 w

i
jyti∑n

i=1 w
i
j

(12)

For ρj, the formulas can be optimized as follows:

n∑
i=1

k∑
j=1

wijlogρj (13)

Consider Lagrange multipliers and the constraint of ρj,
which can be expressed as follows:

ρj =
1
m

m∑
i=1

wij (14)
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FIGURE 3. The intermediate process.

Thus, the iterative objective function of σ 2
j becomes

σ 2
j =

∑m
i=1 w

i
j

(
yti − µj

) (
yti − µj

)∑m
i=1 w

i
j

(15)

The algorithm detailed above is a soft clustering approach
for general parameter estimation. Without any prior infor-
mation, the label and probability for every observation
oscillate during the iterative process. In brief, the soft clus-
tering approach is more reasonable but more computationally
expensive than the hard clustering algorithm. In certain cases,
to reduce the computational cost of the iterative clustering
process, hard clustering methods with a computationally
improved approach are employed. The number of clusters
and the other hyperparameters of intermediate distribution
knowledge, such as the threshold of the kernel distance, can
be guaranteed by the probabilistic statistical analysis of prior
observations.

The intermediate clustering process greatly reduces the
amount of raw data. The observationsD1:t are abstracted into
those distribution characteristics

I1:t = {(x1, θ1) , (x2, θ2) , . . . , (xt , θt)} (16)

in which

θt = {θt1, θt2, . . . , θtz} (17)

and θtz =
(
ρtz, µtz, σ

2
tz
)
which is the z-th cluster of interme-

diate hybrid probability process elements.
We postulate that the probability distribution of the net-

work performance between the adjacent combinations of
design parameters is also relatively similar and weakly sta-
ble. A pair of observation points with smaller generalized
distances can be expected to have a larger mutual influence.
Therefore, to the hypothesis, we are able to construct the
multivariate stochastic process for the labeled features of each
cluster.

For the same tag
{(
x1, θ1j

)
,
(
x2, θ2j

)
, . . . ,

(
xt , θtj

)}
of

intermediate elements, here, θtj represents the t-th observation
fitting features of the j-th basic component, where 1 ≤ j ≤ z
represents the number of clusters for the structure of the inter-
mediate element and intermediate process r , shown in Fig. 3.
To establish a mathematical connection between design

combinations in the parameter space to simultaneously exter-
nalize the influence of system uncertainty noise on network

performance, we compared different types of classifier pre-
diction models.

The prediction by the artificial neural network (ANN) is
accurate and credible in the case of a large amount of train-
ing observations. However, as a black-box model, the inter-
pretability and system volatility expression of ANNs are
poor; simultaneously, the structure of the ANN needs to be
thoroughly designed, and many hyperparameters often need
to be adjusted.

Conversely, the random forest (RF) does not require a
large amount of tuning work; however, in the full parameter
space, it is difficult to establish the uncertainty relationship
between the design elements of the system. Typically in small
hypercubes with fewer sample points, the accuracy of the
prediction is not satisfactory.

The Gaussian process (GP) is based on the Bayesian con-
ditional posterior probability, which is in contrast to the clus-
tering features of the Gaussian mixture model, and it is easier
to explain the uncertainty characteristics of the system. The
Gaussian process can be treated as a normal distribution over
a function, which can be expressed as follows:

f (x) ∼ GP
(
m (x) , k

(
x, x ′

))
(18)

In the r fitting process, the m (x) is usually set to 0, and
the kernel k

(
x, x ′

)
is the core component usually considered

as the covariance matrix of the kernel function to describe the
conjunction between every observation point.

Simultaneously, the selection of kernel functions
k
(
x, x ′

)
for the covariance matrix is remarkably determinant,

being related to the smoothness of the process sampling and
directly affecting the matching degree between the Gaus-
sian process and the data properties. Here, we utilize the
benefits of Matern kernels [3], which contains a smoothing
coefficient τ :

k
(
xi, xj

)
=

1
2τ−10 (τ)

(
2
√
τ
∣∣∣∣xi − xj∣∣∣∣)τHτ
×
(
2
√
τ
∣∣∣∣xi − xj∣∣∣∣) (19)

0 (.) andH (.) are the gamma function andBessel function.
When τ →∞, the corresponding covariance function is also
called the square exponential kernel or the Gaussian kernel,
and the corresponding process is second-order differentiable
everywhere and highly smooth.

Thus, for a set of training samples X = (x1, x2, . . . , xt)
and a set of corresponding observations f1:t = (f1, f2, . . . , ft),
there exists a joint Gaussian distribution that satisfies
N (0,K ):

K =

 k (x1, x1) . . . k (x1, xt)
. . . . . . . . .

k (xt , x1) . . . k (xt , xt)

 (20)

where the K represents the covariance matrix of the observa-
tion f1:t . With the set of prior sample combinations {x1:t , f1:t },
for a new sample, we assume the joint Gaussian distribution

117958 VOLUME 7, 2019



H. Wang et al.: BO for Multimodal Heterogeneous Network Orchestration via HPP

of xt+1 as follows:[
f1:t
ft+1

]
∼ N

(
0,
[
K k
kT k (xt+1, xt+1)

])
(21)

In addition,
k = [k (xt+1, x1) k (xt+1, x2) . . . k (xt+1, xt)]
The posterior probability of ft+1 can be calculated by the

above formula. We obtain the following:

P (ft+1|x1:t+1) = N
(
µt (xt+1) , σ 2

t (xt+1)
)

(22)

µt (xt+1) = kTK−1f1:t (23)

σ 2
t (xt+1) = k (xt+1, xt+1)− kTK−1k (24)

Taking query samples from the design parameter dimen-
sion as xt+1, the details, including the expected ft+1 with its
confidence kernel measure, can be progressively predicted.
With the concentrated extracted features from the mixture

distribution model, we first construct a covariance matrix
with the extracted characteristic set I1:t . We classify the inter-
mediate features by the labels of the clusters and congregate

the features
t∑

n=1
θnj

(
ρnj, µnj, σ

2
nj

)
for each intermediate pro-

cess r .
The input of the intermediate process is the training

set of design parameter combinations x1:t with the fea-

tures
t∑

n=1
θnj

(
ρnj, µnj, σ

2
nj

)
, and the output is the stochas-

tic process over the function of the prospective perfor-
mance appraisal based on the probability distribution. This
can be expressed as µj (x) ∼ r

(
m
(
µj
)
, k
(
x, x ′

))
and

ρj (x) ∼ r
(
m
(
ρj
)
, k
(
x, x ′

))
. The aggregation process is

shown in Fig. 4 for a component r .
Specifically, for the GP of the feature µj, the value oscilla-

tion σ 2
j of the training set establishes the quantitative impact

of system haphazardness and actually affects the autocorre-
lation elements of the samples. We introduce σ 2

j to affect the
result of the autocorrelation Kernel function, where the con-
struction of the covariance matrix is tuned to the following:

K∗µj =

 k (x1, x1)+ σ 2
j1 . . . k (x1, xt)

. . . . . . . . .

k (xt , x1) . . . k (xt , xt)+ σ 2
jt

 (25)

The prediction is as follows:

µt (xt+1) = kTK∗−1µj
f1:t (26)

σ 2
µj
(xt+1) = k (xt+1, xt+1)− kTK∗−1µj

k (27)

After the intermediate process r of ρj and µj of each
labeled feature set θnj is established, the new hybrid proba-
bility process model predicts the Gaussian mixed models of
prior observations and expected representation distribution of
the system in sequential parameter dimensions. As a widely
applicable mixture distribution over a function, the hybrid
probability process can be revealed by the pattern:

f (x) ∼ HPP
(
x|rρj (x) , rαj (x)

)
(28)

FIGURE 4. The aggregate process.

The intermediate component of the probability rρj (x) indi-
cates the probability distribution that the next query point
assigns to this cluster j, and rαj (x) can be regarded as the
expected performance appraisal distribution of the next query
point in the j-th cluster as follows:

rρ(x|ρ, σ 2
ρ )> rα(x|α, σ 2

α ) =
z∑
j=1

rρj (x) ∗ rαj (x) (29)

As shown in Fig. 4, > is considered the hybrid procedure
of two corresponding stochastic processes. The multiplied
distribution of the probability rρj (x) with the expected value
rαj (x) denotes the expected evaluation of the j-th component.
The performance evaluation of the network is quantified
from the perspective of clustering because this quantization
is an evaluation distribution that retains the influence of
the system’s uncertainty noise. For the stochastic processes
ρj (x) ∼ rρj (x|αρxj , σ

2
ρxj ) and αj (x) ∼ rαj (x|ααxj , σ

2
αxj ) of

the j-th cluster, αρxj , σ
2
ρxj are the mean and variance of the

j-th cluster probability ρj of x, and ααxj and σ
2
αxj represent

the mean and variance of the j-th cluster’s expected value αj
of x. Therefore, themultiplied distribution of the j-th expected
evaluation obeys a Gaussian distribution:

ρj (x) ∗αj (x) ∼ N (x|µxj , σ
2
xj ) (30)

The feature distribution after multiplication is as follows:

N (x|µxj , σ
2
xj ) =

Sxj
√
2πσxj

exp

[
−

(
ααj − µxj

)2
2σ 2

xj

]
(31)

Among them, the expectations of the j-th cluster values of
x are

µxj =
ααxjσ

2
ρxj + αρxjσ

2
αxj

σ 2
ρxj + σ

2
αxj

(32)

σ 2
xj =

σ 2
ρxjσ

2
αxj

σ 2
ρxj + σ

2
αxj

(33)

and the coefficient in the probability density function can be

expanded to Sxj =
1√

2π
(
σ 2ρxj
+σ 2αxj

)exp
[
−

(
ααxj−αρxj

)2
2
(
σ 2ρxj
+σ 2αxj

)
]
.
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Thus,

rρ(x|ρ, σ 2
ρ )> rα(x|α, σ 2

α ) ∼ N (x|
z∑
j=1

µxj ,

z∑
j=1

σ 2
xj ) (34)

Theoretically, this provides an expression of the over-
all expected distribution of the heterogeneous system.
If the number of clusters approaches infinity, rρ(x|ρ, σ 2

ρ ) >
rα(x|α, σ 2

α ) will degenerate into the normal distribution of
original observations, and the HPP model becomes a Gaus-
sian process.

As an extension model of uncertainty-evaluated estimation
with a collection of mixture distribution characteristics of
observations, theHPP elegantly blends the impressive expres-
sive ability of a mixed probability model into a lightweight
structure with high flexibility and scalability. Compared with
other prototype surrogate models, the HPP does not require
a large amount of tuning work for the hyperparameters in the
model. While ensuring the accuracy of the prediction, being
in contrast to black-box models, such as neural networks,
with poor interpretability, the hybrid probability distribution
between the design and performance appraisal can also be
interpreted and expressed in fine-grained detail. The kernel
trick can alleviate the failures of each intermediate fitting
process and the error of the acquisition strategy selection
resulting from cold starts with a limited number of prior
observations.

During the posterior modeling iteration, the most computa-
tionally intensive aspect of the fitting process is the construc-
tion of the kernel covariance matrix of the observation in the
intermediate process. The computational complexity of the
inversion process for the covariance matrix of n*n order is
at least O

(
n3
)
in time and O (n) in time for prediction on a

query point [2], where the fitting process is affected by the
volume of the prior training set. Simultaneously, the HPP
is more compact than the single modality surrogate model,
therein minimizing the computational complexity as much as
possible. From the data volume perspective, the clustering
and labelling processes extract intermediate features from
obviously blocky prior observations to replace an enormous
amount of raw data, reducing the size of the training data
from n ∗ t of D1:n to n ∗ 2 ∗ j of I1:n, where j � t . From
the fitting process perspective, the approximation algorithm
for modeling can be adapted to these specific scenarios.
We introduce sparse Gaussian processes using the pseudo-
input (SPGP) [31] method into the aggregation procedure.
During the covariance matrix fitting process, a pseudo-input
can be used instead of the original parameter dimension, and
rank reduction is carried out. This can reduce the computa-
tional complexity from O

(
n3
)
to O

(
m2n

)
for training and

O
(
m2
)
for prediction, where m ≤ n.

C. WEIGHTED DEGENERATE UPPER CONFIDENCE BOUND
Limited by realistic constraints of heterogeneous networks,
the acquisition function must be considered with an agile
framework and a broad range of applicability. Additionally,

the strategy should take advantage of the posterior predic-
tion from the proposed HPP, therein strongly considering
the space exploration and model improvement in the itera-
tion process. Comparing the mainstream acquisition criterion
for the nonparametric surrogate model and inspired by the
upper confidence bound (UCB) generally implemented in the
field of recommend systems and the K-arms bandit prob-
lem, we propose a novel weight degenerate upper confidence
bound (WDUCB) criterion for the HPP model.

Srinivas et al. proposed a Gaussian-process-based upper
confidence bound (GP-UCB) strategy in 2010 [32]. The cor-
responding value of the UCB at an arbitrary point x is as
follows:

UCB (x) = µx + βσ
2
x (35)

The UCB criterion is a popular method of negotiation in
exploration-and-exploitation (E-E) situations with provable
cumulative regret bounds in exploration-and-exploitation
problems [33]. The guiding principle behind this class of
strategies is to be optimistic in the volume of the network
uncertainty. For multimodal HPP, utilizing the aspect of clus-
tering, the corresponding expected features of the j-th cluster
are as follows:

µxj =
ααxjσ

2
ρxj + αρxjσ

2
αxj

σ 2
ρxj + σ

2
αxj

(36)

In addition,

σ 2
xj =

σ 2
ρxjσ

2
αxj

σ 2
ρxj + σ

2
αxj

(37)

Thus,

UCB (x) = µx + β
Tσ 2

x (38)

where the number of clusters is z, 1 ≤ j ≤ z, for arbitrary
query points x, in which µx =

[
µx1 , µx2 , . . . , µxz

]
, σ 2

x =[
σ 2
x1 , σ

2
x2 , . . . , σ

2
xz

]
, β = [β1, β2, . . . , βz]. Determined by

the categorical β, the UCB criterion presents an enormous
discrepancy in E-E situations.
Tominimize the tuningwork in hyperparameter setting and

scheduling, we substitute a degenerate coefficient τ into β,
which is associated with the number of iterations, where τ is
considered as a linear attenuation τ = h−i

h or exponential

factor τ = e−
i
h . h represents the standard number of itera-

tions, and i represents the current number of iterations. As the
number of iterations increases, the criterion of the acquisition
function changes from exploration to exploitation. A lin-
ear or exponential attenuation factor can also be considered
and selected according to the disparate requirements on the
attenuation rate in the given scenario.

Taking the influence of different subjective and objective
uncertainties of different clusters in the general scenario on
the performance of the heterogeneous network itself into
account, for the difference clusters of x, we give constant
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weights to and assume the predicted weight vector ωx of x
as follows:

ωx =
[
ωx1 , ωx2 , . . . , ωxz

]
(39)

The weight ωxj for the UCB of each cluster is based on the
feature σ 2

xj that

ωxj =
σ
2(2τ−1)
xj∑z

j=1 σ
2(2τ−1)
xj

(40)

The weight ωxj is conspicuous correlated with the current
iteration. Theoretically, the predicted network appraisal with
greater fluctuations should be better focused on determining
hidden information in the exploration phase to ensure a flex-
ible balance in ωxj according to the the preference criterion.

The WDUCB strategy is as follows:

WDUCB (x) = ωTx
(
µx + τβ

Tσ 2
x

)
(41)

Thus, we obtain the utility evaluation of the query point x.
The WDUCB criterion associates the advantage of the UCB
with the HPP, therein providing an effective adaptive strategy
that avoids heavy calculationwork on the acquisition function
and achieving an optimal regret loss.

IV. EXPERIMENTS AND ANALYSIS
In this section, we present the test scenarios of a particular
multi-task application of a heterogeneous space information
network system constructed to investigate the efficiency of
the proposed HPP models with the general WDUCB crite-
rion. The experiments compared different surrogate models
with different acquisition criteria from a series of perspec-
tives, and the results were obtained on a set of two different
dimensions of the design indicator spaces: a simple visualiza-
tion of the package size of the delivery of two different ser-
vices (2D) in the global integration and a benchmark higher
dimensional (9D) scenario of a multi-task application of the
heterogeneous network.

A. EXPERIMENTS ENVIRONMENT
According to the current test functions, there are still some
function values with exact outputs without complex distri-
bution features and that cannot adapt our concerned issue;
thus, we utilize the high-level architecture (HLA) distributed
simulation platform based on the EXATA as the preliminary
experimental environment shown in Fig. 5. The simulation
platform is established to auto-configure specific network
scenario based on general network elements and architec-
tures of current typical models and protocols. The module
combines the function of simulation, observation and evalu-
ation for the network scheme incident response. After each
simulation process for a specific scenario, we iterate the
surrogate model and obtain the query point to configure the
next iteration process in the BO module, which is the core
constituent of the sequential HPP model iterations.

The scenarios that we are concerned about mainly focus on
specific multi-service scenarios for remote sensing satellite

FIGURE 5. The structure of distributed simulation platform.

TABLE 1. Parameters setting.

data on-orbit processing and fast return services to evaluate
and optimize the design elements of the application layer
aspect, as shown in Fig. 5.
We build 13×12=156 broadband communication con-

stellations (Comm-sat) and 15×6=90 LEO high-resolution
remote sensing constellations (RS-sat). For the terrestrial
system, we set 40 ground mobile nodes (aircraft, ships,
mobile ground stations, etc.) and 60 fixed nodes (mainly
fixed ground facility stations). The application flows from the
data source to the user equipment, including RS video and
image streams, which are generated by the Traffic-Generator
(Trafficgen) and Superapplication (Superapp) flows in the
EXATA application generator function module, as well
as other Internet data streams treated as VBR flows, file
transmission (FTP) services and noise. During every sim-
ulation iteration, 50 multi-aggregated flows are randomly
generated.

The packet size, sending interval and service priorities of
each type of application are optimized as the combination
of design parameters, and the delay, jitter, throughput and
packet loss rate of every flow’s performance are evaluated by
the evaluation module in the platform. With the AHP [34]
evaluation appraisal as the evaluation value for the target and
the above simulation model, we perform our experiments
in 2D and 9D. Some of the scenario parameters are given
in Table 1.
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FIGURE 6. HPP diagram with 0 10 60 iterations.

B. RESULT ANALYSIS
1) ITERATION VISUALIZATION OF THREE-DIMENSIONAL
FITTING PROCESS
Shown in Fig 6, the figure from left to right are the Gaussian
process schematic diagram of the evaluation appraisal value
and the expected probability of the first cluster, and the layer
structure of the HPP model schematic diagram. The observa-
tions are given as the scatter in the layer structure.

With the iteration of the surrogate model, the observations
are gradually fitted by the hybrid probability process. The
results of the method appraisal will be explained in the fol-
lowing analysis.

2) COMPARISON OF PRIOR SAMPLE METHODS
The prior observations that we obtained in the high-
dimensional space of the heterogeneous system are relatively
scarce, while the surrogate model heavily relies on the distri-
bution of the priori observation.

With the visualization of the HPP model, the posterior
fitting result of the MSP model between the Latin hyper-
cube sample method and the subjective authoritative design-
based grid sampling observations can be determined from the
thermodynamic diagram showing that the method of prior
sampling for the observations has a significant influence on
the surrogate model fitting process.

With the same prior observation amounts, as the amount of
prior data gradually increases, as drawn in Fig. 7, With prior
data increasing, the log-MSE of LHS is continuous decline.
And the raw MSE of the HPP based on LHS converges to
approximately 21% of the MSE of the HPP from the sub-
jective authoritative design with grid sampling. In the above
results, the LHS method can obtain a more reasonable and
accurate prior surrogate model under the cold start condition
of the small sample method.

FIGURE 7. The MSE between two presampling methods.

FIGURE 8. MSE in 2D.

TABLE 2. MSE in 2D.

3) COMPARISON OF SURROGATE MODELS
IN ITERATIVE TEST
In this subsection, we compared the hybrid probability pro-
cess with the Gaussian process and random forest to fit the
simulation observations of the above-mentioned heteroge-
neous space information network scenarios.

The MSE, R-Squared, KL divergence and JS divergence
are demonstrated to compare the performance of the sur-
rogate models. The quantitative indicators of the MSE
and R-Squared are calculated using the observation of the
2D parameters. The KL and JS divergences are calculated by
the observation of the 9D parameters.

a: MSE
The MSE is a preliminary comparison indicator of the
absolute error between the predicted and actual appraisal.
As shown in Fig. 8, through the iteration and while contin-
uously adding new knowledge, the indicator gradually is able
to quantify the prediction error of the posterior model.

From these results, in the scenario with the 2D parameter
space, the MSE index of RF is analogous to the GP, while the
HPP’s MSE is 29% of the GP’s MSE on average after model
convergence. The specific iteration data are given in Table 2.

In the high-dimensional application layer design
parameter space scenario, the kernel function discrimination
generalized distance becomes complicated due to the high-
dimensional data. In the iterative process, the fitting process
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FIGURE 9. MSE in 9D.

TABLE 3. MSE in 9D.

FIGURE 10. R-Squared in 2D.

FIGURE 11. R-Squared in 9D.

of the GP sometimes fails, resulting in a large error, as shown
in Fig. 9.

After the MSE metric has stabilized during the iteration
process, the GP is much higher than the RF and HPP, and the
result of the GP presents a large increase, as shown in Table 3.
In contrast, the increase in the input dimension has minimal
effect on the MSEs of the RF and HPP models. The HPP’s
MSE is two-thirds that of the RF, and the HPP’s MSE is
one-fifth that of the GP on average.

b: R-SQUARED
The R-Squared is an alternative index describing the accuracy
of the model. This indicator evaluates the representation and
descriptiveness of the model for heterogeneous systems with
a score of between 0 and 1. The closer the index is to 1,
the better the performance.

The R-Squared in two different cases are shown in Fig. 10
and Fig. 11, and the HPP’s R-Squared for the system is better
than the other surrogate model in both situations.

TABLE 4. R-Squared in 2D.

TABLE 5. R-Squared in 9D.

FIGURE 12. KLdivergence in 9D.

Similar to the MSE results, Fig. 11 and Table 4 indicate
that the primitive RF and GP are not applicable for the
representation of a multimodal heterogeneous network with
strong randomness.

For the high-dimensional scenario, Table 5 shows that the
RF and GP are completely ineffective, whereas the fitting
performance of HPP is still acceptable.

c: KL AND JS-DIVERGENCE
Here, we compare the probability distribution similarity
between the agent model and actual observation statis-
tics. The Kullback-Leibler divergence (KL divergence) is
a method for describing the difference between two prob-
ability distributions. Intuitively, it can be used to measure
the degree to which a given arbitrary distribution deviates
from the actual distribution. The Jensen-Shannon divergence
(JS divergence), also known as the JS distance, is a variant
of the KL divergence. In comparison to the KL divergence,
the JS divergence can be regarded as a generalized distance
measure with symmetry.

The logarithms of the Kl divergence and JS divergence
and their mean and variance for the iterative statistics in the
9D case are shown in Fig. 12 and Fig. 13. The mean value
of the model gradually converges after repeated iterations.
The mean jitters of the GP and HPP are very similar, and
the deviations are very small. However, the KL degree of
similarity of the probability is more than ten times that of the
GP. From the model stability perspective, the performance of
the RF in expressing the multimodal distribution is similar to
the HPP but with larger errors.

The JS divergence of the GP and HPP shows the same
characteristics as their KL divergence. As shown in Fig. and

VOLUME 7, 2019 117963



H. Wang et al.: BO for Multimodal Heterogeneous Network Orchestration via HPP

FIGURE 13. KLdivergence features in 9D.

FIGURE 14. JSdivergence in 9D.

FIGURE 15. JSdivergence features in 9D.

Fig., the distribution similarity of the RF performance in the
JS divergence is worse, while the mean of the JS of RF
increases to being between that of HPP and GP. We further
explain the instability of the RF estimation and prediction in
the scenario with this multimodal feature.

Under the model generalized representation capacity con-
dition, Bayesian optimization based on the HPP is signifi-
cantly better than the other surrogate model in terms of the
ability for the fine-grained uncertainty expression in this type
of heterogeneous network scheme with a statically multi-
modal observation distribution.

4) COMPARISON OF METHOD CRITERIONS
In this chapter, we compare different surrogate model and
acquisition function combinations in the 9D parameters with
the same hyperparameters τ in the Martern kernel and β of
the UCB for the methods. To compare the optimization
performance of the strategy-model combination with mul-
tiple K, we depart from the ideal situation to obtain the
reference design combination and the difference of evaluated
observation and model prediction for the comparison.

a: HYPERPARAMETER SENSITIVITY TEST
In the WDUCB, we adjust the hyperparameters K in the cri-
terion to compare the effect of K on the acquisition function

FIGURE 16. GP-UCB difference in multiple K.

FIGURE 17. HPP-WDUCB difference in multiple K.

strategy in the same iteration number with the same surrogate
model in scenario.

The GP-UCB and HPP-WDUCB cases are shown
in Fig. 16 and Fig. 17. Here, we introduce the linear atten-
uation factor. In the case of a loss function with uncertain
design parameters, we set the iteration time as the termination
condition and linear decay the K value each iteration.

Obviously, compared with GP-UCB, the influence of K in
HPP-WDUCB on iterations is less after adding attenuation
factor. During the comparison, the difference between the
multiple K values converges. Statistical results that the influ-
ence of K is more reflected in the second-order difference,
which still affects the selection of the exploration strategy and
the speed of policy conversion in the WDUCB. In the hetero-
geneous network tuning, the attenuation factor can guarantee
the criterion convergence of the iteration process. It provides
a realistic reference for practical scenarios.

In the next subsection, we compare and demonstrate the
iteration behavior for a series of BO method combinations.

b: OPTIMIZATION PATH COMPARISON
A preliminary criterion optimization path comparison is eval-
uated between GP-UCB and HPP-WDUCB with the same
K and β. The comparison focuses on the predicted query
point sequence and criterion corresponding to each surro-
gate model’s prediction, and the evaluated observations of
scenario are simulated. The difference between the predicted
value and the actual simulated feature reflects the transforma-
tion of the strategy in the iterative process to a certain extent.

The results of 60 iterations comparisons are drawn
in Fig. 18. The red solid line represents the prediction-
simulation differences of the HPP-WDUCB. The black solid
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FIGURE 18. Statistics of GP-UCB and HPP-WDUCB.

TABLE 6. Prediction differences over iterations.

line is the difference for the GP-UCB. As a standard,
the GP-UCB performs exploration in the first half of the
iteration with a smaller difference before the query point
reached the optimal range of the hypercube. In contrast
to the GP-UCB, the HPP-WDUCB method attempts more
exploration processes during the earlier iterations, and then,
the WDUCB’s attenuation factor tunes the exploration strat-
egy to an exploitation strategy with higher accuracy.

The preliminary prediction difference is shown in Table 6,
where the exploration of GP-UCB’s prediction is more neg-
ative than that of HPP-WDUCB in the first step. And after
a series of attempts, the prediction-simulation difference of
HPP-WDUCB is 34% lower thanGP-UCB on average, which
shows that the HPP-WDUCB performance is better than
GP-UCB in the exploitation phase.

c: METHOD COMBINATION APPRAISAL
In a high-dimensional scenario, we generally analyze the
application of various models and acquisition strategies
combinations.

First we enumerate a variety of different optimization
method combinations to 100 iteration experiments. As a
generally applicable strategy, the HPP-WDUCB with the
multiple k , and the EI criterion is added to the Random
Forest model (RF-EI). The raw statistics for GPR-UCB,
HPP-WDUCB and RF-EI are drawn in Fig. 19.

It is difficult to distinguish the preliminary statistics due to
the query path of the optimization process for each combi-
nation is different, and the strategic change in the acquisition
criterion simultaneously leads to the strong jitter of the eval-
uation difference as shown in Fig. 19.

Thus, we calculate the difference for each combination of
raw results and obtain the more visible results in Fig. 20. And
we compare the reference combinations of design indicators
with all the method process. In general, under the 95% confi-
dence, the results shown in Fig. 20 by blue,yellow and purple
lines are the performances of HPP-WDUCB in K=0,2 and
GP-UCB in K=2 are in line with expectations after few
iterations.

FIGURE 19. Statistics for GP-UCB,HPP-WDUCB,RF-EI.

FIGURE 20. Reference simulation-prediction statistics.

But due to the multiple path of optimization method in
the high-dimensional hyperspace in heterogeneous networks,
the uncertainties in complex application cannot be ignored.
It seems to be impossible to identify a ‘‘winner’’ among the
proposed approaches; however, some relevant insights can be
obtained from the iteration process.

1) The RF-PI is similar to the RF-EI result. RF itself has
poor expressive ability in this multimodal feature distribution
system with sparse observations, especially in the case of a
high-dimensional scenario. The difference between the pre-
diction and simulation is mainly caused by the error in the
prediction, as seen in the EI criterion. There is no reduction
in the error as the iteration progresses in the RF-EI strategy.

2) In the GP-UCB combination, the target of the criterion
is seriously affected by K . We compare three different K
values (K=0, 2, 5). Initially, the GP-UCB methods based on
different K also show a large difference in the search path.
After approximately halfway through the iteration process,
the difference converges in multiple rates. And the speed
of convergence is also strongly affected by the parameters
of the complex network and the focus of the exploration-
exploitation process. The hyperparameters need to be care-
fully adjusted in order to produce good optimization results
for specific scenarios.

3) In the proposed HPP-WDUCB combination, the trend is
similar to GP-UCB. As a multimodal extension of the hybrid
stochastic process model, the HPP shows great expressive
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characteristics. And the HPP-WDUCB is parameter insen-
sitive, it follows the strategy of exploration in the iteration
process. The change of strategy will not be greatly affected
by the problem of parameter setting. In the end, a satisfactory
approximate optimal result can be obtained. Because of the
complex structure of the HPP, it is necessary to add subjec-
tive evaluation strategies to specific scenarios to achieve the
desired quantitative optimal design combination.

V. CONCLUSION
In this paper, we proposed a novel Bayesian optimization
method with a generalized hybrid probability process (HPP)
model and a model-fitting weight degenerate upper confi-
dence bound (WDUCB) acquisition criterion for multimodal
heterogeneous network model representation and orchestra-
tion. The method is adapted to scenarios for 5G and beyond
space heterogeneous networkmulti-service scenarios, and the
comparison results obtained by the proposed HPP-WDUCB
model with the criterion reveal an impressive performance
in heterogeneous network representation and optimization.
The application cases illustrate that the hybrid probability
process significantly improves the stability of the model
representation and outperforms the exact Gaussian process
and random forest in terms of accuracy and interpretability.
The HPP-WDUCB combination provides a novel parameter-
insensitive exploration-exploitation approach generalized to
fuzzy observations as a credible data-driven reference for
the top-level design of orchestration of current multimodal
heterogeneous network.

Furthermore, due to the lack of a real configurable net-
work system and the reality that large-scale heterogeneous
network convergence does not have a unified optimal stan-
dard, the proposed method is currently applicable to the
verification of network design simulations and requires
an existing network. However, the Bayesian optimization
with hybrid probability process demonstrates a wide range
of future application scenarios for heterogeneous network
orchestration.
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