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ABSTRACT Wideband spectrum sensing is a popular topic in signal processing, especially for many radar
and communication applications. What we face is a high sampling rate and a large volume of samples,
in which demand of reducing the sampling rate without sacrificing the sensing resolution and quality.
The generalized coprime sampling can break the limitation of the Nyquist sampling theorem with both
characteristics of sparse sensing and coprime numbers. To fully utilize all the information received of
the derived correlation matrix constructed by the different time delays, the matrix completion method is
exploited. The theory of matrix completion is an extension of compressive sensing, though, which is not
restrained by the sparsity and the restricted isometry property. The interpolation-based method presented via
the convex framework of the nuclear norm minimization has no extra fine-tuned parameters, which different
from techniques like compressive covariance sampling, positive definite Toeplitz matrix completion, and
so on. Moreover, compared to the selection-based method under a continuous set, the proposed method
improves the spectral resolution and estimation accuracy to avoid the information losing. The Simulation
results indicate the performance of the algorithm.

INDEX TERMS Wideband spectrum sensing, coprime sampling, correlation matrix completion, nuclear
norm minimization, derived signal reconstruction.

I. INTRODUCTION
Advances in wideband radio-frequency (RF) technology for
many radar and communication applications, the wideband
spectrum sensing becomes a popular topic in signal pro-
cessing. The world around us is analog in a digital world,
which lies at the analog-to-digital (ADC) technology. How-
ever, because of the limitation of Shannon sampling theorem,
there is a considerable gap for the sampling rate and pre-
cision of ADC, compared with the demands. In this case,
though, a volume of data needs to be stored, transmitted,
and processed, which contains lots of redundant information.
Although it is recognized, and the Nyquist sampling theory
for the case of nonuniform sampling is generalized, which
states that a bandlimited signal can be perfectly reconstructed
from its samples if the average sampling rate satisfies the
Nyquist condition [1].

A common approach, interleaved sampling is often used
for increasing the equivalent sampling rate, which presents
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useful not only in the temporal domain but in the frequency
and spatial domain. Multi-rate sampling (MRS) and multi-
coset sampling (MCS) are two sides of the time-interleaved
sampling (TIS). The MCS consists of a bank of ADCs with
phase delays.While theMRS also consists of a bank of ADCs
but without phase delays. The typical method for resolving
frequency ambiguities of the multi-rate sampled signal is
based on the Chinese remainder theorem (CRT). The dis-
crete Fourier transform (DFT) bin numbers naturally encode
frequency information of the real signal into the symmetri-
cal residues, and its dynamic range is demonstrated in [2].
Then the range of the multiple detectable frequencies for the
complex signal is extended in [3]. The conclusion, according
to the studies, is that the number of the different sampling
rates has a linear relation with the maximum number of the
estimated frequencies. Therefore it increases the number of
channels and hardware costs.

Similarly, as the development of compressive sensing
(CS) [4], [5] theory, the signal can be recovered perfectly
under the sparse or compressible RF environment. There
are series of algorithms, such as convex optimization [6],
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orthogonal matching pursuit (OMP) [7], least absolute
shrinkage and selection operator (LASSO) [8], and so on.
The practical implementation of CS is called ‘‘analog-to-
information’’ (A2I) RF receiver, such as Compressive Multi-
plexer (CMUX) [9], ModulatedWideband Converter (MWC)
[10], and Nyquist Folding Receiver (NYFR) [11], etc. How-
ever, on one side, the design of hardware based on modulated
sampling is a great challenge [12]. And on the other side,
the algorithms of CS are based on the linear regression tech-
niques, which is not applicable to the higher-order statistics
as the power spectrum. Therefore, compressive covariance
sampling is motivated to study. The covariance matrix can
be recovered without the constraint of sparse on the power
spectrum under MCS [13].

It is, therefore, worth noting that coprime sampling [14] is
a typical example of the MRS and sparse sampling strategy.
The concept of coprime has received so much attention on
the array signal processing recently, such as sparsity-based
direction-of-arrival (DOA) estimation [15]–[18], the robust-
ness of the difference coarrays [19], [20], Cramer-Rao
bound [21], etc. There are many similarities between wide-
band spectrum sensing and sparsity-based DOA estimation,
which can be used as a reference. The generalized coprime
sampling scheme is discussed to obtain the compression of
Toeplitz covariancematrix, as shown in [22]. Compared to the
uniformly subsampling scheme and the CRT-based resolution
of frequency ambiguities, spectrum estimation using coprime
pair of samples improves the resolution and accuracy. The
sparse Fourier transform (SFFT) [23] has the same concept,
whose step of frequency bucketization is using subsampling
in the time domain. After that, the coprime aliasing in the
frequency domain is used to detect and resolve the collision
of frequency, which remains the resolution limitation of fre-
quency ambiguities by the CRT-based method.

The matrix reconstruction receives more attention, com-
pared to the CS, because it is restrained by the sparsity.
Moreover, matrix completion is an extension of CS theory,
which completes the missing elements of a matrix instead
of a vector. A significant property here is that the matrix
completion problem does not obey the restricted isometry
property (RIP) [24] of CS theory, which provides more appli-
cability. In [22], the reconstructed covariance matrix only
selects the continuous set of the cross-lags based on the
generalized coprime sampling. However, this method does
not take advantage of all the information received, which
is caused by an estimation performance lose. On the other
hand, the Toeplitz structure and the low-rank property of
the signal received at physical array are utilized to recon-
struct its covariance matrix [25], resulting in an estimation
performance improvement than the non-Toeplitz method.
Therefore, the missing elements of the derived signal based
second-order sampled are interpolated by unclear norm min-
imization to completing a low-rank Toeplitz correlation
matrix, which is the main contribution of this paper.

The rest of this paper is organized as follows. In section II,
the coprime sampled signal model is introduced first.

In section III, the derived signal is formalized by vec-
toring the correlation matrix, inspired by the wideband
DOA estimation, and the derived correlation matrix is gen-
eralized. Then the unclear norm minimization is used for the
wideband spectrum sensing. Simulation results are provided
in section IV to demonstrate the effectiveness of the pro-
posed method numerically. Finally, in section V concludes
the paper.

II. COPRIME SAMPLED SIGNAL MODEL
A. NYQUIST SAMPLED SIGNAL MODEL
We make usual assumptions that a wide-sense stationary
process x(t), t ∈ R, which consists of multiple sinusoids
confinedwithin a bandwidthBs. Thus, it can be represented as
a complex sampled vector x[l] inCL with a Nyquist sampling
rate fs = 2 Bs, expressed as

x[l] =
I−1∑
i=0

σie
−j2π lfi
fs + n[l], l = 0, 1, . . . ,L − 1 (1)

where consists of I independent frequency components fi and
magnitudes σi, n[l] is zero-mean complex additive Gaussian
white noise with the variance σn.

The power spectral density is the Fourier transform of its
correlation function under the Wiener-Khintchine theorem,
which does not need the input signal to be sparse in the
frequency domain. The correlation function can be expressed
by

r[τ ] = E
{
x[l]x∗[l − τ ]

}
, τ = −S + 1, . . . , S + 1 (2)

inwhich partitioned x[l] into overlapped blocks of length-S as
shown in Fig. 1. The superscript (·)∗ denotes the conjugation
of a matrix, and the operator E{·} denotes the statistical
expectation.

Then, the correlation matrix can be estimated by averaging
the available B blocks as

Rx =
1
B

B∑
b=1

xbxHb

=



r̂[0] r̂[−1] · · · r̂[−S + 2] r̂[−S + 1]

r̂[1] r̂[0]
. . .

... r̂[−S + 2]
... r̂[1]

. . . r̂[−1]
...

r̂[S − 2]
...

. . . r̂[0] r̂[−1]
r̂[S − 1] r̂[S − 2] · · · r̂[1] r̂[0]


(3)

where r̂[τ ] is the estimation of the correlation function, and
xb = [xb[0], xb[1], . . . , xb[S − 1]]T . with xb[l] = x[l + bG].
The superscript (·)H denotes the conjugation transpose of a
matrix. The correlation matrix is a Hermitian and Toeplitz
matrix. Then the spectrum can be estimated using various
methods of spectral analysis, such as the multiple signal
classification (MUSIC) algorithm which is typical and used
in this paper.
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FIGURE 1. Illustration of overlapped blocks at Nyquist uniform sampling set U.

FIGURE 2. Coprime sampling scheme.

B. COPRIME SAMPLED SIGNAL MODEL
The coprime sampled signals are acquired by two channels,
as presented in Fig. 2, whose sampling periods are multiples
of the Nyquist sampling period and coprime. Then, the sam-
pling instants are positioned at

U1 = {(b− 1)qMNTs +Ml1Ts|0 ≤ l1 ≤ pN − 1, l1 ∈ Z}
U2 = {(b− 1)qMNTs + Nl2Ts|0 ≤ l2 ≤ pM − 1, l2 ∈ Z}

(4)

where Ts = 1/fs is the Nyquist sampling interval, M ∈ N+
and N ∈ N+ are coprime positive integers, p ∈ N+ is
the multiple coprime unit factor and q ∈ N+ is the non-
overlapping unit factor with q ≤ p, for the number of blocks
1 ≤ b ≤ B. For illustration, an example of M = 3,
N = 4, p = 2, q = 1,B = 3,L = 48 for coprime sampling
scheme is presented in Figure 3.

Thus, the coprime sampled signal model can be expressed
as

yb1 =
I−1∑
i=0

σie
−j2π[(b−1)qMN+Ml1]fi

fs + nb1 [l1] = Ab16�+ nb1

yb2 =
I−1∑
i=0

σie
−j2π[(b−1)qMN+Nl2]fi

fs + nb2 [l2] = Ab26�+ nb2

(5)

where

6 = diag ([σ1, σ2, . . . , σI ])I×I
Ab1 = [ab1 (f1) , ab1 (f2) , . . . , ab1 (fI )]pN×I
Ab2 = [ab2 (f1) , ab2 (f2) , . . . , ab2 (fI )]pM×I

� =
[
a (f1)−(b−1)qMN , . . . , a (fI )−(b−1)qMN

]T
I×1

nb1 ∼ CN
(
0, σ 2

n IpN
)
,nb2 ∼ CN

(
0, σ 2

n IpM
)

(6)

with

ab1 (fi) =
[
1, a (fi)−M , a (fi)−2 M , . . . , a (fi)−(pN−1)M

]T
pN×1

ab2 (fi) =
[
1, a (fi)−N , a (fi)−2N , . . . , a (fi)−(pM−1)N

]T
pM×1

a (fi) = ej2π fi/fs (7)

with CN (·) denotes the complex Gaussian distribution,
the superscript (·)T denotes the transpose of a matrix,
the operator diag(·) denotes diagonalization of a matrix and
I denotes identity square matrix.
The correlation matrix can be estimated by averaging the

available B blocks as

Ry12 =
1
B

B∑
b=1

yb1yHb2 = Ab1PAH
b2 + Pn

=

I−1∑
i=0

σ 2
i ab1 (fi) a

H
b2 (fi)+ σ

2
n IpN×pM (8)

where P = diag
([
σ 2
1 , σ

2
2 , . . . , σ

2
I

])
I×I and Pn denote the

power square matrix of each signal and noise, respectively.

III. DERIVED CORRELATION MATRIX COMPLETION
Derived signal of second-order sampled is reconstructed by
stacking columns of the correlation matrix Ry12sequentially
into a vector z, expressed as

z = vec
(
Ry12

)
(9)

which is the sensing of signal power with time delays as an
independent variable. The operator vec(·) denotes vectoriza-
tion of a matrix.

The difference set is formed by different time delays,
as follows

D = {τ |τ = ± (Ml1 − Nl2)Ts} (10)

which is shown in Fig. 4. Without loss of generality, assume
thatM < N , then the extremum is ±M (pN − 1) and the first
pair of holes are located at±[(p−1)MN +M +N ]. Through
selecting and averaging all the elements with the same
delay τ , the derived signal through temporal smoothing is
defined as

〈zD〉τ =
1
|D|

∑
τ∈D
〈z〉τ (11)
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FIGURE 3. An example of M = 3,N = 4,p = 2,q = 1,B = 3, L = 48 for coprime sampling scheme.

FIGURE 4. Illustration of difference set D, continuous set C and virtual set V.

where the operator | · | denotes the cardinality of a set, and
〈·〉τ denotes the element corresponding to the delay at τ .

Then, its manifold matrix can be expressed as

AD = [aD (f1) , aD (f2) , . . . , aD (fI )]|D|×I (12)

where the |D|−by−1 vector aD (fi) is defined as

〈aD (fi)〉τ = a (fi)−τ , τ ∈ D (13)

The continuous uniform sampled derived signal is

〈zC〉τ = 〈zD〉τ , τ ∈ C (14)

which selects the elements between the first pair of holes, then
the continuous set is expressed as

C = {τ |τ = ±lTs, 0 ≤ l < (p− 1)MN +M + N , l ∈ Z}
(15)

Thus, the derived correlation matrix can be acquired by

RzC =


〈zC〉 (|C|+1)

2
〈zC〉 (|C|+1)

2 −1 . . . 〈zC〉1
〈zC〉 (|C|+1)

2 +1 〈zC〉 (|C|+1)
2

. . . 〈zC〉2
...

...
. . .

...

〈zC〉|C| 〈zC〉|C|−1 . . . 〈zC〉 (|C|+1)
2


(16)

The resolution of power spectrum can be given as SzC =
(p− 1)MN +M + N − 1 by spectral analyzing. Because of

the holes of difference set, the part information of zD is not
used. Therefore, to utilizing the information of zD entirely,
for increasing the resolution of the power spectrum, with the
low-rank property and Toeplitz structure of the correlation
matrix, interpolating zero-value in the position of missing
elements. Then, the problem of interpolation can be changed
into a matrix completion problem.

Selecting the elements between extremum of difference
set, and interpolating zero-value in holes, defined as a virtual
set

V = {τ |τ = ±lTs, 0 ≤ l ≤ M (pN − 1), l ∈ Z} (17)

The derived virtual signal corresponding is

〈zV〉τ =

{
〈zD〉τ , τ ∈ D
0, τ ∈ V− D

(18)

which is uniform and continuous. Nevertheless, the difference
between Nyquist sampled, there is zero-value of the hole
position. Thus, define a binary index vector gV as

〈gV〉τ =

{
1, τ ∈ D
0, τ ∈ V− D

(19)

where zero-value and one-value elements denotewhether or not
missing elements of delays. Then, we can get

zV = zU � gV (20)
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where zU denotes the vector of correlation function from
Nyquist sampling, and the operator� denotes the Hadamard
product operator.

Therefore, the derived virtual correlation matrix can be
recovered by solving the matrix rank minimization problem
as

min rank
(
RzV

)
subject to RzV �G = RzD

RzV = RH
zV (21)

where G = gVgTV, and the operator rank(·) denotes the rank
of a matrix.

This analogous to `0-norm minimization problem in the
CS theory, which is an NP-hard problem and cannot be
solved exactly. Just as `1-norm minimization is the tightest
convex relaxation of the `0-norm minimization problem, the
NP-hard rank minimization problem turns into a nuclear
norm minimization as

min
∥∥RzV

∥∥
∗

subject to RzV �G = RzD

RzV = RH
zV (22)

where the symbol ‖·‖∗ denotes nuclear norm of amatrix. This
problem can be solved by CVX package [6]. Then, the resolu-
tion of the power spectrum increases up to SzV = M (pN − 1)
though the conventionalmethods of spectral analyzing, which
is the same as Nyquist sampling of length-S blocks.

IV. SIMULATION RESULTS
In this section, the numerical examples show the spectrum
sensing performance of the derived correlation matrix com-
pletion method. Assume that I independent frequency com-
ponents of the inputs are distributed in the frequency band
[−0.5, 0.5) GHz, with magnitudes σi = 1 for i = 1, 2, . . . , I .
And the noise power is assumed to be identical across the
entire spectrum. Meanwhile, assume there are L = 30000
uniform samples generated by the Nyquist sampling rate
fs = 1GHz. The coprime pair M = 3 and N = 4
are set in the following simulation, because of the optimal
coprime pair should as close as possible in terms of total
samples [22]. Besides, p = 2 and q = 1 are used to illustrate
the performance of the frequencies identification, as shown
in Fig. 5, where the input signal-to-noise ratio (SNR) is set
to −10 dB. Afterwards, the relative root mean square error
(Relative RMSE) of the estimated frequencies [22] is adopted
to evaluate the performance, defined as

Relative RMSE (fi) =
1
fs

√√√√ 1
500I

500∑
k=1

I∑
i=1

(
f̂i(k)− fi

)2
(23)

where f̂i(k) is the estimation of f from the k-th Monte Carlo
trial.

The correlation matrix RzC and RzV can be recon-
structed from Ry12 , with the dimensions are compressed

FIGURE 5. The normalized MUSCI spectrum is estimated under
continuous set C and virtual set V.

from
(
SzC + 1

)
−by−

(
SzC + 1

)
= 19−by−19 and(

SzV + 1
)
−by−

(
SzV + 1

)
= 22−by−22 to pM × pN =

6×8. Thus, the resulting compression factor is improved from
7.52 to 10.08, and the maximum number of distinguishable
frequencies up to SzV = 21. In Fig. 5, we consider I = 21
independent frequency components which are selected in the
frequency band uniformly. All the 21 frequencies are identi-
fied correctly under virtual set V, as shown in Fig. 5(b), with
the RMSE = 0.0035. While there are only 18 frequencies are
identified under the continuous set C, as shown in Fig. 5(a),
with the RMSE = 0.0284. The reason for this is that the
number of frequencies to be estimated exceeds the dimension
limited under the continuous set C.

Moreover, according to the CRT-based method, there are
two frequencies at most can be uniquely determined by the
equivalent Nyquist sampling rate max {1/MTs, 1/NTs} =
0.25 fs, while the range can be extended to lcm

{
1/MTs,

1/NTs
}
≈ 0.58 fs for the single-frequency estimation.
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FIGURE 6. Relative RMSE versus SNR (I = 1).

On the other hand, the generalized coprime sampling can
be cast into the CS framework, whose sensing matrix is the
partial IDFT. Based on the RIP of CS theory, the required
number of samples for the sensing matrices should satisfy
p(M+N−1) > I lnS, whose rows of the measurement matrix
are chosen uniformly at random [26]. Thus, under the same
condition as Fig. 5, I < 3.88 different frequencies can be
recovered with high probability. Therefore, compared to the
two method mentioned above, we can see the advantage of
the proposed method on improving the spectral resolution.

In Fig. 6, the Relative RMSE results under continuous
set C and virtual set V are compared as a function of the
input SNR, where I = 1 is assumed. And the Cramer-Rao
bounds (CRB) for sparse sampling in the context of array
processing [21] can be a reference to the frequency estimation
when more inputs than the number of samples.

For the outputs yb = [yTb1 yTb2]
T , b = 1, 2, . . . ,B which

stact all the coprime samples, the CRB is the inverse of the
Fisher information matrix (FIM) for the parameter vector
α = [fT , σ T ]T , where f = [f1/fs, f2/fs, . . . , fI/fs]T is the
normalized frequencies and σ = [σ1, σ2, . . . , σI , σn]T . And
the elements of the FIM can be expressed as

Fi,j = B tr{Ry
−1 ∂Ry

∂αi
Ry
−1 ∂Ry

∂αj
} (24)

where the operator tr{·} is the trace of a matrix and Ry is

Ry = E{ybyHb } =
I−1∑
i=0

σ 2
i ab(fi)a

H
b (fi)+ σ

2
n Ip(M+N ) (25)

and ab(fi) = [aTb1(fi) a
T
b2(fi)]

T .
Recall the proof from appendix A.4 in [21], the closed-

form expression for the normalized frequencies can be rewrit-
ten as

CRB(f) =
1

4π2B

(
GH

0 5
⊥

MWD
G0

)−1
(26)

which is valid under the rank condition rank (AACM) = 2I+1
based on the difference set, whereAACM =

[
diag(D)AD WD

]

FIGURE 7. Relative RMSE versus I (SNR = 0 dB).

with WD = [AD e0] and e0 is a column vector with one in
middle and zero elsewhere. Meanwhile, the other parameters
are as follows

G0 = M(diag(D))ADP

M =
(
JH
(
Ry ⊗ Ry

)−1 J) 1
2

(27)

where the operator 5⊥A = I − A(AHA)−1AH , and J is a
binary index matrix with size |z|−by−|D|, whose column
with different time delays τ is given by

〈J〉:τ = vec(I(τ )), τ ∈ D (28)

where the |z|−by−|z| matrix I(τ ) satisfies

〈I(τ )〉l1,l2 =

{
1, if l1 − l2 = τ
0, otherwise ,

l1, l2 ∈ U1 ∪ U2 (29)

with |z| = p(M + N ).
We can see that all of them display a strong inverse semi-

logarithmic dependence on the input SNR, the same as shown
in [22]. The performance of the interpolation-based method
under virtual set V is a little better than the selection-based
method under continuous setC. That is because the selection-
based method only adopts the consecutive parts of the differ-
ence set. In addition, the gap between the Relative RMSE and
CRB comes from the reconstruction error. The reconstruction
error increase with the number of frequency components,
as we can see from Fig. 7, where the input SNR is set to 0 dB.
When the number of estimated frequencies is less than four,
the performance of the interpolation-based method under
virtual set V is a little better than the selection-based method
under continuous set C. As a result, the same conclusion
has been obtained based on the RIP analysis of CS theory,
that I < 3.88 different frequencies can be recovered with
high probability. In addition, the CRB expression is divergent
when I > 18, since the rank condition matrix AACM does not
have full column rank.

In Fig. 8, we present the Relative RMSE and CRB results
versus different p for q = 1, where I = 5 frequencies
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FIGURE 8. Relative RMSE versus p (q = 1, I = 5).

FIGURE 9. Relative RMSE versus q (p = 8, I = 5).

are assumed, with the 0dB SNR. It is clear that the esti-
mation accuracy is improved as p increases. The observed
improvement in the Relative RMSE and CRB is attributed
to the number of different time delays increases with p.
In other words, there is a higher spectral resolution and esti-
mation accuracy under the same inputs, with higher storage
and computation. In addition, the gap between the Relative
RMSE and CRB becomes smaller in the interpolation-based
than in the selection-based. The result can be explained
by the RIP that I = 5 is selected in this part, due
to the resulting number of estimated frequencies I <

{2.73, 3.94, 5.15, 6.30, 7.42, 8.50, 9.56, 10.59} based on the
different choices of p(M + N − 1) > I lnS.
In Fig. 9, similarly, we present the Relative RMSE results

and CRB versus different q for p = 8, where I = 5
frequencies are assumed, with the 0dB SNR. It is clear that
estimation accuracy is improved as q decreases. The observed
improvement in the Relative RMSE and CRB is attributed to
the number of overlapping blocks increases with the decrease
of q. There is a similar conclusion in Fig. 10, obviously,
that the estimation performance is improved as the number
of samples K increases, due to the higher resulting number

FIGURE 10. Relative RMSE versus K with the same resolution
SzV = 28 (I = 5).

FIGURE 11. The normalized MUSCI spectrum is estimated for the cases of
p = 2 and p = 8 (q = 1, I = 20).

of overlapping blocks to smoothing noise. However, for the
same spectral resolution SzV = 28 and M = 2, the observed
decreases in the estimated Relative RMSEwith the increasing
ofN is attributed tomore nonuniform samples are introduced.
In Fig. 11, the normalized MUSIC spectrum is estimated for
the cases of p = 2 and p = 8, where I = 20 frequencies
from −415 MHz to 155 MHz are considered with 30 MHz
separation under the 0 dB SNR. Although the resolution
SzV = 21 of the case of p = 2 is higher than the frequencies
to be estimated, but the performance is poor than the case of
p = 8 for the case of frequencies distributed nonuniformly
throughout the detection range.

V. CONCLUSION
The derived correlation matrix completion method for
generalized coprime sampling is proposed as an interpolation-
based strategy. Being an extension of CS theory, the algo-
rithm of matrix completion is not restrained by the RIP.
The derived correlation matrix completion based on the
nuclear norm minimization not only has no extra fine-tuned
parameters, but also improves spectral resolution compared
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to the CS-based and CRT-based algorithms. Meanwhile, the
improved spectral resolution and estimation accuracy can be
obtained compared to the selection-based strategy, due to
utilizing all the information received, which is verified in the
simulation part.
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