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ABSTRACT Gene Regulatory Network (GRN) inference using computational approaches has been a highly
pursued problem in bioinformatics. Various approaches have been developed to infer GRNs from gene
expression data including statistical, machine learning and information theoretic approaches. However,
a large number of regulatory relationships remain unpredicted even in the highly studied model organisms
such as Escherichia coli and Saccharomyces cerevisiae. Besides, the regulatory relationships in higher
eukaryotes with large genome sizes, such as humans and mice remain mostly unexplored. Majority of
the approaches proposed in the literature on GRNs infer molecular interactions from gene expression
data alone, despite the fact that gene expression regulation being a product of sequential interactions of
multiple biological processes. To capture more regulatory relationships with higher precision, we apply a
data fusion and inference model based on Non-negative Matrix Tri-factorization called integrative matrix
tri-factorization for GRN inference (iMTF-GRN) that can integrate the diverse type of biological data in
a relational learning framework. We, demonstrate that iMTF-GRN model shows improved accuracy in
predicting TF-target and miRNA-target gene regulations and performs comparatively better over other state-
of-the-art methods.

INDEX TERMS GRN, NMTF, matrix completion, regulatory networks, matrix factorization.

I. INTRODUCTION
Gene regulation is an essential cellular mechanism by which
an organism regulates its metabolism and adapts to different
environmental conditions. Genes are regulated at multiple
levels of regulatory machinery, but the most basic regulation
happens at the transcriptional level, involving transcription
factor proteins that influence gene expression by binding
to regulatory sequences of genes. A GRN, therefore, estab-
lishes links between transcription factors (TF) and their target
genes, providing a standard representation for transcriptional
regulation. Inferring such regulatory networks will help in
the elucidation of biological mechanisms that control various
cellular processes. Also, mutations in TF coding genes and
regulatory sequences that can disrupt standard transcriptional
machinery are better understood by GRN inference (GRNI)
from high-throughput genome-wide data.

Reverse engineering the GRNs has gained much inter-
est among researchers over the last decade, as the network
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inference using computational methods is still not a trivial
task. This challenge is partly driven by the availability of
largescale genome-wide genomic, transcriptomic, proteomic
and other omics data and partly because of the increased
experimental noise in the data and dimensionality issues
of more genes compared to a small number of samples in
gene expression analysis. Further, gene expression levels in
eukaryotes are influenced by many genomic factors, such as
DNA methylation of promoter regions, post-transcriptional
silencing by miRNA expression and mutations in TF coding
genes or regulatory sequences, making the inference of GRNs
difficult from gene expression data alone. A plethora of meth-
ods for reconstruction of GRNs has been proposed. Majority
of these methods either use compendia of gene expression
data from perturbation experiments or they operate on time
series data to build GRNs using dynamic models [1], [2].

Among the most popular approaches to infer gene interac-
tions from gene expression data are correlation based meth-
ods [1] which compute the pair-wise similarity betweengenes
(e.g., Pearson’s correlation coefficient, Spearman’s correla-
tion coefficient). Besides correlation, Euclidean distances and
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information theoretic approaches including mutual informa-
tion have been used to predict gene interactions [2]. Infer-
ence algorithms such as RELNET [3], ARACNE [4], and
CLR [5] predict edges between an interacting pair by assign-
ing weighted scores derived from applying mutual infor-
mation to gene expression data. Also certain mathematical
formalisms in the form of Boolean networks [6], [7] and
Ordinary Differential Equations (ODEs) have been applied
to time-series gene expression data to derive discreet dynamic
networks of gene regulation [8], [9]. More recently machine
learning [10]–[12] and artificial neural networks (ANNs)
based approaches [13], [14] have been applied to learn gene
regulatory interactions from genomewide omics data because
of their ability to handle variety of nonlinear functions and
their robust handling of noisiness in the biological data.

Causal dependencies between genes using expression data
have been modeled using probabilistic graphical models
such as Bayesian networks (BNs). BNs are very robust in
handling randomness and noise inherent in gene expres-
sion data and therefore have been found effective to infer
causal relationships between genes. The inference problem
is modeled as a joint probability distribution function and
uses directed acyclic graphs for network reconstruction [15].
Regression is another popular technique that has been rig-
orously applied to the reconstruction of GRNs from tran-
scriptomic data. For example, GENIE3 [16] is based on
variable selection with ensembles of regression trees and
was a star performer in the DREAM4 challenge. Among
other regression-based methods, least absolute shrinkage and
selection operator (LASSO) is most commonly used for GRN
inference [17], [18]. However, none of these approaches per-
form optimally across all the genomes. Marbach et al. (2012)
have demonstrated that, of the all 35 methods evaluated,
the level of precision sharply drops from in silico and E.coli
datasets to that of S. cerevisiae and more complex eukaryotic
genomes (e.g., humans, mice, etc.), owing to the increased
size of their genomes and multiple levels of control in gene
regulation. As a consequence, integration approaches are
being developed to construct a more robust and reliable GRN
by including heterogeneous datasets from multiple sources
along with gene expression data. Data integration techniques
that employ network integration approaches [19], proba-
bilistic graphical models [20]–[22], regression models [23],
Multiple kernel learning [24], [25] and Non-negative matrix
factorization [26], [27] are being used to combine heteroge-
neous datasets in a biologically relevant manner to infer reg-
ulatory networks. For a detailed account of all these methods
refer [28].

Here we apply a semi-supervised learning framework
using Non-negative matrix tri-factorization (NMTF) based
matrix completion approach (iMTF-GRN) for network infer-
ence. Proposed primarily for dimensionality reduction prob-
lems, NMTF approximates a high dimensional input data
matrix from a product of three low-rank non-negative repre-
sentations. Besides approximating the input matrix, the low
dimensional matrices provide the basis and indications for

clustering and co-clustering of the objects related via input
relational matrix. This clustering property has been estab-
lished by its proximity to k-means clustering as explained
in [29], [30]. Also because of the flexibility that NMTF offers
for simultaneous decomposition of multirelation matrices,
it becomes easy to integrate data from other sources of bio-
logical relevance, making NMTF a favorable tool to fuse
multiple biological data. A significant number of research
efforts on data integration using NMTF have been reported
in the literature [26], [27]. NMTF has been applied to a range
of biological inference tasks, such as Drug-target association
prediction [31], and gene-function prediction [32].

We approach the GRN inference problem from the matrix
completion perspective. We use the NMTF data integra-
tion framework for fusing heterogeneous datasets and sub-
sequently approximate a partially observed gene regulatory
network. Initially, the method is applied to a benchmark
dataset of E.coli from Faith et al. (2007). To improve the
reliability of the inferred GRN, we integrated semantic sim-
ilarity from GO annotations and known PPI interactions.
For eukaryotic genomes, we apply this method to infer a
post-transcriptional regulatory network between miRNA and
target genes from multiomics datasets.

II. METHODS
The NMTF integration framework adopts a multi-relational
approach where in multiple data sources are fused together.
Given a collectionD of n data sources {d1,d2,. . . . . . ,dn}, each
data source di relates a pair of objects(obji, objj) such that the
matrix Rij ∈ Rni×mj for i 6= j represents a relation between
n objects of type ni and m objects of type mj. For example,
a matrix containing regulatory relationships between genes
and transcription factors. Also Rij and Rji are asymmetric
matrices as they relates heterogeneous objects. On the other
hand matrices that relate similar objects (i.e., obji), such as
gene interaction networks or protein interaction networks are
represented by Kernel matrices Ki ∈ Rni×ni . These matri-
ces are negative graph laplacians (L = A−D) transformed
into diffusion kernels for introducing regularization in the
model [26].

The standard NMTF formulation for obtaining a low rank
approximation W of a single relational matrix R12 as shown
in Figure 1 can be approximated by obtaining low rank factors
G1 ∈ Rn×k and S12 ∈ Rk×k and Gk×n2 such that W ≈

G1S12GT2 with rank k � n. The objective function to obtain
such a low rank representation of input matrix R12 can be
written as:

min
G≥0,S≥0

J1 =
∥∥∥R12 − G1S12GT2

∥∥∥2 (1)

Adding another relation matrix R12 to the integration
framework would then require an update to equation (1),
the updated objective function is given as under:

min
G≥0,S≥0

J2 =
∥∥∥R12 − G1S12GT2

∥∥∥2 + ∥∥∥R13 − G1S13GT3
∥∥∥2

(2)
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FIGURE 1. Data fusion, tri-factorization and matrix completion, where Rij is a matrix representing relation between objects
obji and objj , Gi , Gj and Sij are low-rank factor matrices, and R̂12 is the finally reconstructed of matrix (i.e., matrix completion).

Similarly, applying NMTF to simultaneously decompose
n relation matrices Rij into Gi ∈ Rni×ki ,Gj ∈ Rnj×kj and
Sij ∈ Rki×kj , the resultant objective function is the sum-
mation of objective functions for individual relations. The
factor matrices Gi,Gj and Sij with relatively low dimensions
(i.e., k i � ni, kj � nj) can thus be approximated by solving
the following optimization problem:

min
G≥0,S≥0

J3 =
∑
Rij∈R

∥∥∥Rij − GiSijGTj ∥∥∥2 (3)

The non-negative constraints imposed on factor matrices
G and S provides easy interpretation of their values in cluster
assignment and allows introduction of additional data sources
in the form of kernel matrices for regularization. The goal
is to make sure that an interacting pair of genes belong to
a common group. Any violation of these constraint penalize
our objective function. By adding the regularization terms,
our final objective function becomes:

min
G≥0,S≥0

J3 =
∑
Rij∈R

∥∥∥Rij − GiSijGTj ∥∥∥2 +
r∑
i=1

tr(GTi KiGi) (4)

where ||.|| denotes the frobenius norm and tr(.) is the trace
of matrix. The key objective in data fusion using NMTF is to
share the low-rank matrix factors Gi, 1 ≤ i ≤ N simultane-
ously among all relation matrices Rij during the factorization

process to ensure the contribution of fused datasets in the
model. For example, matrix G2 contributes its share during
the simultaneous decomposition ofR2j andRi2∀1 ≤ i, j ≤ N .
Therefore, we can say that the reconstruction of matrix R̂12
is influenced by all the datasets related by relation matrices
Rij, i 6= 1 and j 6= 1, whose low-rank factors include either
G1 or G2. The fusion approach adopted here is in agree-
ment with the principles of intermediate integration, where
the basic structure of data remains unchanged during model
inference. This approach has been reported to show high
predictive accuracy compared to early and late integration
approaches [33].

The objective function minimization depends on the
lowrank matrices derived using multiplicative update rules.
The algorithm starts by initializing matrix factors G, and S
using a Random vcol initialization strategy. The factors Gi
and Sij are then iteratively updated till the convergence criteria
is not met. The convergence criteria in our case is ||Rij −
GiSij GTj ||2 <∈. The term ∈ is a user definedparameter set
to 10−5. The details of derivation and p roof of convergence of
multiplicative update rules adopted in this study are covered
in [27].

A. PARAMETER ESTIMATION
Because the approach is based on matrix factorization,
the parameters that need to be estimated are factorization
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FIGURE 2. Overview of iMTF-GRN method. iMTF-GRN comprises of three important stages: (a) Data integration, where relevant datasets
that control gene regulation are fused together. (b) tri-factorization of the fused data and parameter estimation for stable factorization,
and (c) reconstruction of regulation matrix from learned latent factors and subsequent network inference.

ranks k1,k2...kr . The rank parameters are initialized with set
of values before factorization is performed. Parameters that
maximize the quality of the model are finally chosen for per-
forming factorization. Using these rank parameters, we eval-
uate the model by calculating explained variance between
input relation R12 and the estimated relation R̂12 as:

R2
(
Rij
)
= 1− RSS(Rij)/

∑[
Rij
]2 (5)

where,

RSS
(
Rij
)
=

∑[
Rij − R̂ij

]2
(6)

We perform the cross-validation procedure to assess the
quality metrics and track changes for different factoriza-
tion ranks. Rank parameters k1, k2,...,kr are chosen when
explained variance R2 (Rij) is very high.

B. PREDICTION OF INTERACTING PAIRS
In order to identify new interacting pairs between genes and
their regulators, we compute the mean association scores of
all the known regulators of the given gene. Candidate pairs
(g, r∗) whose estimated association score from R̂12 is above
the mean association for all known regulators of the given
gene g are the new predicted pairs:

R̂12
(
g, r∗

)
>

1
|S(g)|

∑
r∈S(g)

R̂12 (g, r) (7)

where S (g) is the set of known regulators of g. The above
equation uses a row centric rule to identify transcription
factors which might regulate the given gene. In case our input

does not contain any known regulation for the given gene,
we can identify new gene-regulator pairs by applying column
centric rules. An overview of the proposed model from data
integration to network inference is depicted in Figure 2.

C. DATASETS
1) E. COLI DATA
We downloaded a compendium of gene expression profiles
compiled by Fait et al. (2007) containing 445 conditions for
4345 genes publicly available at Many Microbe Microar-
rays Database (M3D) website (http://m3d.mssm.edu/). These
expression profiles have been collected under different con-
ditions including heat shock, pH changes, antibiotics, genetic
perturbations and varying oxygen concentrations. Besides,
the expression data, the e.coli benchmark dataset contains
regulatory relationships between 1211 genes and 154 TFs,
validated from RegulonDB [34]. For regularization, pro-
teinprotein interaction data of E.coli was downloaded from
BioGRID (version 3.4) [35] and semantic similarity of GO
MF annotations for 4345 genes was calculated using the
GOSemSim [36] package in R.

2) TCGA GLIOBLASTOMA DATA
For eukaryotic GRN inference, we downloaded multi-
omics data for glioblastoma multiforme (GBM) from
(https:/gdac.broadinstitute.org/), a public data sharing portal
from the Broad Institute which hosts The Cancer Genome
Atlas (TCGA) data [37]. Datasets such as mRNA expression,
miRNA expression, DNAmethylation that influence the tran-
scriptional and post-transcriptional regulation were selected
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for data fusion. A partially observed miRNA-gene rela-
tional network is constructed by selecting genes from Micro-
cosm [38] and mirTarBase [39] databases. For regularization,
we downloaded a gene-gene interaction network from
BioGRID (version 3.4).

D. GRN INFERENCE IN E.COLI
For GRN inference in e.coli the relationship between n1
Genes and n2 TFs is represented using a relational matrix
Rn1×n212 . The elements of this high dimensional matrix are
binary values R12 [g] [t] = 1, if a transcription factor t
regulates a gene g, and 0 otherwise. R12 is a sparse matrix as it
contains only partially observed gene-TF interactions down-
loaded from RegulonDB. The other data sources considered
for the inference task are gene expression profiles connecting
genes and experimental conditions R13 the elements of R13
are real-valued, representing the expression of genes across
different experimental conditions. Besides these two datasets,
biological knowledge in the form of protein-protein interac-
tions and gene ontology (GO) semantic similarity between
genes is also incorporated to serve as constraint matrices for
regularization. The target matrix R̂12, reconstructed from the
low-rank factor matrices R̂12 ≈ G1S12GT2 is more complete
than the original R12. This relational matrix can now be used
to extract new links between unobserved gene-TF pairs based
on the interaction scores generated by the matrix completion
approach.

E. INFERENCE OF MIRNA-TARGET GENE NETWORK
To infer a post-transcriptional gene regulatory network
between miRNAs and their targets, we construct relational
matrices from multi-omics datasets, such as miRNA expres-
sions, mRNA expression, and methylation expression data.
In order to predict new miRNA-gene relations, we build
R12, a partially observed binary matrix of regulatory rela-
tions between miRNA and their target genes from Micro-
cosm and mirTarBase databases. A regulatory relationship
within R12 [m] [g] is set to 1 if miRNA regulates gene g and
0 otherwise. Other Omics data sources that serve as support
data and provide complementary information for gene regula-
tion are integrated into the fusion frameworks as R13 (miRNA
expression in tissues samples), R23, (genes expression and
tissue samples), R24 (genes and methylation expression data).
Besides, we also supply a similarity matrix in the form of a
gene-gene interaction diffusion kernel as K2 relation to serve
as a constraint matrix for regularization.

III. RESULTS
We illustrate the application of iMTF-GRN to infer
TFtarget/miRNA-target gene relations from a benchmark
E. coli dataset and multi-omics TCGA glioblastoma data.
The proposed method is implemented using scikit-fusion
package [27] and the implementation is available at github
(https://github.com/waninisar/iMTF-GRN). We evaluate the
effectiveness of our inference approach first by compar-
ing it to methods using standalone gene expression data

for the inference tasks as well as methods that integrate
multiple omics datasets for improved inference of TF-gene
target relations. We also fuse multiple omics data for infer-
ence of a post-transcriptional regulatory network between
miRNAs and their targets from a TCGA glioblastoma
dataset.

A. E. COLI REGULATORY NETWORK
After applying iMTF-GRN to benchmark e.coli data, we per-
formed a 5-fold cross-validation to make sure that model
is trained on all the known regulations. At each crossval-
idation step, important performance metrics such as preci-
sion, recall, and F1 score are recorded and then averaged
for the whole cross-validation procedure. We then compared
our network inference method with inference methods that
predict TF-target gene regulations, such as CLR [5] and
SIRENE [10] because both of thesemethods have been devel-
oped using the same benchmark data.

We also compared our method with other state-of-theart
data integration and inference methods, such as multiple ker-
nel learning (MKL) and integrated random forest (iRafNet)
on the benchmark dataset. For MKL we generated an RBF
kernel from R13 (gene expression for 445 experimental con-
ditions), a linear kernel from R14 (Go semantic similarity)
and a diffusion kernel from proteinprotein interactions. The
parameters for these kernels are estimated by performing an
internal 5-fold cross-validation. The prediction task is defined
as a binary classification learning whereby the model outputs
the probability scores of TF-target gene associations. Scores
are selected based on different thresholds at various precision
levels by calculating the precision and recall score between
test set labels and classifier outputs.

For iRafNet we consider the gene expression compendium
as the main dataset and the protein-protein interactions (PPI)
between E.coli genes as the supporting data. Sampling
weights are then derived from PPI data by building a diffusion
kernel as K = eH where H is a graph laplacian for PPI data.
Sampling weights fromK are derived asWPPI

i,j=K(i, j) i, e.
the element K(i, j). The sampling weights thus obtained are
then integrated with main dataset (i.e., gene expression data).
Putative regulatory links are then predicted using importance
scores generated using the iRafNet R package [40]. After
the execution of iMTF-GRN inferencing procedure, it was
observed that the known regulations at 60% and 80% pre-
cision levels that are correctly predicted by iMTF-GRN is
higher than those predicted by other comparable methods
(Table 1). The recall and F1 scores obtained for all the meth-
ods at different precision levels is summarized in Table 1. The
improvement with iMTF-GRN can be attributed to two fac-
tors, first, the additional biological knowledge in the form of
proteinprotein interactions and GO similarity scores between
E.coli genes to aid in the inference process and the second
factor is the ability of the Non-negative matrix factorization
basedmethods to detect context-dependent hidden patterns of
gene expression and little sensitivity to initial conditions and
a priori selection of genes.
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TABLE 1. Recall rate of TF-gene target prediction algorithms at 60% and 80% precision levels. The values for CLR and SIRENE were directly taken
from [10].

FIGURE 3. ROC and precision recall curves for iMTF-GRN, MKL and iRafNet.

The robustness with which the matrix factorization cap-
tures the biological correlations in gene expression data by
describing tens of thousands of genes using a far less number
of metagenes provides for a general method for pattern and
class discovery from biological datasets [41]. The ROC and
precision-recall curves for iRafNet, MKL and iMTF-GRN
are plotted in Figure 3.

To evaluate the network inference potential of the
iMTTFGRN on E. Coli benchmark, we perform the predic-
tion procedure on the whole E. coli network at 60% precision
level. For each of the 154 TFs inR12, we select all the gene-TF
pairs with a score above an estimated threshold calibrated
from the cross-validation procedures. We complete the par-
tially observed R12 by constructing R̂12 from the latent factors
G1, S12 andGT2 and search for the gene-TF pairs with an inter-
action score above an estimated threshold (>0.50). In addi-
tion to the 3293 known regulations in our data, we predict
1266 new regulations (attached as supplement), out of which
subset interactions are listed in Table 2. These interactions
were not part of our input data, and their validity has been
ascertained by searching for relevant literature and databases.

A graphical depiction of a subnetwork comprising more
than 200 interactions both known and predicted is captured

in Figure 4. The reason for choosing a small subset from
the entire network stems from the fact that, almost all the
predicted regulations from this set were thoroughly inves-
tigated from literature and many E.coli databases (e.g.,
RegulonDB, TEC, etc.). Also, the F1 scores obtained for
the different combination of data using iMTF-GRN across
multiple cross-validation runs is plotted in Figure 5, the inclu-
sion of additional data consistently improves the F1 scores,
thereby improving the model performance.

B. MIRNA-GENE POST-TRANSCRIPTIONAL
REGULATORY NETWORK
To demonstrate the network inference potential of iMTFGRN
on eukaryotic genomes, we apply the process to a TCGA
multi-omics dataset of glioblastoma in order to predict unob-
served miRNA-gene interactions. We reconstruct our target
approximation R̂12 from its low rank factors G1, S12 and GT2 .
We identify newmiRNA-gene target pairs R̂12[r, g∗] by using
equation (7).

A list of 20 validated miRNA-gene targets along with
their association scores is listed in Table. 3. For valida-
tion of predictions, we searched the Human miRNA Dis-
ease Database (HMDD) [42] for miRNAs that are associated
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TABLE 2. List of TFs and their target genes predicted by iMTF-GRN not present in R12.

FIGURE 4. A snapshot of predicted network between TFs (yellow) and their target genes. Green lines indicate known regulations and blue dashed lines
show predicted interactions.

with GBM and compared these with the newly identi-
fied miRNA-gene interaction. Additionally we performed a
5-fold cross validation procedure and generated ROC and
precision-recall scores averaged across all the cross valida-
tion runs. The proportion of known miRNAgene pairs from
the input relation R12 correctly predicted by the algorithm
are true positives, on the other hand false positives are the

predicted miRNA-gene pairs not present in the input rela-
tion R12. We generate AUROC (average Reciever operating
characteristics) and AUPR (average Precision-Recall) of the
cross validation runs to evaluate the inference process for
each combination of the omics datasets being integrated as
shown in Table 4. We assess our prediction accuracy for
miRNA-gene pairs against HMDD and mir2Disease [43]
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TABLE 3. List of predicted top scoring mirNA-gene interactions and their validation from HMDD, mir2Disease(M2D), mirTarBase databases and PubMed.

TABLE 4. AUROC and AUPR for different combinations of omics data. MGI - miRNA-gene interaction, GE – gene expression, ME- miRNA expression, DNA
methylation expression.

databases and also make searches of the experimental lit-
erature on the PubMed central. A list of 108 top scor-
ing miRNA-gene pairs (score >= 0.50) validated from
multiple databases that store miRNA-target gene informa-
tion is provided as supplementary data. A subset of these
validated interactions is shown in Table 3 along with the
PMID of the reference literature. The biological relevance
of these miRNA-gene interaction pairs to Glioblastoma
(GBM) is ascertained by analyzing the pertinent scientific
literature.

For example, miR-206,miR-142-5p, and miR-520b pre-
dicted to interact with CCND1 (Cyclin D1) have been
reported to activelyfunctionastumorsuppressors by targeting
Cyclin-dependent kinases(CDKs) via CyclinD1.

CDKs are an essential family of multifunctional enzymes
that can modify various proteins substrates involved in
cell cycle progression. CCND1 forms a complex with
CDK4/CDK6, a regulatory subunit required for cell cycle

G1/S1 transition, any overexpression of this gene alters cell
cycle progress and may contribute to tumorigenesis. Using
RT-PCR and western blot analysis, authors in [44] report
overexpression of CCND1 in U251, U87 cell lines and GBM
tissues. They also show that CCND1 is negatively corre-
lated with miR-520b expression. To demonstrate the role
of miR-520b, they transfected U87, U251 cell line with
miR-520b mimics, overexpression of miR-520b lead to sig-
nificant decrease in cell proliferation and colony formation
in these cells, suggesting miR-520b induced growth inhi-
bition and apoptosis promotion in GBM cells. Since both
miR-206 and miR-142-5p also interact with CCND1 as
shown in Table 3, a quick survey of the relevant literature
confirms the presence of binding sites in the 3’ UTR of
CCND1 for miR-206 as reported in [45]. Also, CCND1-miR-
142-5p interaction has been verified from TargetScan [46];
therefore, we can assume a tumor suppressor role similar to
miR-520b and miR-206 when this miRNA is upregulated.
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FIGURE 5. F1 scores averaged across different cross validation runs for
different combinations of data. TFGI- TF-gene interaction, GE - gene
expression, PPI- protein-protein interaction, GO - Gene Ontology
semantic similarity, TFTFI- TF-TF interaction.

Another predicted interaction not present in either
HMDD or mir2Disease is the miR-299-5p, SOX4 interacting
pair. After searching the relevant literature, we could not
find a direct study explaining the regulatory role of this pair.
However, it has been reported in [47] that SOX4 inhibits
the cell growth in GBM and induces G0/G1 cell cycle
arrest through the p53-p21 signaling pathway. In this study,
SOX4 overexpression has been reported to inhibit the growth
in LN229, A172G, and U87 GBM cell lines. On the other
hand, miR-299-5p has been reported to be overexpressed in
various GBM cell lines (e.g., A172, T98G) and its knock-
down significantly inhibiting cell proliferation and promot-
ing apoptosis. Since, SOX4 acts as a tumor suppressor,
overexpression of miR-299-5p in GBM cells will silence
SOX4 expression, disrupting its tumor-suppressing ability,
thereby promoting tumorigenesis by acting as an oncomiR.
On the other hand, miR-504 and miR-128-1 are downreg-
ulated in GBM cell lines as reported in [48] and [49] and
also have similar expression profiles as explained in [50],
up-regulation of these microRNAs in human GBM cells sug-
gests a tumor suppressor role for both of them. Similarly, for
the miR-142-3p, KLF4 (Krüppel-Like Factor 4) interacting
pair, an upregulated miR-142-3p will suppress the expres-
sion of KLF4 whose overexpression in GBM cells has been
reported in [51].

IV. CONCLUSION AND DISCUSSIONS
iMTF-GRN is a matrix completion based approach to infer
gene regulatory networks from a combination of genomic and
other biological datasets. When a network inferencing task is
formulated as a classification problem, the choice of selecting
negative examples for training becomes a non-trivial task.
Matrix completion offers a more straightforward approach
to complete a partially observed gene-TF interaction matrix
by reconstructing the target matrix from its latent factors,
thereby obtaining essential threshold scores for suggesting
new regulatory relationships.

This paper demonstrates the application of iMTF-GRN on
both prokaryotic and eukaryotic genomes. For prokaryotes,
we inferred a transcriptional regulatory network from a

compendium of gene expression data of E.coli, a benchmark
data used by Martin et al. [7] and Mordelet and Vert [10] for
CLR and SIRENE algorithms. We, fuse additional biological
datasets that provide complementary information for gene
regulation such as PPI, GO similarities and TF-TF interaction
and Gene-TF interaction data and evaluate the performance
of the method with CLR, SIRENE, MKL and iRafNet using
precision, recall, and F1 score metrics. We validated a set
of 50 TF-gene interactions fromTranscription factor profiling
of E.coli (TEC) [52] and latest RegulonDB databases that
were predicted by iMTF-GRNmethod at 60% precision level.

To evaluate the effectiveness of the method on the eukary-
otic genome, we fused multiple TCGA omics datasets of
glioblastoma downloaded from TCGA Broad Institute data
portal for miRNA-gene post-transcriptional regulatory net-
work inference [37]. We rank the miRNA-gene pairs using
interaction scores and assess the biological relevance of
the predicted interactions from HMDD and mir2Disease
databases. Besides, we also identify the miRNA-gene pairs
whose role in glioblastoma progression and suppression has
been explained through careful scanning of the relevant sci-
entific literature. Their direct role as tumor suppressors or the
promoters of tumorigenesis in glioblastoma awaits further
experimental validation.

Although iMTF-GRNF presents an efficient computational
framework for data fusion and offers much potential in
identifying and understanding essential patterns central to
mechanisms of gene regulation. However, there are certain
limitations as well. For example, iMTF-GRN needs some
prior known TF-target/miRNA-target gene relations and is
biased towards interaction pairs where the known regulations
are higher. This bias makes it unable to predict new targets
where no known regulations are present in the input data.
Despite the process of data fusion improving the performance
of the approach significantly, iMTF-GRN does not imple-
ment a weighing mechanism for the integrated datasets in
order to measure the contribution of each dataset for robust
selection of relevant data.
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