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ABSTRACT Human pose estimation in images is challenging and important for many computer vision
applications. Large improvements in human pose estimation have been achieved with the development
of convolutional neural networks. Even though, when encountered some difficult cases even the state-of-
the-art models may fail to predict all the body joints correctly. Some recent works try to refine the pose
estimator. GAN (Generative Adversarial Networks) has been proved to be efficient to improve human pose
estimation. However, GAN can only learn local body joints structural constrains. In this paper, we propose
to apply Self-Attention GAN to further improve the performance of human pose estimation. With attention
mechanism in the framework of GAN, we can learn long-range body joints dependencies, therefore enforce
the entire body joints structural constrains to make all the body joints to be consistent. Our method
outperforms other state-of-the-art methods on two standard benchmark datasets MPII and LSP for human
pose estimation. Our code is available at: https://github.com/idotc/Hg-SAGAN.

INDEX TERMS Human pose estimation, convolutional neural networks, stacked hourglass networks,
self-attention GAN.

I. INTRODUCTION
Human pose estimation (HPE) aims to predict the locations
of body joints from input images. It is fundamental for some
other computer vision applications such as action recogni-
tion [1]–[3], human-computer interaction and video surveil-
lance. The most recent methods for human pose estimation
take advantage of convolutional neural networks (CNNs)
to drastically improve the performance on standard bench-
marks [8]–[10], [12]–[14].

Despite of these great progresses, there still exist some
challenging cases, such as ambiguities caused by occluded
body joints, invisible joints, nearby persons and clutter back-
grounds, where even the state-of-the-art models may fail to
predict the body joints correctly. The main reasons lie in:
1) these ‘‘hard’’ joints cannot be simply recognized based on
their appearance features only; 2) these ‘‘hard’’ joints are not
explicitly addressed during the training process [12].

One of the straightforward and efficient ways to handle
these ‘‘hard’’ cases maybe combining body joints structural
constraints into the training process to make the predicted
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pose plausible. GAN (Generative Adversarial Networks) [15]
has been applied to learn the structural constrains of human
body parts by adversarial training [10], [11].

However, there are problems with existing GAN based
pose estimation models. Since traditional convolutional
GANs can only learn the spatially local constraints, previous
GAN based HPE methods [10], [11] still cannot fully tackle
these challenging cases when more complex body joints
occlusion and crowded backgrounds occur.

Recently, Zhang and Goodfellow et al propose the Self-
Attention Generative Adversarial Networks (SAGANs) [16],
which introduce a self-attention mechanism into convolu-
tional GANs. The self-attention module is complementary
to convolutions and is capable of modeling long-range,
multi-level dependencies across image regions. With self-
attention, the discriminator can more accurately enforce
complicated geometric constrains on the global image struc-
ture [16], which leads the generator to produce holistic
consistent images.

Motivated by SAGANs, in this paper, we propose to
apply self-Attention GAN to further improve the perfor-
mance of human pose estimation. With attention mecha-
nism in the framework of GAN, we can learn long-range
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body joints dependencies, therefore enforce the entire body
joints structural constrains making all the body joints to be
consistent. We evaluate the proposed approach on two HPE
benchmarks, MPII and LSP. Experimental results show that
our approach outperforms state-of-the-art methods.

II. RELATED WORK
A. HUMAN POSE ESTIMATION
Human pose estimation (HPE) is a challenging problem due
to the large variations in configuration and appearance of
body parts. Early works often tackle such problems by graph-
ical models with handcrafted image features [17]–[19].

Similar as many other vision tasks, the progress on human
pose estimation has been greatly advanced by deep learn-
ing [20], [21], since Convolutional Neural Networks (CNNs)
have the powerful ability to learn rich convolutional feature
representations. Before CNNs were applied for HPE, the per-
formance of previous works on the MPII benchmark [22]
was only about 40% PCKh@0.5 [17]. CNNs pioneer works
surprisingly improve it to about 80% [4], [5]. During the
later three years, till now, it has achieved to more than
90% [8]–[10], [14]. The mAP (mean Average Precision)
metric on more recent and challenging COCO human pose
benchmark [23] has been increased from 60.5 (COCO 2016
Challenge winner [6], [7]) to 72.1 and recently 78.1 (COCO
2017 and 2018 Challenge winner [12]) [13].

1) SINGLE PERSON POSE ESTIMATION
DeepPose [4] is the first deep learning based approach for
human pose estimation, which takes pose estimation as a
body keypoints regression problem using Convolutional Neu-
ral Networks. Latter methods mostly predict heatmaps that
characterize the probabilities of each keypoint at different
locations [5]. The exact location of a keypoint is further
estimated by finding the maximum in an aggregation of
heatmaps. Heatmap-based methods better leverage the dis-
tributed properties of convolutional networks and are more
suitable for training human pose estimation models [10].

Some works combine graphical models with CNN.
Tompson et al. [5] apply MRF (Markov random field) as a
post-processing step, while others embed deformable mix-
ture of parts [24] or CRF (Conditional random field) [25]
into the network for end-to-end learning. Convolutional Pose
Machines (CPM) [6] and Stacked Hourglass Network (Hour-
glass) [8] achieve state-of-the-art performance without hand
designed priors or graphical model-style inference. Both
CPM and Hourglass employ a multi-stage scheme, using
intermediate supervision to produce increasingly refined
heatmaps for joints locations through different stages. The
design of Stacked Hourglass Network [8] is motivated by
FCN (Fully Convolutional Networks) [26] and ResNet [27].
Its powerful and well-designed architecture consists of mul-
tiple stacked hourglass modules which allow for repeated
bottom-up, top-down inference [26]. Features are processed
across all scales and consolidated to best capture the various

spatial relationships associated with the body. Each Hour-
glass module contains several residual modules [27].

After that, most of the recent single person pose estimation
methods are based on Hourglass, and try to improve Hour-
glass either by multi-scale feature pyramids (PyraNet) [9] or
by multi-stage refinement [10], [14].

Feedback Networks [28] improve Hourglass by adding
feedback connections. Inspired by DenseNet [29],
Tang et al. [30] add dense skip connections into the resid-
ual blocks across different Hourglass modules. Yang et al.
propose the PyraNet [9] with a Pyramid Residual Mod-
ule (PRMs) to enhance multi-scale invariance in CNNs.
In fact, PyraNet is an improvement of Hourglass by extending
the residual block to multi-scale of pyramids. If the level of
pyramids is 1, it is exactly the original Hourglass networks.
Ke et al. [31] also intend to improve Hourglass by multi-scale
CNN features. Additionally, they incorporate a structural loss
into the training process.

In [10], [11], Generative Adversarial Networks (GAN)
are utilized to human pose estimation. Chou et al. [10] put
the Hourglass networks into the GAN framework with self-
adversarial training, where the generator and discriminator
are all hourglass modules (We denote their work as Self-
GAN). The generator predicts human pose, and the discrim-
inator acts as a judger to enforce structural constraints of
human body joints.

Tang et al. [14] propose a Deeply Learned Composi-
tional Model (DLCM) for human pose estimation. It exploits
CNNs to learn the compositionality of human bodies. The
network has a hierarchical compositional architecture and
bottom-up/top-down inference stages. In the bottom-up stage
of DLCM, Hourglass is used to predict human pose. And
subsequently the top-down stage plays the role to refine the
predicted pose in bottom-up stage.

DLCM and Self-GAN are very similar. The generator in
Self-GAN is similar to the bottom-up stage in DLCM to
predict human pose, the discriminator in Self-GAN and the
top-down stage in DLCMboth act as pose refinement.We can
see that all the above mentioned recently developed works are
indeed improved hourglass.

2) MULTI-PERSON POSE ESTIMATION
The more practical problem is multi-person pose estima-
tion, which is to estimate poses of multiple people in one
image. There are two types of methods for multi-person pose
estimation, bottom-up and top-down. Bottom-up methods
first locate keypoints for all persons in the image and then
group joints candidates for each person. Such as, DeepCut,
DeeperCut [32], [33] and Openpose [7]. DeepCut and Deep-
erCut [32], [33] use CNNs (VGG [35] or ResNet [27]) to
generate keypoint candidates and then run integer linear pro-
gramming (ILP) to group them for each person. Cao et al.
propose the Openpose [7], which is based on CPM [6] to
simultaneously learn multi-person joints locations and their
associations via Part Affinity Fields (PAFs), and then uses a
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greedy algorithm to group the joints that belong to the same
person.

Top-down methods [12], [13], [34], [36] are also two-
stage methods, they first detect each person in the image,
and then estimate the pose for each single person. Fang et al.
propose the RMPE (AlphaPose) [36], which uses SSD [37]
(or Faster RCNN [38]) to detect persons in the image and
then utilizes Hourglass [8] (or PyraNet [9]) to estimate poses
for each person. Chen et al. propose Cascaded Pyramid Net-
work (CPN) forMulti-Person Pose Estimation [12]. CPNfirst
applies Mask RCNN [34] to detect persons, and then designs
the CPN for pose estimation of each person. CPN involves
two subnetworks: GlobalNet and RefineNet. GlobalNet is
based on ResNet backbone. Based on the feature pyramid
representation generated by GlobalNet, RefineNet serves to
refine the ‘‘hard’’ keypoints.

3) POSE TRACKING
The more challenging task is simultaneous pose estimation
and tracking [13], [39] or pose estimation in videos [40], [41].
Luo et al. adopt Long Short-Term Memory (LSTM) to
impose geometric consistency among video frames while
using CPM [6] to estimate person pose in images. 3D human
pose estimation is also very important for practical applica-
tions, such as virtual reality or augmented reality [42], [43].
But 3D human pose estimation is based on 2D. Usually, 2D
pose must be estimated first and then extended to 3D.

In summation: (1) Recent state-of-the-art human pose esti-
mation methods are either improved hourglass networks [9],
[10], [14], [84], or take ResNet as their backbone [12],
[13], [44]; (2) Among these tasks, 2D single person pose
estimation is the basis. In this paper, we focus on 2D single
person pose estimation from RGB images.

B. GENERATIVE ADVERSARIAL NETWORKS
Recently, Generative Adversarial Networks (GAN) has been
applied to various computer vision tasks, such as image super-
resolution [59], image inpainting [60], object detection [61],
person image synthesis [62], person Re-identification [63],
and human pose estimation [10], [11]. GAN is first proposed
by Goodfellow et al. [15], which can generate natural images
such as human faces and indoor scenes. It consists of genera-
tor and discriminator. The generator generates images to fool
the discriminator, while the discriminator tries to distinguish
the fake one from the real. In this way, the adversarial training
can help generator to improve its product increasingly. The
training of GANs may be unstable and sensitive to the choice
of hyper-parameters.

Researches on GAN may be considered mainly from three
perspectives: (1) some works try to improve the training of
GAN; (2) some works shine light on GAN theoretic analysis;
(3) most of the works exploit various GAN applications.

Radford et al. [45] introduce DCGAN with all convolu-
tional architecture. They eliminate the fully connected layer
and employ batch normalization to prevent from losing diver-
sity, i.e., model collapsing. Arjovsky et al. [46] propose

Wasserstein GAN (WGAN), which usesWasserstein distance
to replace the original loss function in GAN and solves the
unreliable gradient problem.WGAN satisfies theK-Lipschitz
constraint by weight clipping, which pushes weights towards
two extremes of the clipping range and is hard to tune the clip-
ping parameters. Gulrajani et al. [47] improve the training of
Wasserstein GANs by replacing the weight clipping strategy
with gradient penalty. Gradient penalty is an additional term
in the loss function that directly enforces the discriminator’s
gradient norm around K. EBGAN [48] uses autoencoders
as discriminators. It aims to match the autoencoder loss
distribution instead of matching the data distribution. Based
on EBGAN and proportional control theory, BEGAN [49]
introduces an equilibrium term to balance the discriminator
and the generator. It also provides a convergence measure to
determine if the model has collapsed or reached its final state.

Recently, Miyato et al. propose the Spectral normaliza-
tion GAN (SNGAN) [50] by limiting the spectral norm of
the weight matrices in the discriminator in order to con-
strain the Lipschitz constant of the discriminator function.
Zhang et al. [16] apply spectral normalization to the GAN
generator to improve training dynamics.

Gu et al. utilize Optimal Transportation and Monge-
Ampere equation to theoretically interpret deep learning and
GAN [51]– [53]. They show the intrinsic relations between
optimal transportation and convex geometry, the generator
calculates the transportation map while the discriminator
computes the Kantorovich potential [52].

Initially, GAN is used to generate synthetic images from
input noises [15]. With rapid development in recent years,
GAN has been able to generate amazing perfect images.
Zhu et al. propose the state-of-the-art CycleGAN [54] to
learn to translate an image from a source domain to a target
domain in the absence of paired examples. CycleGAN learns
bidirectional mappings between source and target domain
with adversarial and cycle consistency losses to enforce
the translation to be consistent. Bansal et al. propose the
Recycle-GAN [55] for unsupervised video retargeting that
enables the transfer of sequential content from one domain
to another while preserving the style of the target domain.
StarGAN [56] can perform image-to-image translations for
multiple domains using only a single model. GANima-
tion [57] enables continuous facial animation. Vid2vid [58]
implements Video-to-Video Synthesis with GAN.

C. ATTENTION MODELS
Attention mechanism [64], [65] allows the model to differ-
entiate irrelevant information so as to focus on the most
relevant part of images or features as needed. Attentionmech-
anism has been proven effective and successfully applied in
many computer vision [71] and natural language process-
ing tasks [66], e.g. image classification and action recogni-
tion [67], [70], [72], [73], image super-resolution [68], object
detection [69].

Some recent works introduce attention mechanism into
GAN for image synthesis [16], object transfiguration [74] or
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FIGURE 1. The framework of our network. HG: a single stack hourglass network, HGA: hourglass networks with
self-attention, G: generator, D: discriminator.

face attribute editing [75]. In [74] and [75], attention networks
lead the generator to pay important attention to specific image
regions.

Zhang et al. [16] propose the Self-Attention GAN
(SAGAN) which can model long-range dependencies for
image generation tasks. The self-attention module calculates
response at a position as a weighted sum of the features at
all positions. Armed with self-attention, the discriminator can
ensure detailed features in distant portions of the images to be
consistent with each other. That is, the discriminator canmore
accurately enforce complicated geometric constraints on the
global image structure. Note that, self-attention mechanism
can learn long-range dependencies, but convolutions can only
model local dependencies with local receptive fields.

III. HUMAN POSE ESTIMATION WITH SELF-ATTENTION
GENERATIVE ADVERSARIAL NETWORKS
As mentioned above, although human pose estimation has
been significantly advanced by deep learning, still, all the
difficulties lie in occlusion, overlapping with other people,
or clutter background. In such cases, the model may find
similar features which belong to the background or another
person. So, body structural constraints are needed. Recent
works try to improve the performance of human pose estima-
tion by refinements [10], [12], [14], which are shown to be
efficient, since such refinement processes are indeed to learn
structural constraints of human body joints.

The generated poses can be refined by GAN [10], [11],
in which the discriminator checks the structural constraints
of human body parts and distinguish implausible poses to
guide and refine the generator training. But there is no atten-
tion mechanism in discriminator or generator [10]. As stated
in [16], the self-attention mechanism is powerful to model

long-range dependencies in the feature maps. It is comple-
mentary to convolutions, which only models local dependen-
cies with local receptive fields. So Self-GAN [10] cannot
fully learn the whole body structural constraints, which will
be important in cases of occlusion, invisible joints or crowd
background to ensure plausible poses.

In this paper, we introduce self-attention mechanism into
Self-GAN for human pose estimation. By taking advantage of
self-attentionmechanism to learn long-range dependencies of
body parts, the performance can be further improved.

A. THE NETWORK ARCHITECTURE
The framework is illustrated in Fig. 1. The model consists of
two networks, the generator G and the discriminator D. Both
use Hourglass networks [8] as their backbone. Hourglass
networks are fully convolutional networks constructed with
residual blocks [27] and conv-deconv architecture [26]. The
generator generates heatmaps that indicate the confidence
score at every location for all the body joint keypoints. The
discriminator reconstructs both the predicted heatmaps and
the ground truth heatmaps and distinguishes real from fake
ones by adversarial training.

Note that, in Fig. 1, both the generator G and the dis-
criminator D contain self-attention architectures, which are
indicated as red blocks. They will be illustrated in detail in
the next section.

1) GENERATOR
We use Hourglass networks as the generator. Following pre-
vious works [8], [9], the input images are first warped to
the same resolution of 256×256 and then fed into Hourglass
network. The network starts with a 7×7 convolution layer
with stride 2, followed by a residual module and a round
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FIGURE 2. Overview of our generator framework. We show one hourglass network with self-attention architecture. The
attention maps are generated by self-attention residual module (SARM) (see FIGURE 4 for more details).

of max pooling to reduce the resolution from 256 to 64.
So the highest and the final output resolution is 64×64. Then,
multiple hourglass modules are stacked to predict the body
joint heatmaps. All residual modules output 256 features.
The repeated bottom-up (from high resolutions to low reso-
lutions), top-down (from low resolutions to high resolutions)
structure together with skip connections allow processing
features across all scales and capturing various spatial rela-
tionships associated with different body joints. Intermediate
supervision at the end of each stack is also critical to the
network’s final performance.

We use 4-stack hourglass networks as generator in our
experiments. The first one is the standard hourglass net-
work, and the next there hourglass networks are integrated
with attention modules. One of the hourglass networks with
self-attention architectures is shown in Fig. 2. We design
a new Self-Attention Residual Module (SARM) by adding
the self-attention structure into residual module, as shown in
Fig. 4 (a) and (b). In generator, we use the attention structure
of Fig. 4 (b) that is SARM-B. Indeed we have tried several
different forms of attention modules and put them at the
different parts of hourglass network. Finally we adopt the
attention strategy by putting the attention module at the end
of the hourglass networks (see Fig. 1 and Fig. 2), which can
efficiently improve the performance.

2) DISCRIMINATOR
The framework of the proposed discriminator is illustrated
in Fig. 3. We use 1-stack Hourglass network as the discrimi-
nator. In standard Hourglass networks [8], the building blocks
are residual modules. In this work, we introduce self-attention
mechanism into the discriminator. We utilize SARMs (that is
SARM-A or SARM-B, See FIGURE 4 for more details) as

the skip connections to connect blocks with the same seman-
tic meanings, that is, the blocks in bottom-up and top-down
processing with the same resolution scale of feature maps.

3) VARIANTS OF SARM STRUCTURE
Formally, the SARM can be formulated as follows. Let x ∈
RC×N×N be the input image features of the l-th layer, where
C is the channel number and N the resolution of
feature map. We first transform x into feature spaces f, g, h

to calculate the attention and self-attention feature maps. Let
f (x) = Wf x, g (x) = Wgx and h (x) = Whx, where Wf ∈

RC
′
×C , Wg ∈ RC

′
×C are the learned weight matrices which

are implemented as 1 × 1 convolutions. As to Wh ∈ RC×C ,
in Fig. 4(a) it is the residual module, while in Fig. 4(b) it is
implemented as 1 × 1 convolutions. We set C

′

= C/8 in
experiments.

Then the softmax operation on each row is:

βji =
esij∑N
i=1 e

sij
, where sij = f (xi)T g(xj) (1)

βji indicates the extent to which the model attends to the ith
location when generating the jth region.

In Fig. 4, we design two self-attention modules. In SARM-
A (Fig. 4(a)), the output of the self-attention layer is
a = (a1, a2, . . . , aj, . . . , aN )∈ RC×N×N , where,

aj =
∑N

i=1
βjih(xi), where h (xi) = Whxi (2)

In SARM-B (Fig. 4(b)), we multiply the output of the self-
attention layer by a scale parameter γ and add to the output of
residual module f0(x;wf0 ). Then the final output of SARM-B
is:

y = γ a+ f0(x;wf0 ) (3)
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FIGURE 3. Overview of our discriminator framework. The discriminator is a single hourglass network, in which the skip connections along
blocks with the same semantic meanings adopt self-attention residual modules (SARMs).

FIGURE 4. Our proposed self-attention residual modules (SARMs). (a) SARM-A produces the attention map and then matrix multiply it with the output of
the residual module, while (b) SARM-B first matrix multiply the attention map with the input and then add such result to the output of the residual
module. The ⊗ denotes matrix multiplication and ⊕ denotes matrix summation. The softmax operation is performed on each row.

where γ ∈ [0, 1] is initialized as 0 and increased during train-
ing. The networks first rely on local cues and then gradually
learn to pay more attention to long-range relationships.

Note that, in CPM [6] and Hourglass networks, long-
range spatial relationships associated with body joints can be
learned along layers of convolutions [6], [8], [10]. However,
there are some drawbacks relying on convolutions to model
dependencies across different image regions. Since convo-
lution processes information in local receptive field, long
range dependencies can only be processed through several
convolutional layers. But with the increasing of layers, it will

be hard to optimize parameters to coordinate multiple layers
to capture dependencies. Furthermore, these parameteriza-
tions may be brittle and failing for test inputs. Thus using
convolutional layers alone is computationally inefficient for
modeling long-range dependencies in images.

Self-attention mechanism [16] calculates response at a
position as a weighted sum of features at other locations,
which is a good balance betweenmodeling long-range depen-
dencies and computational efficiency. So, Self-Attention
can be complementary to convolutions and more suitable
to capture widely separated spatial long-range multi-level
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dependencies among body joints in human pose estimation
problem.

The ground-truth heatmaps and generated heatmaps
together with the corresponding input image are all fed into
discriminator. The discriminator reproduces a new set of
heatmaps. By adversarial training, the discriminator checks
that features in different positions of the heatmaps are consis-
tent with each other. Armed with self-attention, the discrimi-
nator can more accurately enforce global geometric structural
constraints on generated human pose.

B. TRAINING THE SELF-ATTENTION GAN
1) TRAINING THE GENERATOR
Assume the generator consists of S stacks of hourglass mod-
ules. Each hourglass network predicts K heatmaps of size
64×64 for K body joints. We use heatmaps to represent the
body joint locations. Denote the ground-truth locations as
z = {zk}Kk=1, where zk = (xk , yk ) indicates the location of the
kth body joint in the image. Then the groud-truth heatmap is
generated from a Gaussian with mean zk and variance 6 as:

Hk (p) ∼ N (zk , 6) (4)

where p ∈ R2 denotes the location, and 6 is set as identity
matrix I .
The intermediate supervision is attached at the end of each

hourglass. The loss is defined by the mean squared error:

Lmse =
1
2

S∑
i=1

K∑
k=1

∥∥∥Hik − Ĥik∥∥∥2 (5)

where Hik is the ground-truth heatmap of kth joints at the ith
stack, and Ĥik is the generated heatmap.

An adversarial loss from the discriminator is also tied to
the generator:

Ladv =
1
2

K∑
k=1

∥∥∥Ĥk − D(Ĥ k ,X )
∥∥∥2 (6)

where Ĥk is the output heatmaps of the generator’s last hour-
glass stack, D is the discriminator, and X is an input image.
The total loss for generator is:

LG = Lmse + λGLadv (7)

where λG ∈ [0, 1] is a hyperparameter to balance the MSE
and adversarial loss. In our experiment, λG was set to 0.1.
Training the generator is done by back-propagating the loss

Lmse from generator itself and the adversarial loss Ladv from
the discriminator. The adversarial loss enables the generator
to produce plausible human body poses.

2) TRAINING THE DISCRIMINATOR
The discriminator is in charge of distinguishing real poses
from generated ones. Inputs to the discriminator include both
heatmaps predicted by the generator and the ground truth
heatmaps. The discriminator will reconstruct new heatmaps.

Losses for generated and ground truth heatmaps are defined
as:

Lgen =
1
2

K∑
k=1

∥∥∥Ĥk − D(Ĥ k ,X )
∥∥∥2 (8)

Lreal =
1
2

K∑
k=1

‖Hk − D(Hk ,X )‖2 (9)

Algorithm 1 The Training Procedure
Generator Input: An image X
Discriminator Input: Generated heatmaps H and the cor-
responding ground-truth heatmaps Ĥ
Repeat
(1) Forward discriminator by D(H ,X )
(2) Compute gradient ∇fD by Eq. (9)
(3) Forward generator by Ĥ = G(X )
(4) Compute gradient ∇fG by Eq. (5)
(5) Forward discriminator by D(Ĥ ,X )
(6) Accumulate gradient ∇fD by Eq. (8)
(7) Backpropagation of ∇fD through discriminator
(8) Accumulate gradient ∇fG by Eq. (6)
(9) Backpropagation of ∇fG through generator

Until Ĥ stops improving.

During training, the discriminator will minimize Lreal
while maximize Lgen in an adversarial style. So the total
discriminator loss is:

LD = Lreal − λDLgen (10)

λD ∈ [0, 1] is an equilibrium term to balance the discrim-
inator and generator, which can be dynamically tuned during
training [49]. In our experiment, λD was set to 0.5.

C. INFERENCE
At inference time, testing images should also be warped to
the same resolution of 256× 256 as that for training images.
We use the well trained generator to predict the final human
poses. We obtain the predicted body joint locations ẑk from
the predicted heatmaps generated from the last stack of hour-
glass by taking the locations with the maximum score:

ẑk = argmax
p

Ĥk (p) , k = 1, . . . ,K (11)

The final prediction of the network is the max activating
location of the heatmap for a given joint. The predicted
location is relative to 64 ×64 resolution of output heatmaps.
Finally, we transform the locations back to the original coor-
dinates in the input images.

IV. EXPERIMENTS
A. DATASETS AND IMPLEMENTATION DETAILS
We evaluate our method on two widely used human pose
estimation benchmarks, Leeds Sports Pose (LSP) [76] and
MPII Human Pose Dataset [22].
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TABLE 1. Comparisons of PCK@0.2 scores on the LSP test set.

The LSP and its extended dataset [76] contain total 12k
images with poses in various sports. 11000 images are used
for training and 1000 for testing. Each image is annotated
with 14 keypoint locations. The center and scale of annotated
person are calculated to be used in training. The dataset is
challenging because of its noisy labels and various poses.

MPII dataset [22] contains about 25k images and over 40k
annotated people, which covers a wide range of human activ-
ities. Each image may contain multiple persons. We focus
on single person pose estimation. There exist some missing
annotations for some persons. We just consider persons with
full annotations. We follow previous works [9] to split the
training set into train and validation subsets. Train set has
14679 images with 22246 persons, validation set has 2729
images with 2958 persons, and test set has 6619 images with
11731 persons. The test set has no annotations. Each person
is annotated with 16 joints, the center and scale.

We do data augmentation following previous works
[8]–[10]. All input images are 256× 256 cropped from
resized images according to the annotated human body cen-
ters and scales. An input image is randomly flipped horizon-
tally, rotated by an angle in [-30, 30] degrees, and scaled with
factors in [0.75, 1.25].

We implement our models using Torch7 [77] deep learning
libraries. The networks are optimized by RMSprop algorithm
with a batch size of 6 for 200 epochs. Training is performed on
a server with 16GB NVIDIA Tesla P100 GPU. The learning
rate is initialized as 1× 10−4 and dropped by 5 at 40th, 60th
and 80th epoch. Our model takes about 4 days to train on the
training set.

B. EVALUATION METRICS
We use Percentage of Correct Keypoints (PCK) [18] to mea-
sure performance on LSP dataset, and use PCKh [22] on the
MPII dataset.

Let ẑk be the predicted location of the kth body joint, zk is
the corresponding ground truth location, then PCK is defined
as: ∥∥zk − ẑk∥∥2∥∥zlhip − zrsho∥∥2 ≤ r (12)

where zlhip and zrsho denote the ground truth locations of
the left hip and right shoulder, respectively. r ∈ [0, 1] is a
threshold. PCK calculates the percentage of correct detec-
tions that fall within a normalized distance. Here the distance
is normalized by the torso size.

For MPII, the distance is normalized by a fraction of head
size, and the matching threshold is defined as 50% of the
head segment length. Such metric is referred to as PCKh.
PCKh uses head size to make the metric articulation inde-
pendent [22].

C. RESULTS
1) QUANTITATIVE RESULTS
In our experiments, we implement two self-attention strate-
gies, SARM-A and SARM-B, as shown in Fig. 4 (a) and (b),
and we apply them both in generator and discriminator.
Firstly, we just integrate the self-attention modules into the
discriminator (Fig. 3) while leaving the generator be standard
hourglass networks. In such cases, we denote our method
with the attention structure of SARM-A (Fig. 4 (a)) in dis-
criminator as Ours-A, and the attention structure of SARM-B
(Fig. 4 (b)) in discriminator as Ours-B. Then we further inte-
grate the self-attention modules into the generator. We denote
our method with SARM-B both in the generator (Fig. 2) and
discriminator (Fig. 3) as Ours-C.

Comparisons of the PCK scores at the threshold of 0.2
(PCK@0.2) on the LSP test set is presented in Table 1.
Following previous works [9], [10], our models are trained
when adding MPII training set to the LSP training and LSP
extended training set. Both of our methods, Ours-A and
Ours-B, achieve the performance of 94.2%, and improve
the previous best result [10] by 0.2%. Ours-C achieves the
best performance of 94.3%, and improves the previous best
result [10] by 0.3%. Ours-A achieves the best scores on four
body parts, head, shoulder, wrist and hip, with 98.6%, 95.1%,
89.8% and 94.7% respectively. Ours-B achieves better scores
on two body parts, wrist and knee, with 89.8% and 95.2%
respectively. Ours-C achieves the new best scores on four
body parts, shoulder, elbow, wrist and ankle, with 95.1%,
92.6%, 89.8% and 94.5% respectively.
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TABLE 2. Comparisons of PCKh@0.5 scores on the MPII test set.

FIGURE 5. Qualitative comparisons on LSP.

In Table 2, we present the comparisons of the PCKh scores
at the threshold of 0.5(PCKh@0.5) on the MPII test set.
Our approaches Ours-A achieves 92.0%, Ours-B improve the
performance to 92.1%, and Ours-C improve the performance
to 92.3% which are comparable to previous state-of-the-
art results [9], [31]. In addition, Ours-A and Ours-B both
achieve the best scores on the body part of head, and Ours-C
achieves the new best scores on four body parts, shoulder,
wrist, hip and ankle, with 96.8%, 88.8%, 91.4% and 86.7%
respectively. Compared with the counterpart method [10]
whose total PCKh@0.5 is 91.8%, our method acquires 0.5%
improvement by taking advantage of self-attention mecha-
nism. Specifically, ourmethods achieve 0.3%, 0.4% and 0.3%

improvements on head, elbow and knee respectively. For the
most challenging parts to be detected as wrist and ankle,
our improvements are even notable, with 0.8% and 1.8%
respectively.

2) QUALITATIVE COMPARISONS
We show some qualitative comparison results on LSP
in Fig. 5, and on MPII in Fig. 6. We compare our mod-
els with other counterpart methods. In each figure, the first
row contains some results predicted by Hourglass (HG) [8],
the second row by Self-GAN [10], and our results are in the
third and fourth row.
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FIGURE 6. Qualitative comparisons on MPII.

TABLE 3. Ablation study on the LSP test dataset.

We can see that, by utilizing adversarial training in GAN
framework, the generator can be refined to correct some
errors to producemore plausible poses [10]. Further, we intro-
duce attention mechanism into the generator and the dis-
criminator to enhance global long-range dependencies among
body joints. The performances are obviously improved.

D. ABLATION STUDY
We do some ablation studies to verify the effectiveness of our
designed self-attention modules. Table 3 contains ablation
study on the LSP test dataset. We explore total seven experi-
mental settings. Experiments 1-4 are just based on 4-stacked

Hourglass Networks (HG). Experiment 1 is the standard
4-stacked HG, without self-attention mechanism. The mean
PCK@0.2 score is 93.6%. From experiment 2 to 4, we inte-
grate the self-attention module, that is SARM-B (Fig. 4(b)),
into one HG, two HG, and three HG, step by step. We can
see that the mean PCK@0.2 scores are also progressively
improved from 93.7% to 93.9% and then 94.0%.

Experiments 5-7 are based on the framework of GAN,
where the generator is 4-stacked HG and the discriminator
is one HG. Experiment 5 is the Self-GAN [10], without self-
attention mechanism. Comparing experiment 5 with exper-
iment 1, we can see that by utilizing GAN, the score is
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TABLE 4. Ablation study on the MPII validation dataset.

TABLE 5. Ablation study on the MPII test dataset.

TABLE 6. Comparisons of parameter, moder size and average runtime.

improved from 93.6% to 94.0%, which indicates the effec-
tiveness of GAN. And experiment 4 has the same score
of 94.0% as experiment 5. Experiment 6 and 7 are exactly our
methods of Ours-B and Ours-C (see Section 4.3 for detail),
which are implemented by gradually applying self-attention
module SARM-B into discriminator and generator, and the
scores are also increased little by little from 94.2% to 94.3%.
It is clear that the self-attention mechanism can further
improve the performance of GAN.

Table 4 and Table 5 are our ablation studies on MPII
validation and test dataset respectively. All our results verify
that: (1) the self-attention mechanism can improve the perfor-
mance of hourglass networks for human pose estimation; (2)
the performance can be further improved by integrating the
self-attention modules into the framework of GAN.

Table 6 compares the complexity and runtime of Our-C
model with other counterpart approaches.

V. CONCLUSION
In this paper, we propose to utilize self-attention GAN to
further improve the performance of human pose estima-
tion. In the GAN framework, the generator and discrim-
inator are all stacked Hourglass networks. The generator

is responsible for predicting poses, while the discriminator
acts to enforce structural constraints of human body joints
to refine the poses. Since modeling long-range dependen-
cies among image regions just by convolutions with local
receptive fields is not efficient and enough, so we further
introduce self-attention mechanism into the generator and the
discriminator.

The self-attention mechanism allows modeling long-range
dependencies among body joints. With self-attention, the
generator can pay more attention to salient body joints, while
the discriminator can check that body joints in distant por-
tions of the body are consistent with each other. So entire
body joints geometry constraints can be further enforced
during training of the generator, which will be important in
cases of occlusion, invisible joints or crowd background to
ensure plausible poses.

Experiments on two standard human pose estimation
benchmarks demonstrate the effectiveness of our approach.
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