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ABSTRACT Texture is widely existed in various images and plays an important role in many area such as
medical image diagnosis, remote sensing, etc. However, the image in texture regions is tend to be deteriorated
during restoration process. In this paper, we apply the dyadic Hardy space H1

d and dyadic Bounded Mean
Oscillation (BMO) space in the texture preserving image restoration model. We propose a H1

d regularized
minimization model to extract texture from noisy data. In this model, H1

d norm is taken as regularizer to
enforce the prior that the local variance of the noise is below certain level depending on the regularization
parameter. We also analyze the mathematical properties of this model which indicate the mechanism of H1

d
regularizer to control the local variance. For the numerical solution of the model, we transform it into wavelet
domain based on the wavelet characterization of dyadic Hardy space and dyadic BMO space, and solve it
by the fixed iteration algorithm. Combing the total variation (TV) regularization method and frame based
regularization method, a two-layers regularization model is proposed for edge and texture preserving, and
then analyzed and solved in the frame of split Bregmanmethod. Finally, we present various numerical results
on images to demonstrate the potential of our methods.

INDEX TERMS Dyadic BMO space, hardy space, image restoration, mixed norm, texture.

I. INTRODUCTION
Texture is an important visual cue in interpreting images, and
has been successfully used inmany area such as image fusion,
medical image diagnosis, biometric identification, remote
sensing, etc. Natural images consist of texture, structure and
smooth regions, and this makes the task of image restoration
challenging when it aims at edge and texture preservation.
So the modeling of texture and separating texture from non-
texture parts in images play a central role in image restoration,
and have been studied by several researchers [1]–[7]. In this
paper, we consider the image restoration problem aiming at
texture preservation.

Without loss of generality, we assume that the underlying
image is grayscale and has a square domain. Let u be an
original image, K be a linear operator, n be an additive
Gaussian noise, and f be an observation which satisfies the
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relationship

f = Ku+ n (1)

It is well known that solving u from f is ill-posed inverse
problem. It is then necessary to regularize, i.e., to introduce
a prior information about the solution. A common approach
is to add a regularizer to certain data fidelity, resulting the
following reconstruction model:

min
u
8reg(u)+ λ8fid (u, f ) (2)

where 8reg(u) regularizes the solution by enforcing certain
prior constraints. 8fid (u, f ) measures the violation of the
relationship between u and f .

Traditional regularization methods include the Tikhonov
regularization [8] and the total variation (TV) regularization
[9], [10]. Tikhonov regularization takes the Sobolev semi
norm as the regularizer. Although the minimization problems
are easy to solve, Tikhonov regularization tends to make the
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restored image overly smoothed and fails to preserve sharp
edges. TV regularization, first introduced in [10] by Rudin,
Osher, and Fatemi (ROF), takes total variation measure as the
regularizer and has been shown to be suitable for preserving
sharp edges.

In TV regularization models, images are often assumed to
be in Bounded Variation (BV) space. This space is defined
as:

BV (�) = {u ∈ L1(�)| J (u) <∞} (3)

where

J (u) := sup{
∫
�

u div ξ |ξ ∈ C1
c (�,R

2), ‖ξ‖L∞(�) ≤ 1}

In [10], Rudin-Osher-Fatemi proposed the following model
to decompose a noisy image f into a component u belonging
in BV (�) and a component v in L2(�):

min
u∈BV (�)

{J (u)+ λ‖f − u‖2L2} (4)

Traditional regularization methods make the assumption
that the underlying image is smooth or piecewise constant.
It is clear that this hypothesis is not necessarily satisfied
for texture. So, there are several obvious drawbacks: sig-
nificant small details such as textures and even large-scale
fine features are often disregarded. Y. Meyer proved that TV
regularization rejects the oscillatory component of f which
is considered to be the texture component [1]. Meyer on one
side, andMumford-Gidas [11] on the other side advocated the
use of generalized functions as distributions in dual spaces
for modeling images with oscillations. Meyer suggested the
generalized function spaces G = div(L∞), E = B∞

−1,∞ and
F = div(BMO) to model the oscillating patterns of the image,
and he proposed the BV − X type models, which have the
general form:

min
u∈BV (�)

{J (u)+ λ‖f − u‖X } (5)

where ‖ · ‖X is the norm of space G, E or F . However,
in practice it is not easy to compute the G norm or F norm.
To deal with this problem, the following-up works such as
Vese-Osher’s model [2] and Osher-Solé-Vese’s model [3],
focus on the numerical computing and approximation of
Meyer’s model.

Inspired by Vese-Osher and Osher-Solé-Vese models, I.
Daubechies et al. proposed a numerically efficient schemes
by means of wavelet [12]. They replaced BV penalty term by
B11,1 term, and proposed tominimize the following functional:

FDb
= 2α‖u‖B11,1

+ γ ‖v‖H−1(�) + ‖f − u− v‖
2
L2 (6)

where ‖·‖H−1(�) is the Sobolev semi norm. Since all the norm
in functional (6) can be characterized by wavelet coefficients,
the minimization of functional (6) can be solved by means of
wavelet efficiently.

There are many other efficient approaches to solveMeyer’s
model. For example, Aujol, Albert, Blanc-Feraud and Cham-
bolle (A2BC) proposed to minimize the following functionals

to solve BV − G model [4] and BV − E model [5]:

FA2BC
= J (u)+ J∗(

v
µ
)+

1
2λ
‖f − u− v‖2L2 (7)

FBV−E
= J (u)+ B∗(

v
δ
)+

1
2λ
‖f − u− v‖2L2 (8)

where J∗ is the dual of J , B(v) = ‖v‖B11,1
is the Besov semi-

norm, and therefore B∗( v
δ
) = χ{‖v‖B∞

−1,∞
≤δ}.

Recently, low patch-rank method and sparsity regulariza-
tion method are very successful to solve image restoration
problems [6], [7], [13]–[15]. In [6], the authors proposed
a convex prior named the block nuclear norm (BNN) for
characterizing the texture components. The BNN prior is
designed based on the observation that the texture enjoys
a globally dissimilar but locally well-patterned nature. The
BNN based method gives very impressive image decompo-
sition result when the image contains locally well-patterned
textures. In [7], the authors proposed to use two appropriate
dictionaries for the representation of texture and piecewise
smooth part. Both dictionaries are chosen such that they lead
to sparse representation over one type of component (either
texture or piecewise smooth part). However, it is very hard
to choose such dictionaries for a large range of images. Fur-
thermore, most sparsity based methods start by representing
signals on a given dictionary, and process the coefficients
of expansion individually. Instead of the usual independence
assumption behind the l1 norm minimization, mixed norms
explicitly introduce coupling between coefficients [16]. Used
as regularization terms in solving image restoration inverse
problems, mixed norms can enforce some specific types of
joint sparsity and diversity. In this paper, we will show that
the discrete dyadic Hardy norm is a mixed norm encoding the
group information, and group sparse optimization with this
mixed norm can lead to better signal recovering and feature
selection.

Meyer’s model captures the oscillating components of the
image very well. However, both texture and noise are oscil-
latory pattern and many examples of natural images show
that it is difficult to distinguish between texture and noise.
Local variance measure or local power is used to distinguish
between texture and noise in several literatures [17]–[19]. Its
core assumption is that the local variance of texture compo-
nent is much higher than that of noise components in one
image. In this paper, we consider dyadic Hardy H1

d norm as
the regularizer which can enforce the residual satisfying the
local variance constraints. Assume γ be an image containing
only texture v and noise w. For instance, γ is the texture +
noise part of the image obtained by the ROF model f − u.
We propose the following model (or the equivalent form in
frequency domain) to extract clear textures form the noisy
image γ :

min
v
{F(v) = ‖v‖H1

d
+

1
2λ
‖γ − v‖2L2} (9)
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where ‖ · ‖H1
d
is the norm of dyadic Hardy space H1

d . We will

give detailed introduction about H1
d space and H1

d norm in
Section II.

In our previous work [20], we gave the wavelet characteri-
zation of dyadic Hardy norm, and applied model (9) in image
decomposition for the first time. But at that time, we did not
figure out the mechanism of dyadic Hardy space for texture
preserving image restoration. In [20], we solved the model
in wavelet domain by Nelder-Mead algorithm, which is a
simplex method for finding a local minimizer fo a function of
several variables. Nelder-Mead algorithm has several draw-
backs: it did not make use of derivative information and the
performance of the algorithm has a remarkably dependence
on the initial simplex. For these problems of [20], on the one
hand, we will give the mechanism of H1

d space for modeling
the oscillating component of the image in Section III A.
On the other hand, we will give an efficient algorithm for
solving model (9) based on fixed point iteration method
in Section III B.
Combining the advantage of TV regularization, sparse

regularization and H1
d regularization, we propose a two-

layers image restoration model aiming at edge and tex-
ture preservation in Section IV. We give the analysis and
solution of this model in the frame of Split Bregmen
method.

In summary, the main contributions of this work are listed
as follows:

(1) We use dyadic Hardy spaceH1
d and dyadic BMO space

BMOd for modeling the oscillating component of the image,
and give an efficient algorithm based on fixed point iteration
method for solving the H1

d norm minimization problem. This
enriches the theory of Meyer’s oscillating functional space
modeling.

(2 ) Through rigorous mathematical analysis, we establish
fundamental properties of the model (9) and give the regular-
ization mechanism of H1

d space and BMOd space for texture
preserving image restoration problem.

(3) Combining the advantage of TV regularization, group
sparse regularization and H1

d regularization, we propose a
two- layers TV −H1

d regularization model for image restora-
tion, and give an efficient algorithm based on split Bregmen
method to solve the model.

II. WAVELET CHARACTERIZATION OF DYADIC
HARDY SPACE AND DYADIC BMO SPACE
We will further assume that all images are square images.
Note that this assumption is not essential, and all the the-
orems and properties about the proposed models can be
easily extended to general cases. About the proposed algo-
rithms for non-square images, we can use the periodi-
cally expanding operator to expand the non-square image
to larger squared one, and then apply the proposed algo-
rithm on the expanded squared image. Finally, the pro-
cessed image can be sheared to the original size using shear
operator.

A. SOME DEFINITIONS AND PROPERTIES ABOUT
HARDY SPACE AND BMO SPACE
In this section, we will give a brief introduction of the atom
Hardy space and its dual space BMO. There are many pos-
sible ways to define real Hardy spaces, the one that will be
most convenient for us uses the atom decomposition.
Definition 1: Let 1 ≤ q ≤ ∞, a measurable function

a(x) is called (1, q) atom, if there exists a ball B in Rn,
whose volume is denoted by |B|, such that the three following
properties hold: (1) supp a(x) ⊂ B; (2) ‖a‖q ≤ |B|1/q−1;
(3)

∫
B a(x)dx = 0

Definition 2: We say that a function f ∈ L1(Rn) belongs to
atom H1 if there exists a sequence aj(x) of (1, q) atoms and a

sequence λj of scalar coefficients such that
∞∑
j=0
|λj| <∞, and

f (x) =
∞∑
j=0
λjaj(x). i.e.,

H (q)
1 = {f ∈ L

1
| f =

∞∑
j=0

λjaj(x)} (10)

with the norm defined by:

‖f ‖
H (q)
1
= inf{

∞∑
j=0

|λk |} (11)

where the infimum is taken over all possible atome decom-
positon.
Let Q be the collection of dyadic cubes:

Q =
{
Qj,k = Qj,k1,k2 ,

[
k1
2j
,
k1 + 1
2j

]
×

[
k2
2j
,
k2 + 1
2j

]}
If the atom aj(x) in Def. 2 satisfies a more restrictive

condition, namely, that a(x) has support in a dyadic cube
Q ∈ Q such that ‖a‖q ≤ |Q|1/q−1, and

∫
Q a(x)dx = 0,

the corresponding atomH1 is called dyadicH1 space. Dyadic
H1 is isomorphic to the usualH1 space as a Banach space. For
simplicity, we will denote the dyadic H1 space by H1

d .
The dual space of H1

d is the dyadic Bounded Mean
Oscillating (BMO) space, which is defined as follows.
Definition 3: Dyadic BMO space BMOd consists of the

functions which are locally square integrable and satisfy the
condition:

‖f ‖BMOd = sup
Qj,k∈Q

(
1
|Qj,k |

∫
Qj,k
|f (x)− mQj,k f |

2dx

) 1
2

<+∞

where the upper bound is taken over the set of all dyadic
cubes.

From above definition, one can see that the dyadic BMO
norm is the maximum of the local standard deviation over all
dyadic cubes.

For every b(x) ∈ BMOd , it defines a linear functional l on

H1
d by lb(f ) = 〈f , b〉 ,

∞∑
j=0
λj
∫
�
b(x)aj(x)dx, where aj(x)
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are atoms,
∞∑
j=0
|λj| < ∞, and f (x) =

∞∑
j=0
λjaj(x). Conversely,

every continuous linear function onH1
d is defined in this way.

Remark 4: For f ∈ H1
d , g(x) ∈ BMOd , we have

|lg(f )| = |〈f , g〉| ≤ ‖f ‖H1
d
‖g‖BMOd (12)

Proof:Assume f =
∞∑
k=0

λkak is any atom decomposition

of f , and ak is a (1,2) atom supported on dyadic cubeQ. Then

|lg(ak )| = |
∫
Q
akgdx| = |

∫
Q
(ak − mQ(ak ))gdx|

= |

∫
Q
ak (g− mQ(g))dx|

≤ ‖ak‖2

(∫
Q
|g− mQ(g)|2dx

) 1
2

≤

(
1
|Q|

∫
Q
|g− mQ(g)|2dx

) 1
2

≤ ‖g‖BMOd

where mQ(ak ) = 1
|Q|

∫
Q ak (x)dx, mQ(g) =

1
|Q|

∫
Q g(x)dx.

So we have

|lg(f )| = |
∫
�

f (x)g(x)dx|

= |

∞∑
k=0

λk

∫
�

ak (x)g(x)dx|

≤

∞∑
k=0

|λk | · ‖g‖BMOd (13)

Take infimum for all the decompositions of f , we can get

|lg(f )| = |
∫
�

f (x)g(x)dx| ≤ ‖f ‖H1
d
‖g‖BMOd (14)

B. WAVELET CHARACTERIZATION OF H1
D

NORM AND BMOD NORM
Let φ and ψ be univariate wavelet constructed out of Vj,
an r-regular multiresolution approximation of L2(R2) with
r ≥ 1(for the exact conditions see [21]). Two dimensional
wavelets can be constructed by tensor product:

ψεQ(x1, x2) := ψ
ε
j,k (x1, x2)

= 2jψε1 (2jx1 − k1) · ψε2 (2jx2 − k2),

where j ∈ Z, k = (k1, k2) ∈ Z2, ε ∈ E := {ε1, ε2}2/{0, 0}
with εj = 0 or 1, ψ0

= φ and ψ1
= ψ .

In this paper, our analysis is based on interpreting the image
as a function f defined on the unit square I = [0, 1)2. Each
cube Q ∈ Q is of the form Q = 2−k (j + I ). So the dyadic
cube can be identified with (j, k).
One can easily construct periodic wavelets on L2(I ) that

can be used to decompose periodic functions f on L2(I ). For
the wavelet ψεj,k we discussed above, we define its periodic

version which is still denoted here by

ψεQ(x1, x2) := ψ̃
ε
j,k =

∑
l∈Z2

ψεj,k (x − l) (15)

One can show that these periodic wavelets form an orthog-
onal basis of L2(I ). Because the translates of the scaling
function form a partition of unity, we can get φ̃ = 1. For
the wavelet decomposition of functions in L2(I ), we don’t
need all translates of these periodic wavelets. On the level j,
we only need the translations k ∈ 0j = {0, 1, · · · , 2j − 1}2.
The wavelet expansion for a function f ∈ L2(I ) is

f = 〈f , 1〉1+
∞∑
j=0

∑
k∈0j

∑
ε∈E
〈f , ψ̃εj,k 〉ψ̃

ε
j,k (16)

and

‖f ‖2L2 = |〈f , 1〉|
2
+

∞∑
j=0

∑
k∈0j

∑
ε∈E
|〈f , ψ̃εj,k 〉|

2 (17)

So it follows that the constant function 1 together with the
collection {ψ̃εj,k , j ∈ Z, k ∈ 0j} constitute an orthonormal
basis of L2(I ). This basis is also an unconditional basis of
Hardy space H1(I ). Let Vj be an r-regular multiresolution
approximation of L2(I ) with r ≥ 1, then the sequence
{1, ψ̃εj,k , j ∈ N, k ∈ 0j}, of periodic wavelets constructed out
of the Vj, is an unconditional basis of Hardy space H1(I ).

In [21], the author gave five definitions of H1(Rn) includ-
ing the atomic definition of Definition 2.1 and proved that
these five definitions are equivalent. In this paper, we con-
sider the following dyadic H1 norm:

‖f ‖H1
d
=

∥∥∥∥∥∥∥
∑
ε∈E

∑
Q∈Q
|Q|−1|〈f , ψεQ〉|

2χQ(x)

 1
2
∥∥∥∥∥∥∥
L1

(18)

We define a map T , which takes distribution f to the
sequence of coefficients {〈f , ψεQ〉}Q,ε∈E . Let h

1
d be the col-

lection of all sequences α = {αεQ}Q,ε∈E so that

‖α‖h1d
=

∥∥∥∥∥∥∥
∑
ε∈E

∑
Q∈Q
|Q|−1|αεQ|

2χQ(x)

 1
2
∥∥∥∥∥∥∥
L1

(19)

It is a basic result shown in [22] that f =
∑
ε

∑
Q
〈f , ψεQ〉ψ

ε
Q

and f ∈ H1
d if and only if Tf = {〈f , ψεQ〉}Q,ε ∈ h

1
d .

Let f ∈ L2(I )
⋂
H1(I ). Choose N big enough such that

f ∈ VN+1. In [20], [23], we give the discrete wavelet repre-
sentation of dyadic H1 norm and dyadic BMO norm, which
can be described as the following.

‖f ‖H1
d
= 2−2N

∑
k∈0N

∑
ε∈E

N∑
j=0

|f εj,3N−j(k)|
2
· 22j

 1
2

(20)

‖f ‖BMOd = sup
j,k

22j
∑
ε∈E

∑
j′≥j

∑
k ′∈3j−j′ (k)

|f εj′,k ′ |
2

 1
2

(21)
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FIGURE 1. Tree-structured wavelet coefficients.

where f εj,3N−j(k) = 〈f , ψ̃
ε
j,3N−j(k)〉, f

ε
j′,k ′ = 〈f , ψ̃

ε
j′,k ′〉, and the

supremum in Eq. (14) runs over j ∈ Z, k = (k1, k2) ∈ 0j.
3j−j′ (k) is defined as following

3j−j′ (k) =


l{k ′ : b

k ′

2j′−j
c = k}, j− j′ ≤ 0

b
k

2j−j′
c, j− j′ ≥ 0

(22)

We use the following notation to rearrange the wavelet
coefficients in (20). Let the vector α ∈ l2(R22N ) be such
that α = (α1, α2, · · · , αk , · · · ) and for all k , αk =
{2jf εj,3N−j(k)}j=0,··· ,N .ε∈E . Then the H1

d norm can be rewritten
as:

‖f ‖H1
d
= ‖α‖h1d

=

∑
k∈0N

‖αk‖2 = ‖α‖l2,1 (23)

Note that the wavelet coefficients in group αk have parent-
child relationship with a tree structure[see Fig. 1]. A pair of
coefficients at a certain location and adjacent scales are typi-
cally both large or small in amplitude. So this group encoding
introduces some dependencies between coefficients. It is well
known that texture usually has periodic pattern and the corre-
sponding wavelet coefficients are muchmore strongly depen-
dent than that of noise component. So we want to construct
the group sparsity model using this tree-structure existed in
wavelet domain. Based on the wavelet characterization ofH1

d
norm, solvingmodel (9) is equivalent to solving the following
model in wavelet domain:

min
α
{‖α‖h1d

+
1
2λ
‖β − α‖22} (24)

where α = Tv, β = Tγ , T is the wavelet transform. We will
give the solution of above model in Section B.

III. H1
D MINIMIZATION PROBLEM

A. SOME MATHEMATICAL PROPERTIES OF MODEL (9)
Proposition 5: Problem (9) admits a unique

solution v∗ ∈ H1
d .

Proof: The existence of a solution for problem (9) is
standard. It is a straightforward consequence of the fact that

the functional in (9) is strictly convex and hence coercive, see
e.g. [ [24], Proposition 11.16].

Assume that problem (9) has two minimizer v1 and v2.
we denote by F(v1) = F(v2) = infu∈H1

d
F(u) = M .

If t ∈ (0, 1), then we get:

F(tv1 + (1− t)v2) =
1
2λ
‖t(γ − v1)+ (1− t)(γ − v2)‖2L2

+‖tv1 + (1− t)v2‖H1
d

(25)

But by convexity, we have

‖tv1 + (1− t)v2‖H1
d
≤ t‖v1‖H1

d
+ (1− t)‖v2‖H1

d
(26)

and

‖t(γ − v1)+ (1− t)(γ − v2)‖2L2

≤ t‖γ − v1‖2L2 + (1− t)‖γ − v2‖2L2 (27)

By substituting (26)-(27) into (25), we deduce that

F(tv1 + (1− t)v2) ≤ tM + (1− t)M = M (28)

and (28) is an equality if and only if (26)-(27) are equalities.
But on the other hand, we have F(tv1 + (1 − t)v2) ≥ M .
Therefore, (28) must be an equality, as well as (26)-(27).

The functional in (27) is strictly convex. Therefore, (27) is
an equality if and only if γ − v1 = γ − v2, i.e., v1 = v2. Then
we get the uniqueness. �
Proposition 6: Let v∗ be a solution of model (9). Then

v∗ = 0 if and only if ‖γ ‖BMOd ≤ λ. Thus, if ‖γ ‖BMOd > λ,
then v∗ 6= 0, and ‖γ−v∗‖BMOd = λ, 〈v

∗, γ−v∗〉 = λ‖v∗‖Hd
1
.

Proof: v∗ = 0 being the minimizer of (9) if and only if
for any v ∈ Hd

1

‖v‖Hd
1
+

1
2λ
‖v− γ ‖2L2 ≥

1
2λ
‖γ ‖2L2 (29)

Assume that ‖γ ‖BMOd ≤ λ. By Remark 2.1, we can get

|〈v, γ 〉| ≤ ‖v‖H1
d
‖γ ‖BMOd ≤ λ‖v‖H1

d
(30)

So for any v ∈ Hd
1 ,

‖v‖Hd
1
+

1
2λ
‖v− γ ‖2L2

= ‖v‖Hd
1
+

1
2λ

(‖γ ‖2L2 − 2〈v, γ 〉 + ‖v‖2L2 )

≥
1
2λ

(‖γ ‖2L2 + ‖v‖
2
L2 )

≥
1
2λ
‖γ ‖2L2 (31)

which implies that v∗ = 0 is the minimizer.
On the other hand, if v∗ = 0 is the minimizer, we expand

the second term of the left side of (29) and have

‖v‖H1
d
+

1
2λ
‖v‖2L2 ≥

1
λ
〈v, γ 〉 (32)

By substituting in (32) v with εv, and take ε→ 0+, we have

‖v‖H1
d
≥

1
λ
〈v, γ 〉, i.e.,

〈v, γ 〉
‖v‖H1

d

≤ λ
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which implies

‖γ ‖BMOd ≤ λ (33)

From the first assertion, we can deduce directly if
‖γ ‖BMOd > λ, then v∗ 6= 0.

Since v∗ is the solution of (9), for any h ∈ H1
d , and ε ∈ R,

we have

‖v∗ + εh‖H1
d
+

1
2λ
‖γ − v∗ − εh‖2L2

≥ ‖v∗‖H1
d
+

1
2λ
‖γ − v∗‖2L2 (34)

By the triangle inequality, |ε|‖h‖H1
d
+

1
2λ‖γ − v

∗
− εh‖2

L2
≥

1
2λ‖γ − v

∗
‖
2
L2
.

Expanding the second term of above inequality, we obtain

|ε|‖h‖H1
d
+

1
2λ
|ε|2‖h‖2L2 ≥

ε

λ
〈h, γ − v∗〉 (35)

Dividing both side of the last equation by ε > 0, and
taking ε → 0+, we have ‖h‖H1

d
≥

1
λ
〈h, γ − v∗〉, i.e.,

‖γ − v∗‖BMOd ≤ λ
Taking h = v∗ in (34). Then (34) implies

λ

ε
〈v∗, γ − v∗〉 −

1
2λ
ε2‖v∗‖2L2 ≤ (|1+ ε| − 1)‖v∗‖H1

d
(36)

If ε > 0, dividing both side of (36) by ε and then take
ε→ 0+, we obtain 1

λ
〈v∗, γ − v∗〉 ≤ ‖v∗‖H1

d
.

If ε < 0, similarly, we obtain 1
λ
〈v∗, γ − v∗〉 ≥ ‖v∗‖H1

d
.

Altogether it gives

〈v∗, γ − v∗〉 = λ‖v∗‖H1
d

(37)

By (33), ‖γ − v∗‖BMOd = sup
v∈H1

d

〈v,γ−v∗〉
‖v‖

H1
d

≤ λ. This implies

‖γ − v∗‖BMOd = λ. Otherwise, equality could not reach
in (37). �
From Proposition 6, we can see that the local variance of

the residual γ − v can be controlled by parameter λ. Thus,
by choosing suitable parameter λ, model (9) can not only
remove noise, but also can ensure that there are not too much
high oscillatory texture in the residual.

B. SOLVING MODEL (9) IN WAVELET DOMAIN
By (17) and (20), model (9) can be transformed into wavelet
domain. The functional in (9) is represented by

F({vεj,k}0≤j≤N ,k∈0N )

= 2−2N
2N−1∑
k1,k2=0

∑
ε∈E

N∑
j=0

|vεj,3N−j(k1),3N−j(k2)
|
2
· 22j

 1
2

+
1
2λ

N∑
j=0

2N−1∑
k1,k2=0

∑
ε∈E
|vεj,k1,k2 − γ

ε
j,k1,k2 |

2 (38)

For every 0 ≤ j ≤ N ,k = (k1, k2) ∈ 0j, ε ∈ E , we have

∂F
∂vεj,k
=

1
λ
(vεj,k − γ

ε
j,k )+

∑
K ′∈3j−N (k)

2−2(N−j)vεj,k√
N∑
l=0

∑
ε∈E
|vεl,3N−l (K ′)|

222l

Finding the minimizer of model (38) is reduced to solving
∂F
∂vεj,k
= 0, i.e.

vεj,k = γ
ε
j,k −

∑
K ′∈3j−N (k)

2−2(N−j)λvεj,k√
N∑
l=0

∑
ε∈E
|vεl,3N−l (K ′)|

222l

(39)

Particularly, when j = N , for every K ∈ 0N , we have

vεN ,K = γ
ε
N ,K − λv

ε
N ,K

1√
N∑
l=0

∑
ε∈E
|vεl,3N−l (K ′)|

222l

(40)

By (40), we know that vεN ,K = 0 if and only if γ εN ,K = 0.
So if γ εN ,K 6= 0, (40) is equivalent to

⇔
1√

N∑
l=0

∑
ε∈E
|vεl,3N−l (K ′)|

222l

=
1
λ
(
γ εN ,K

vεN ,K
− 1) (41)

Taking sum on both side of equation (41) for all
K ′ ∈ 3j−N (k), we have∑

K ′

1√
N∑
l=0

∑
ε∈E
|vεl,3N−l (K ′)|

222l

=

∑
K ′

1
λ
(
γ εN ,K

vεN ,K
− 1) (42)

Combining (42) with (39), we can get

vεj,k = γ
ε
j,k − 2−2(N−j)λvεj,k

∑
K ′∈3j−N (k)

1
λ
(
γ εN ,K

vεN ,K
− 1) (43)

As ]3j−N (k) = 22(N−j), equation (43) can be further simpli-
fied as follows:

vεj,k =
22(N−j)γ εj,k∑

K ′∈3j−N (k)

γ ε
N ,K ′

vε
N ,K ′

(44)

That is, wavelet coefficients vεj,k at all scales can be repre-
sented by the wavelet coefficients vεN ,K at the Nth level.
By (44), we can get that for all 0 ≤ l ≤ N , K ∈ 0N ,

vεl,3N−l (K ) =
2N−lγ εl,3N−l (K )∑

K ′∈4

γ ε
N ,K ′

vε
N ,K ′

(45)

where

4 = 3l−N (3N−l(K )) = {K ′ : 3N−l(K ′) = 3N−l(K )}
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Combining (45) with (41), we have

1√√√√√ N∑
l=0

∑
ε∈E

24N−2l |γ ε
l,3N−l (K )

|2

(
∑

K ′∈4

γ ε
N ,K ′
vε
N ,K ′

)2

=
1
λ
(
γ εN ,K

vεN ,K
− 1) (46)

Denote xεK =
γ εN ,K
vεN ,K

, then equation (46) can be simplified as
follows:

1√√√√ N∑
l=0

∑
ε∈E

24N−2l |γ ε
l,3N−l (K )

|2

(
∑

K ′∈4
xε
K ′
)2

=
1
λ
(xεK − 1) ∀K ∈ 0N (47)

(47) is a system of nonlinear equations, which can be solved
by fixed point iterationmethod.We use the following iterative
scheme:

(xεK )
n
= 1+

λ√√√√ N∑
l=0

∑
ε∈E

24N−2l |γ ε
l,3N−l (K )

|2

(
∑

K ′∈4
(xε
K ′
)n−1)2

∀K ∈ 0N (48)

where n = 1, 2, · · · , (xεK )
0 is the iterative initial value.

Through above iterative scheme, we can get the solution
of nonlinear equations (47) and further obtain the Nth level
wavelet coefficients vεN ,K . Substituting it into equation (44),
we can get all the wavelet coefficients, which is denoted by

vεj,k =
γ εj,k

(]3j−N (k))−1
∑

K ′∈3j−N (k)
xεK ′

(49)

where j = 0, · · · ,N , k ∈ 0j, ε ∈ E . Through wavelet
reconstruction, we can get the solution of the model (9). We
define the operatorWλ by

Wλ(γ εj,k ) =
γ εj,k

(]3j−N (k))−1
∑

K ′∈3j−N (k)
xεK ′

(50)

Then the solution of model (9) is given by

v =
∑
j,k,ε

Wλ(γ εj,k )ψ̃
ε
j,k (51)

As a summary for solving model (9) in wavelet domain,
we give the following algorithm in Table 1:

C. SOLVING THE MODEL BY DUAL METHOD
Theorem 7: The minimizer of the functional F in

model (9) is given by

v∗ = γ − PλE (γ ) = (I − PλE )(γ ) (52)

where I is the identity operator, PE is the projection operator
onto the convex set

E = {w ∈ BMOd : 〈v,w〉 ≤ ‖v‖H1
d
, ∀v ∈ H1

d }

The set E is characterized in the following Lemma:

Lemma 8 (Characterization of the Set E): E = {w ∈
BMOd : ‖w‖BMOd ≤ 1}.

Proof: Denote C1 = {w ∈ BMOd : 〈v,w〉 ≤
‖v‖H1

d
, ∀v ∈ H1

d }, C2 = {w ∈ BMOd : ‖w‖BMOd ≤ 1}.
We now prove C1 = C2.
‘‘C1 ⊇ C2’’: Let w ∈ C2. Then ‖w‖BMOd ≤ 1.

By Remark 2.1, we have 〈v,w〉 ≤ ‖v‖H1
d
‖w‖BMOd ≤ ‖v‖H1

d
.

Therefore, C1 ⊇ C2.
‘‘C1 ⊆ C2’’: If w /∈ C2, we have ‖w‖BMOd > 1. we denote
‖w‖BMOd = m. By the definition of dyadic BMO norm,
we know that for arbitrary ε > 0, there exist a dyadic
cube Q, such that

m >
(

1
|Q|

∫
Q
(w− mQ(w))2dx

) 1
2

> m− ε (53)

We choose a := a(x) = 1
m|Q| (w − mQ(w))χQ(x). Now we

check that a(x) satisfies the three properties for (1, 2) atom in
Definition 1:
(1) supp a(x) ⊂ Q.

(2) ‖a(x)‖2 =
(∫

Q

1
m2|Q|2

(w− mQ(w))2dx
) 1

2

=
1
m
|Q|−1/2

(
1
|Q|

∫
Q
(w− mQ(w))2dx

) 1
2

< |Q|−1/2

(3)
∫
Q a(x)dx =

1
m|Q|

∫
Q(w− mQ(w))dx = 0.

So a(x) is an atom of H1
d , and ‖a(x)‖H1

d
= 1.

Then

〈a(x),w〉 = |
∫
Q
a · wdx| = |

∫
Q
(a− mQ(a))wdx|

=

∫
Q
a(w− mQ(w))dx

=
1
m

1
|Q|

∫
Q

(
w− mQ(w)

)2 dx
>

1
m
(m− ε)2 (54)

Taking ε → 0+, we can get that 〈a,w〉 ≥ m > 1 = ‖a‖H1
d
.

So w /∈ C1. This implies that C1 ⊆ C2. �
Before proving Theorem 7, we recall some facts from

convex analysis.
Definition 9: Let X be a Banach space and 8 : X → R̄

a functional. The Fenchel-Legendre transform of 8 is 8∗ :
X∗→ R̄ and is defined by

8∗(x∗) = sup
x∈X
{〈x, x∗〉X×X∗ −8(x)}

Lemma 10: Let 8 : X → R̄ be positive homogeneous of
degree one. Then the Fenchel-Legendre transform of 8 has
the form

8∗(v) =

{
l0, if v ∈ E
+∞, if v /∈ E

(55)
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TABLE 1. Algorithm of model (9).

TABLE 2. Algorithm of model (60).

and E is given by

E = {v ∈ X∗| 〈u, v〉X×X∗ ≤ 8(u),∀u ∈ X}

Now we are able to prove theorem 7.
Proof of Theorem 7: We denote H (v) = ‖v‖H1

d
. The

functional F is convex, since the norms are convex. The
minimizer of F is given by the solution of

v− γ
λ
∈ ∂H (v) (56)

By the inverse rules for subgradients, this is equivalent to

v ∈ ∂H∗(
γ − v
λ

) (57)

By setting w = γ − v, it comes:

γ − w ∈ ∂H∗(
w
λ
) (58)

i.e., 0 ∈ w−γ +∂H∗(w
λ
) and this means thatw is a minimizer

of
1
2λ
‖w− γ ‖2L2 + H

∗(
w
λ
) (59)

By Lemma 10, H∗(w
λ
) is the indicator function of set E .

So (59) indicates that w = γ − v is the projection of γ
onto the set λE . Thus, γ − v = PλE (γ ), i.e., v = γ −

PλE (γ ). By Lemma 8, we can get λE = {w ∈ BMOd :
‖w‖BMOd ≤ λ}. �
From Theorem 7, one can see that solving model (9) is

reduced to solving the projection PλE (γ ), which is equivalent
to solving the following problem:

(P) :

{
min
w

‖f − w‖2
L2

s.t. : ‖w‖BMOd ≤ λ

FIGURE 2. Image denoising result by ROF model: (a) original 256× 256
Barbara image. (b) Noisy version. (c) Cartoon part. (d) Residual image.

Model (P) was first proposed in our previous work [25] to
recover some clear textures from noisy data. The model is
transformed into wavelet domain and solved by dual Uzawa
method. The advantage of the model is that each Lagrange
multiplier of the discretized model corresponds to a certain
scale of dyadic region of the image. Thus, the Lagrange
multipliers are space adaptive and can control the extent
of denoising over dyadic image regions. For the detail of
solution of model (P), we refer the readers to [25].
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FIGURE 3. Texture extraction result on the residual image Fig. 2(d) by model (9): (a) Texture component. (b) Noise component.
(c ) Evolution of local variance on some dyadic regions by the proposed model. (d) Evolution of local variance on some dyadic
regions by ROF model. (e) Evolution of relative change ‖(xε

K )n+1 − (xε
K )n‖2 of algorithm 1 along with iterations.

IV. TV-HARDY REGULARIZATION MODEL
In this section, we propose the following two-layers image
restoration model:

min
u1,u2
{µ1‖D1u1‖1 + µ2‖D2u2‖h1d + θ‖∇u1‖1

+
1
2
‖f − K (u1 + u2)‖22} (60)

where u1, u2 represent the piecewise smooth and texture
part of the image respectively. D1 is the dictionary that
can represent the piecewise smooth part sparsely. D2 is the
wavelet mentioned in section II for characterizing dyadic
Hardy space H1

d . ‖∇u1‖1 = ‖∇xu1‖1 + ‖∇yu1‖1 is the
Total variation (TV) term, which forces the image u1 to
be close to a piecewise smooth image. The parameter µ1
and θ control the penalty on sparsity and regularity of the
cartoon component. When µ1 is relatively larger, it tends
to generate smoother images. This is because the frame
coefficient D1u1 is quite often linked to the smoothness of
the underlying image. When θ is relatively larger, the TV
regularization term is more penalized. This enhances and
sharpens edges, although it may introduce some artifacts.
Combing TV with wavelet can damp ringing artifacts near
edges.

We apply split Bregman iterations to solve this model.
Bregman iteration method was first used in image processing
by Osher et. al. in [26], and has been applied to TV based
model, frame based model and Basis Pursuit problem in
[27], [28]. Bregman iteration converges very quickly when
applied to certain kind of objective functions, especially for
l1 minimization problem.

FIGURE 4. Test image for Image decomposition: (a) Original Rabbit image
with size 256× 256. (b) Original Leopard image with size 256× 256.

We consider the following equivalent form of (60):

min
u1,u2,d1,d2,d

{µ1‖d1‖1 + µ2‖d2‖h1d + θ‖d‖1

+
1
2
‖f − K (u1 + u2)‖22}

s.t.: d1 = D1u1, d2 = D2u2,

d = (dx , dy) = (∇xu1,∇yu1) (61)

Then we apply the simplified Bregman formulas and get
the following split Bregman iteration:

uk+11 = argmin
u1
{
1
2
‖K (u1 + uk2)− f ‖

2
2

+
λ

2
‖D1u1 − dk1 + b

k
1‖

2
2 +

λ

2
‖∇u1 − dk + bk‖22}

uk+12 = argmin
u2
{
1
2
‖Kuk+11 + Ku2 − f ‖22

+
λ

2
‖D2u2 − dk2 + b

k
2‖

2
2}
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FIGURE 5. Image decomposition results on image Rabbit and Leopard: (a) Cartoon part by the proposed model (60).
(b) Texture part by the proposed model (60). (c) Cartoon part by our A2BC model. (d) Texture part by A2BC model.
(e) Cartoon part by BNN model. (f) Texture part by BNN model. (g) Cartoon part by Daubechies’ model. (h) texture part by
Daubechies’ model;(i) cartoon part by our model (60). (j) Texture part by our model (60). (k) Cartoon part by A2BC model.
(l) Texture part by A2BC model. (m) Cartoon part by BNN model. (n) Texture part part by BNN model. (o) Texture part by
Daubechies’ model. (p) Texture part by Daubechies’ model.

dk+11 = argmin
d1
{µ1‖d1‖1 +

λ

2
‖D1 u

k+1
1 − d1 + bk1‖

2
2}

dk+12 = argmin
d2
{µ2‖d2‖hd1

+
λ

2
‖D2 u

k+1
2 − d2 + bk2‖

2
2}

dk+1 = argmin
d
{θ‖d‖1 +

λ

2
‖∇uk+11 − d + bk‖22}

bk+11 = bk1 + δb(D1u
k+1
1 − dk+11 )

bk+12 = bk2 + δb(D2u
k+1
2 − dk+12 )

bk+1 = bk + δb(∇u
k+1
1 − dk+1)

The optimality condition of the subproblem for u1 and u2
is:
(λI + KTK + λ∇T∇)u1
= KT f − KTKuk2 + λD

T
1 (d

k
1 − b

k
1)+ λ∇

T (dk − bk )
(62)

(KTK + λI )u2
= KT f − KTKuk+11 + λDT2 (d

k
2 − b

k
2) (63)

In the deblurring case and under the periodic boundary
condition for u1,∇T∇ andKTK are all block circulant matrix
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FIGURE 6. Denoising results on image Barbara: (a) Original Barbara image; (b) noisy version. (c) cartoon part by model
(60). (d) Texture part by model (60). (e) Piecewise smooth part by A2BC model. (f) Texture part by A2BC model. (g) Restored
image by model (60), PSNR = 27.00. (h) Restored image by TV-L2 model, PSNR = 25.81. (i) Restored image by frame based
model, PSNR = 23.75. (j) Restored image by two-layers TV-l1 model, PSNR = 25.31.

and thus are diagonalizable by the 2D discrete Fourier trans-
forms. So equation (62) and (63) can be solved efficiently by
Fast Fourier Transform (FFT).

The subproblem for d1, d can be solved explicitly by soft
thresholding:

dk+11 = shrink(D1u
k+1
1 + bk1,

µ1

λ
) (64)

dk+1 = shrink(∇uk+11 + bk ,
θ

λ
) (65)

where shrink(x, θ) = x
|x| ·max(|x| − θ, 0).

The subproblem for d2 can be solved by the method we
proposed in section III.
As a summary, we obtain the algorithm in Table 2 for

two-layers image restoration.

V. EXPERIMENTS
In this section, we present various experiments to demon-
strate the performance of the proposed models for texture
extraction, image decomposition, denoising and deblurring.
Model (60) is compared with TV based model, BNN model
and frame based regularization model. In all experiments,
we choose piecewise linear B-spline framelet as the

dictionary D1 for representing piecewise smooth component,
and ‘Db 10’ wavelet as the dictionaryD2 for representing tex-
ture component. The test images have plenty of cartoon and
texture regions and are well suited for testing the restoration
models which are aiming at recovering more texture while
smoothing out noise.

All the experiments are implemented underWindows 7 and
Matlab v2012b with Intel Pentium P6100 CPU and 2GB
memory. The dynamic range of test images are normalized
to [0,1].

A. TEXTURE EXTRACTION
In this subsection, we present some numerical results to
demonstrate the performance of algorithm in Table 1 for
extracting clear textures from noisy data. Fig. 2(a) and (b)
show the Barbara image with size of 256 × 256 and its
noisy version respectively. The noise added is zero-mean
Gaussian noise with variance σ = 10/255. Fig. 2(c) and (d)
show the cartoon component and the residual image of ROF
model (also called TV-L2 model). One can see that, the car-
toon part is over-smoothing and there are a large amount
of textures in the residual image. We apply model (9) to
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FIGURE 7. Denoising results on image Mandrill: (a) Original Mandrill image. (b) Noisy version. (c) Cartoon part by
model (60). (d) Texture part by model (60). (e) Cartoon part by A2BC model. (f) Texture part by A2BC model. (g) Restored
image by model (60), PSNR = 24.30. (h) Restored image by TV-L2 model, PSNR = 23.11. (i) Restored image by frame based
model, PSNR = 22.10. (j) Restored image by two-layers TV-l1 model, PSNR = 23.72.

the residual image of ROF model and show the ‘‘texture
+ noise’’ decomposition result in Fig. 3. From Fig. 3(a),
We can see that clear textures are well extracted from the
residual image of ROF model. From Fig. 3(b), one can see
that there are still some weak edges in the noise component.
This is inevitable since some small details with low local
oscillating property have the similar local statistical features
with noise. But above all, the texture component extracted is
mixed with very little noise. That is, the proposed model is
very efficient to preserve texture with high local oscillating
property.

In order to demonstrate the performance of model (9) for
controlling local variances of the residual image, we show the
change of local variance of residual γ − v on different dyadic
region Qj,k1,k2 along with iterations in Fig. 3(c). One can see
that the local variance on dyadic regions is gradually reduced
to the same level by our algorithm, and the local variance level
can be controlled by parameter λ. We also give the evolution
of local variance on the same dyadic regions by ROF model
for comparison in Fig. 3(d). As comparison in Fig. 3(d),
it can not control the local variance of the residual by turning
the parameter λ of ROF model. Fig. 3(e) demonstrates the

relative change ‖(xεK )
n+1
−(xεK )

n
‖2 of Algorithm 1 along with

iterations, and it shows that the algorithm converges fast.

B. IMAGE DECOMPOSITION
In this subsection, we show some numerical experiments
of model (60) for ‘‘cartoon+texture’’ image decomposition.
We start with a synthetically generated image composed of a
natural scene and texture. Fig. 4(a) shows the originalRabbit
image (addition of the texture and the natural parts).

The decomposition results including cartoon part and
texture part are shown in Fig. 5 (a)-(b). For comparison,
in Fig. 5(c)-(h) we show the decomposition results using
A2BC model of [4], BNN model of [6] and Daubechies’
model of [12]. For image Rabbit, the methods based on
oscillating functional modeling do not perform well. The
texture in the synthetic image has varying degrees of oscil-
lation. In the middle of the image, the oscillation of tex-
ture is relatively lower, while in left and right sides of the
image, the oscillation is much higher. The proposed model is
based on the prior that the local oscillation of the edge and
texture component is much higher than other components.
As shown in Fig. 5(a), (c) and (g), the high oscillating
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FIGURE 8. Deblurring results on image Barbara:(a) Blurred image, PSNR = 20.95.
(b) Recovered cartoon part by model (60). (c) Recovered texture part by model (60).
(d) Restored image by model (60), PSNR = 24.93. (e) Restored image by TV based model,
PSNR = 24.11. (f) Restored image by frame based model, PSNR = 23.71. (g)–(i): Local
enlargement of (d)–(f).

texture in the both sides of the image can be separated well
from cartoon component, but the low oscillating texture in
the middle of the image is failed to be separated from car-
toon component. From Fig. 5 (e) and (f), one can see that
the BNN method gives the best cartoon-texture decompo-
sition result for image Rabbit. This is because the BNN
method has a special capability of capturing globally dissim-
ilar but locally well-patterned texture as appears in the test
image Rabbit. However, each approach has its advantage
and disadvantage. We test our method on another image
Leopard which contains natural high oscillating textures.
The original Leopard image is shown in Fig. 4(b), and the
decomposition result by our method as well as the compar-
ison with other methods are shown in Fig. 5(i)-(p). From
Fig. 5 (j), especially from the red rectangle region, the pro-
posed method captures more clear textures than the other
methods.

C. IMAGE DENOISING
For image denoising, we add Gaussian white noise with
zero mean and standard variation σ = 15/255 on the

image Barbara (size 512 × 512) in Fig. 6(a), and get its
noisy version in Fig. 6(b). The decomposition result by the
proposed algorithm is compared with that by A2BC model
in Fig. 6 (c)-(f). Fig. 6(c) and (d) display the cartoon part
and the texture part respectively obtained by the proposed
model (60). Fig. 6(e) and (f) show the decomposition results
by the A2BC model. From comparison, we can see that
the texture component is more clear and mixed with less
noise. In Fig. 6(g)-(i), we compare the restored image by
different methods including TV -L2 method and frame based
method (balanced method). To indicate the advantage of the
h1d norm over the classical l1norm, in Fig. 6(j) we show a
comparison with the slightly modified version of the pro-
posed method that the h1d norm in model (60) is replaced
with the classical l1 norm. We will refer to it as the two-
layers TV − l1 model in the following. From the compar-
ison, especially from the local enlarged region, we can see
that both TV based models and frame based model remove
most of the textures and small details, while the proposed
model preservesmore texture and gets better subjective visual
effect.
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FIGURE 9. Deblurring results on image Mandrill by our method: (a) Blurred image, PSNR =
19.50. (b) Recovered cartoon part. (c) Recovered texture part: (d) restored image by model
(60), PSNR = 21.64. (e) Restored image by TV method, PSNR = 21.00. (f) Restored image by
frame based method, PSNR = 21.67. (g)-(i): Local enlargement of (d)–(f).

Fig. 7 shows the similar results on another texture image
Mandrill, with size of 512 × 512, degraded by zero-mean
Gaussian noisewith standard variation σ = 20/255. Visually,
textures are better recovered while denoising by the proposed
two-layers denoising method. We also report the the peak
signal-to-noise (PSNR) ratio result by different methods. In a
whole, the proposed algorithm has higher PSNR than the
other two methods.

We list all the parameters involved in the algorithm in the
following:
• For Barbara image: µ1 = 0.01; µ2 = 0.1; λ = 1;
θ = 0.1; σ = 15/255; δb = 0.5.

• For Mandrill image: µ1 = 0.001; µ2 = 0.1; λ = 0.3;
θ = 0.1; σ = 20/255; δb = 0.5.

The peak signal-to-noise (PSNR) ratio is used to measure
the quality of the recovered images which is defined as:

PSNR(u, f ) = 10 log10(
2552

1
mn‖u− f ‖

2
2

) (66)

where u is the restored image, f is the true image, m and n
denote the size of the image.

D. IMAGE DEBLURRING
In this subsection, we test the proposed model (60) on image
deblurring problems. We test both Gaussian blur and motion
blur with Gaussian white noise. We assume periodic bound-
ary conditions since the FFT can be used to solve uk+1

in Algorithm 2. As comparisons, we also show the results
obtained by frame based and TV based deblurring methods.

The main parameters of Algorithm 1 are list as following:
• For image Barbara: µ1 = 0.001; µ2 = 0.0004;
λ = 0.01; θ = 0.1; σ = 0.8, δb = 0.5.

• For image Mandrill: µ1 = 0.0001; µ2 = 0.00008;
λ = 0.001; θ = 0.5; σ = 1, δb = 0.5.

The test image in Fig. 8(a) is generated by applying a
motion blur on the true image Fig. 6(a) and then adding
Gaussian noise with zero mean and standard deviation
σ = 0.8. The motion blur kernel is obtained by the Matlab
function ‘fspecial(‘motion’,35,50)’. Fig. 8(b)-(c) show the
deblurring results of the proposed two-layers image restora-
tion model (60). We can see that both the cartoon part and
texture part are well recovered. Fig. 8(d) shows the restored
image obtained by the proposed model (60). As comparison,
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we also include the results obtained by TV based method and
frame based method (analysis based method) in Fig. 8(e)-(f).
Fig. 8(g)-(i) show the local detail enlargement of Fig. 8(d)-(f).
One can see that most of textures are eliminated by TV based
method and frame based method, while edges and textures
are better preserved by the proposed method.

The test image in Fig. 9(a) is generated by applying a
Gaussian blur on the true image Fig. 7(a), and then adding
Gaussian noise with zero mean and standard variation σ = 1.
The Gaussian kernel is generated by the MATLAB function
‘fspecial(‘gaussian’,[20 20], 20)’. Fig. 9(b) and (c) show
the restored cartoon part and texture part by the proposed
algorithm. In Fig. 9((d)-(f)), we compare the proposed algo-
rithm with TV based deblurring and frame based deburring.
Fig. 9(g)-(i) show the local detail enlargement of Fig. 9(d)-(f).
Again, this shows that the proposed algorithm performs better
for deblurring images while preserving edges and textures.

VI. CONCLUSION
In this paper, we have introduced dyadic Hardy space and
dyadic BMO space for image restoration modeling and anal-
ysis, and try to explore the regularization mechanism of these
two spaces in texture preserving image restoration inverse
problem. We study the wavelet characterization of the dyadic
HardyHd

1 norm, and use it as the regularizer of modeling tex-
tures. Then we propose a Hd

1 minimization model which can
efficiently extract clear high oscillating textures from noisy
data. Combing thisHd

1 regularization, TV regularization, and
sparse regularization, we propose a two-layers image restora-
tion model, in which we use two dictionaries D1 and D2 to
represent piecewise smooth part and texture part respectively.
We take D1 as the piecewise linear framelet to represent
the cartoon component and l1 norm as the regularizer which
leads to sparsity in the process of minimization. We take D2
as wavelets to represent texture component and Hd

1 norm
as regularizer which leads to group sparsity in the process
of minimization. Of course, there are many possible ways
to choose D1 and D2. For example, D1 may be curvelet,
Tensor Product Complex Tight Frame (TP-CFT), andD2 may
be multi-scale Local Discrete Cosine Transform (LDCT) or
Gabor Transform. These chosen of dictionaries may have
better performance than that proposed in this paper. The
proposed method can be seen as a specific case of a more
general approach and this will be investigated in our future
work.
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