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ABSTRACT In order to solve the problems in fatigue reliability analysis of mechanical components, a new
learning function based on the Kriging model is proposed. In the process of fatigue reliability analysis,
surrogate model is often used to fit the implicit performance function to avoid large numbers of calculations
of fatigue crack samples. The existing learning functions ignore the information of probability density
function (PDF). To overcome this defect and avoid unnecessary sampling in low PDF regions, a novel
learning function takes into account the PDF and the local accuracy of Kriging model. The accuracy of
the Kriging model is improved by adding samples step by step, and the new training samples are determined
by the proposed learning function. The proposed method is verified by two examples from literatures. The
results show that, compared with other surrogate models and learning functions, the proposed method has
advantages in efficiency, convergence and accuracy. Finally, the proposed method is employed to calculate
the fracture failure probability of cracked structures.

INDEX TERMS Structural reliability analysis, kriging model, probability density function, learning
function, Monte Carlo, fatigue crack reliability.

I. INTRODUCTION
Recent years, the first-order reliability method (FORM),
the second-order reliability method (SORM), Monte Carlo
simulation (MCS) and surrogate models have been widely
applied to structural reliability analysis [1]. However, based
on Taylor expansion, FORM and SORM have been incapable
of meeting the accuracy and application scope required by
both theoretical analysis and engineerings. Estimating the
structural failure probability by the failure rate of random
samples, MC is of the greatest robustness [2]. When the order
of magnitude of failure probability is small such as 10−5, it is
hard to perform MCS because too many calls to the time-
consuming performance function are needed [3].

Surrogate models [4], including polynomial response sur-
face [5], support vector machine (SVM) [6], artificial neu-
ral network model (ANN) [7] and the Kriging model [8],
have been the most widely applied to structural reliability
analysis. The basic idea of surrogate models is to selecte
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a small number of sample points in the input space, eval-
uate their performance function values, and approximate
the target performance function by establishing an explicit
mathematical model. Kriging is a high-efficiency interpola-
tion model. It has been widely applied to reliability analy-
sis, global optimization, sensitivity analysis and some other
fields. Jones et al. [9] use the Kriging model to solve the
problems in global optimization and propose the expected
improvement function (EIF). Chen et al. [10] apply it to the
fatigue reliability analysis of a Turbine Disc and optimize
the parameters of correlation function by Particle Swarm
Optimization (PSO). Pan et al. [11] introduce the Kriging
model to sensitivity analysis, and the computational cost of
sensitivity index is lessened significantly. Comparing with
other surrogate models, the Kriging model has two advan-
tages: (1) it is an interpolation model. (2) as a local accuracy
measurement, the Kriging variance is available to construct
efficient design of experiment (DoE) strategy.

According to the difference between structural reliability
analysis and global optimization, Bichon et al. [12] pro-
pose the expected feasibility function (EFF), which makes
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the sample points distributed in the vicinity of the limit
state surface. Echard et al. [13], [14] propose the structural
reliability analysis methods AK-MCS [13] and AK-IS [14]
by combining Kriging with MCS, Important Sampling (IS),
and derive a new learning function U. However, the conver-
gence criterion in AK-MCS and AK-IS is hard to satisfy.
Tong et al. [15] combine the Kriging model with both sub-
set simulation (SS) and IS, and propose a more reasonable
convergence criterion for AK-SSIS. Yang et al. [16] and
Lv et al. [17] develop learning functions of ERF and H,
respectively. In addition, the PDF has also been considered
in some literatures. Jiang et al. [18] propose a real-time
estimation error-guided sampling method, and use the mean
and variance of Kriging prediction to calculate the wrong-
classification probability. Wang et al. [19] propose the error-
based stopping criterion (ESC) to address existing stopping
criteria, which takes PDF into account. Jiang et al. [20]
propose a failure-pursuing sampling framework that could
employ various surrogatemodels or active learning strategies.
In their proposed method, a part of parameters may vary with
problems.

In engineering, fatigue fracture failure is one of the most
common failure forms of mechanical parts under cyclic
loading. Fatigue crack growth is a slow accumulation pro-
cess [21]. The randomness of crack growth makes it difficult
for prediction models to get accurate prediction results [22].
Therefore, the randomness of crack growth has been drawn
more and more attention. Scholars often introduce restrictive
assumptions to simplify the complexity of prediction models.
Macias et al. [23] apply the concept of probabilistic fracture
mechanics, combining finite element analysis (FEA) with
FORM, The reliability life of plate with central crack is
studied by quadratic response surface method. Cai et al. [24]
propose an extended model based on the S-N method to
consider the frequency effect. They use heteroscedasticity
method to predict fatigue life and study effects of increas-
ing loading frequency and stress amplitude on fatigue life.
Mohamed et al. [25] propose a reliability method for crack
propagation under thermal loading, which can be coupled
with any finite element software for reliability evaluation.
However, for the actual structure with complex geometry,
irregular load, imperfect boundary conditions, and random
defect shape and direction, many influencing factors are
ignored, so the prediction life model presented is not accurate
enough [26], [27]. Above all, the existing methods are hardly
to predict fatigue life accurately and efficiently.

To overcome the shortcomings described above, this paper
proposes a new learning function, which considers both PDF
and the misclassification probability of point. Misclassifica-
tion probability means the probability that a Kriging model
wrongly predicts the sign of the performance function at a
point. It guarantees that the point selected by the learning
function lies in the area of interest, and avoids the waste
of sample points caused by sampling in unimportant areas.
Combining with Kriging and MCS, the learning function

proposed can adaptively and efficiently enhance the Kriging
model for fatigue crack reliability analysis.

The rest of this paper is organized as follows. Section II
introduces the Kriging and Monte Carlo simulation.
Section III describes the proposed learning function and the
failure probability algorithm combining Kriging and MCS.
In Section IV, the proposed method is verified by two
examples from literatures. And then the proposed method
is employed to calculate the fracture failure probability of
cracked structures. Section V is the conclusion.

II. KRIGING AND MONTE CARLO SIMULATION
For the input vector X of a structure, its dimension is set to
be M and joint probability density function is f (x). The per-
formance function is set to be G(x), by which the input space
is divided into two parts: safety domain Ss = {x|G(x) > 0,
x ∈ RM } and failure domain Sf = {x|G(x) ≤ 0, x ∈ RM }.
Then, the failure probability can be expressed as

Pf =
∫
. . .

∫
G(x)≤0

f (x)dx (1)

If the sample set is given as

� = {(xi, yi), i = 1, 2, . . . ,N }

In the theory of Kriging, G(x) is set to be expressed as

G(x) =
p∑

h=1

βhgh(x)+ z(x)

= gT(x)β + z(x) (2)

where gh(x)(h = 1, 2, . . . , p < N ) is polynomial.
Nguyen et al. [8] has studied the influence that gh(x) imposes
on the accuracy of Kriging. In this paper, the degree of gh(x)
is 1, and βh(h = 1, 2, . . . , p) is the coefficient of gh(x).
z(x) is zero-mean Gaussian process. The covariance of z(xi)
and z(xj) is

Cov[z(xi), z(xi)] = σ 2R(xi, xj; θ ) (3)

where σ 2 is the variance of z(x). R(xi, xj; θ ) is used to
describe the correlation coefficient for z(xi) and z(xj). And
θ is a parameter for the correlation function R(xi, xj; θ ).
Gaussian correlation function is one of the most widely used
correlation functions, which is expressed as

R(xi, xj; θ ) =
M∏
m=1

exp
[
−θm(xmi − x

m
j )

2
]

(4)

where xmi refers to the mth element of vector xi.
At point x, the Kriging linear combination predictor of the

structural performance function can be described as

Ĝ(x) = cT(x)Y (5)

where c(x) = [c1(x), . . . , cN (x)]T is the x-related vector,
and Y = [y1, . . . , yN ]T. The unbiased minimum variance
estimator of G(x) is

µG(x) = Ĝ(x) = g(x)β̂ + r(x)Tγ (6)
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σ 2
G(x) = σ̂

2
(
1+ uT(x)(GTR−1F)−1u(x)
−rT(x)R−1r(x)

)
(7)

σ̂ 2
=

1
M

(Y− GTβ)TR−1(Y− GTβ)

β̂ = (GTR−1G)−1GTR−1Y

G = [g(x1), g(x2), . . . , g(xM )]T

R =
(
R(xi, xj; θ )

)
N×N

γ = R−1(Y− Gβ̂)

r(x) = [R(x1, x; θ ), . . . ,R(xN , x; θ )]

u(x) = GTR−1r(x)− g(x)

Eqs. (6) and (7) are elaborately derived in Ref. [12].
Combining Eqs. (1) and (6), the failure probability of this

structure is estimated to be

P̂f =
∫
Ĝ(x)≤0

f (x)dx (8)

When X has a greater number of dimensions, it is rather
hard or even impossible to solve equations by numerical
integration. MCS is applied to obtain the failure probability
by estimating the failure rate of the randomly selected sam-
ples. It is achievable to get a sufficiently precise P̂f when
the random sample NMC is of a large enough size. With
an acceptable calculation amount, MCS is the most robust
method. MCS is employed in this paper to approximate P̂f .

P̂f ≈
1

NMC

NMC∑
i=1

I (Ĝ(xMC,i) ≤ 0) (9)

where NMC refers to the number of random sampling and
xMC,i(i = 1, 2, . . . ,NMC) is the independently and identi-
cally distributed random sequence from f (x). I (·) is a failure
indicator function.

I (·) =

{
0 > 0
1 ≤ 0

The coefficient of variation of P̂f is

δMC =

√
var(P̂f )

P̂f
=

√√√√ 1− P̂f
NMCP̂f

(10)

Let δMC < [δ], then

NMCP̂f > (1− P̂f )/[δ]2 ≈ 1/[δ]2 (11)

III. THE NEW LEARNING FUNCTION
A. THE LEARNING FUNCTION TAKING
PDF INTO CONSIDERATION
According to Eqs. (8) and (9), the accuracy of P̂f is directly
influenced by the sign of Ĝ(xMC,i). When the signs Ĝ(xMC,i)
and G(xMC,i) are opposite, the accuracy of P̂f is disturbed.
According to the Kriging theory, G(x), the true value of
the structural performance function at point x, is normally
distributed.

G(x) ∼ N
(
µG(x), σ 2

G(x)
)

Therefore, the probability that Ĝ(xMC,i)has a wrong sign is

Pwrong (x) = 8(− |uG (x) /σG ( x)|) (12)

In structural reliability analysis, Eq. (12) can be used to
measure the local accuracy of Kriging model. A large value
of Pwrong means the estimated performance function at point
x has great indeterminacy about its sign. It is necessary to
perform the true structural performance function to enhance
the local accuracy of the Kriging model. In addition, accord-
ing to Eq. (8), a larger value of PDF at point x means that
x holds a larger weight in Pf and has more random samples
in its neighbourhood when P̂f is calculated with MCS. The
only consideration of the local accuracy of a surrogate model
will result in some problems: (1) the surrogate model has an
insufficient accuracy at point x. But f (x) is so small that the
contribution that x makes to Pf can be ignored. (2) in the
input space theremay be a point where Kriging local accuracy
is higher but the large PDF make the point influence the
accuracy of P̂f more significantly than the ‘‘optimum’’ point
of Eq.(12). Therefore, it is necessary to consider both the local
accuracy of Kriging model and PDF in Pf while selecting
points to refresh Kriging model. This paper proposes the
learning function (Lf ) which taking into account both local
model accuracy and PDF.

Lf (x) = Pwrong(x) · f (x)

= 8(− |uG(x)/σG(x)|) · f (x) (13)

B. THE FAILURE PROBABILITY ALGORITHM COMBINING
KRIGING AND MCS
Combining Kriging with MCS, a new method of struc-
tural reliability analysis is developed in this paper, which is
similar to AK-MCS [13] and AK-SSIS [28]. This method
employs the learning function described by Eq. (13) as
the criterion to select new sample points and enhance the
Kriging model. And the convergence criterion presented in
Ref. [15] is adopted here. The procedure of the new method
is summarized as follows:
Step 1: Generate NMC independently and identically dis-

tributed M-dimension random vectors whose probability
density function is f (x). S = [x1, x2, . . . , xNMC ]

T.
Step 2: Use LHS (Latin Hypercube Sampling) [26] to

generate N0 random sample points. Ref. [13] shows that the
number of initial sample point N0 should be selected as few
as possible. According to previous experience, N0 should be
larger than the dimension of the input vectors. Compute val-
ues of performance function atN0 initial points, and construct
the sample set � of the Kriging model.
Step 3: Build the Kriging model Ĝ(x) according to the

existing sample set �and Eqs. (2)-(7).
Step 4: Use the Kriging model established in Step 3 to

estimate the performance function and Kriging variances of
the points in S. And estimate the failure probability according
to Eq.(9). The number of failure samples in S is

Nfail = NMCP̂f
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FIGURE 1. Procedure of the proposed algorithm for estimating failure probability.

If Nfail can make Eq. (11) true, turn to Step 5. Otherwise,
generate more random samples for S until Nfail satisfies
Eq. (11), and then move to Step 5.
Step 5:Use the convergence criterion proposed in Ref. [15]

to judge whether to converge or not. The details are described
as follows.

Let Pright(x) = 8(|uG(x)/σG(x)|)
Calculate Pright(x) values of points in S and rearrange

them in order from largest to smallest, so as to get
S ′ = [x ′1, . . . , x

′
NMC

]T. The Pright value at x ′i is represented
by Pright,i. If there is any i (i = 1, . . . ,NMC) that makes
Eq. (14) true, the procedure is ended with P̂f as the structural
failure probability; otherwise, move to Step 6. See Ref. [15]
for the detailed derivation process.

i · Pright,i ≥ Pright,limit · NMC (14)

where Pright,limit is a fixed positive number which is less
than 1, and Pright,limit = 0.9772 in this paper.

Step 6: Identify the point in S which maximizes Lf and
update �. The learning function value Lf at each point in S
is calculated according to Eq. (13), so as to identify the point
maximizing Lf . Then, the true value of performance function
will be calculated at the maximum point and added into �.
Finally turn to Step 3.

The procedure is also shown as Fig. 1.

IV. NUMERICAL APPLICATIONS
To demonstrate the efficiency of the learning function Lf
and structural reliability analysis proposed in this paper,
in this section the proposed method will be used to study two
examples from literatures and compared with other relative
methods. Then, two cracked structures are analyzed.

A. EXAMPLE 1
To elaborate the point selection and convergence processes
of the proposed method, a series system with two input vari-
ables in Ref. [13] is studied in this section. Its performance
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FIGURE 2. The convergence procedure of predicted limit state for example 1.

function is

G(x) = min



3+
(x1 − x2)2

10
−
x1 + x2
√
2
;

3+
(x1 − x2)2

10
+
x1 + x2
√
2
;

(x1 − x2)+ 3
√
2;

(x2 − x1)+ 3
√
2;


x = [x1, x2]T is subjected to 2-dimension standardized

normal distribution. The correlation coefficient of x1 and x2
is 0, which means they are mutually independent. The limit
state surface of this structural system (G(x) = 0) is shown as
Fig. 2(a).

To keep consistent with Ref. [13], let [δ] = 0.03. And
according to Eq. (11), the number of failure samples in MCS
needs to satisfy

Nfail = NMCP̂f ≥ 1112 (15)

According to the procedure shown in Fig. 1, This section
sets N = 106. N0 = 6 initial points are generated in [−5, 5]2

with LHS, their performance function values are calculated
to construct the original Kriging sample set �. The next is to
gradually add new point one by one into� and supplement S
when necessary to satisfy Eq. (15). It is not converged until
the element quantity of � reaches 79. Fig. 2(d) shows the
sample points of � and G(x) = 0 when the convergence
criterion Eq. (14) is satisfied. As showed by Fig. 2, all the
points selected according to the proposed learning function
Lf are scattered in the vicinity of G(x) = 0. Therefore,
the proposed method can help to estimate the failure prob-
ability more accurately with less times of evaluations of the
performance function.

TABLE 1. Comparison of results for example 1.

Fig. 2 compares Ĝ(x) = 0 with G(x) = 0 during the
procedure of reliability analysis. Table 1 shows the compar-
ison between the proposed method and some other methods,
where Ncall refers to the times that the true performance func-
tion is called when each corresponding method is converged,
and ε refers to the relative error compared with MCS result,
and it is calculated as Eq. (16).

ε =

∣∣∣P̂f − Pf ,MC

∣∣∣
Pf ,MC

(16)

In these sub figures, the lines in blue and red are Ĝ(x) =
0 and G(x) = 0, respectively. The numbers of calls to
the performance function in the four subfigures are 6, 31,
56 and 79 (N0 = 6). From Fig. 2, it can be seen that
when Ncall is close to 56, the Kriging model has already
been able to fit G(x) = 0 well. And the accuracy of the
corresponding P̂f has already been acceptable. To meet the
employed convergence criterion, more points are needed to
further enhance the accuracy of Ĝ(x) = 0 in the ‘‘unimpor-
tant area’’ of small fX (x). Selected by the proposed learning
function Lf , the sample points are well-distributed in the
vicinity of G(x) = 0. According to Ref. [13], points selected
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FIGURE 3. The non-linear undamped single degree of freedom system.

TABLE 2. The variable distribution parameters for example 2.

according to U and EFF are obviously too concentrated and
consequently result in a ‘‘waste’’ of sample points.

B. EXAMPLE 2
A nonlinear undamped single degree of freedom system,
as presented in Fig. 3, is studied in this section. This system
has been used several literatures Refs. [13]–[15], [28] to
demonstrate the accuracy of reliability analysis method. It has
6 input variables, and its performance function is

g (C1,C2,M ,R,T1,F1) = 3R−

∣∣∣∣∣ 2F1Mω2
0

sin
(
ω0T1
2

)∣∣∣∣∣
where ω0 =

√
(C1 + C2)/M and multiple random variables

x = [C1,C2,M ,R,T1,F1]T. The variables of x are mutually
independent and normally distributed.

Their distribution parameters are listed in Table 2.
Let [δ] = 0.03 and N = 105. According to the

method developed in Sec. III.B, the original Kriging model
is set to have N0 = 10 sample points and 105 random
sample points are generated; the next is to call to the
performance function at each initial points and iterativley
enhance the Kriging model until it is converged. To demon-
strate the stability of the proposed method, it is randomly
repeated in MATLAB for five times, the results are respec-
tively compared with those acquired from other methods
like AK-MCS+U, AK-MCS+EFF, IS+RS and IS+ANN.
Relative results and accuracy are list in Table 3.

According to the comparison shown in Table 3, the pro-
posed method is able to estimate the target failure proba-
bility of the system with less number of evaluations of the
true performance function. The results of random repeat are
not greatly different from each other, which indicates the

TABLE 3. Comparison of results for example 2.

FIGURE 4. Graphs of P̂f with different Ncall for example 2.

proposed method is stable. Fig. 4 presents how the esti-
mated failure probability P̂f from each repeat changes along
with Ncall.

As shown in Fig. 4, it can be seen that all the estimated
failure probability values tend rapidly to the target value.
When Ncall ≈ 25, estimated failure probabilities tend to
converge.

C. EXAMPLE 3
A three point bending test is analyzed in this section. This
example has been used by Refs. [30], [31]. The structure is
shown in Fig. 5.

In this application, an initial crack is set in the middle of the
bottom side, and stress P is exerted to the middle of the top
side. Elastic material of the beam is set with Young’s modulus
E = 210 GPa and Poisson’s ratio v = 0.2.
Its performance function is G, as shown at the bottom

of this page, where the beam high Wv and the initial crack
length a are the random variables, and the beam length Sv, the
structural thickness Bv and the material toughness Kc are the
deterministic parameters. All the parameters are summarized
in Table 4.

G =
KC2

(
1+ 2

(
a
/
Wv
)) (

1−
(
a
/
Wv
))3/2 BvW 3/2

v

Sv3
(
a
/
Wv
)1/2 [1.99− (a/Wv

) (
1−

(
a
/
Wv
)) (

2.15− 3.93
(
a
/
Wv
)
+ 2.7

(
a
/
Wv
)2)] − PApplied
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FIGURE 5. The three point bending test.

TABLE 4. The variable distribution parameters and deterministic for
example 3.

FIGURE 6. Convergence history of the proposed method.

To further illustrate the accuracy and engineering practica-
bility of the proposed method, two of the above-mentioned
variables are set to be random variable. According to
the proposed method, the convergence and result of this
application are shown in Fig. 6.

From the left subfigure, even with a small number of
initial sample points, the proposed method can converge after
several iterations. From the right subfigure, the added sample
points are generally distributed around the target limit state
surface, and the model can fit the limit state function quite
well in the area of interest. The proposed method can be used
to estimate the failure probability of fatigue crack growthwith
favorable accuracy and engineering practicability.

D. EXAMPLE 4
This section employs the proposed method to calculate the
failure probability of a cracked structure [32]. The flat plate
with park-through crack and two tensile loads apply to its top
and bottom sides is presented in Fig. 7.

In this application, an part-through crack is set in the
middle of the flat plate, and load P applied its top and bottom
edges. The crack depth a, the crack length 2c, the structural

FIGURE 7. Geometry of the structure.

TABLE 5. The variable distribution parameters and deterministic for
example 4.

thickness h, the applied load P and the material toughness
KIC are the uncertain variables. The Young’s modulus E and
Poisson’s ratio v are the deterministic parameters. All the
parameters are summarized in Table 5.

The finite element model (FEM) software is used to model
the park-through crack structure, the FEM of the struc-
ture is shown in Fig. 8. The initial mesh is composed by
of 46406 elements and 197181 nodes, and Fig. 9 shows the
contour result of the stress when the random variables are set
to be the corresponding mean values.

The 20 samples generated from Latin hypercube sampling
and stress intensity factors at crack tip are obtained by FEM
software. The Kriging prediction of maximum stress intensity
factor based on the initial conditions of these samples can be
described as

max{KI1,KI2, ....,KIn} = Y (P, a, c)

According to Ref. [29], the structure is failure if stress
intensity factor is greater than plane strain fracture toughness
at point of part-through crack tip. So the performance func-
tion of this problem can be described as

G(P, a, c) = KIC −max{KI1,KI2, ....,KIn}

where KIi(i = 1, 2, . . . , n) is stress intensity factor of each
node at the crack tip, and the stress intensity factor of each
node is calculated by the FEM software. G(P, a, c) > 0
represents that the structure is safe.

According to the procedure presented in Sec. III.B, the fail-
ure probability Pf = 1.46 × 10−3 is obtained after 32
iterations. 52(20 + 32) times of the structure model are
required to calculate the failure probability using the pro-
posedmethod. Calculating the structure structural model with
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FIGURE 8. The finite elements mesh.

FIGURE 9. Stress contour of the structure and the crack tip.

crude IS combined with FEM software would require at least
11 days (1000 × 932s, note that it takes 932 seconds per
a calculation evaluation of the structure model); however,
the computational time can be reduced to 13.5 hours (52 ×
932+52×1.58s) by the proposed method. For this structure,
both MCS and IS are too time-consuming.

E. ANALYSIS OF RESULTS
According to Example 1 and 2, comparedwith othermethods,
the method proposed in this paper is able to both remark-
ably reduce the evaluation times of structural performance
function in reliability analysis and guarantee the accurate
failure probability estimation. performance functions in engi-
neering are always implicit and time-consuming. This kind
of implicit functions has to be solved with, for example,
limit element numerical model. It may take hours or even
longer time to run a numerical model only once. However, the
proposed method can not only make sure about calculation
accuracy, but also maximize efficiency. Compared with the
existing learning functions, the learning function Lf (Eq. (13))

proposed focuses on the influence that the Kriging model
accuracy at the different points in input space imposes on the
accuracy of failure probability estimation, considers both the
local accuracy of Kriging model and PDF f (x), and guaran-
tees that the selected samples are located in the important
areas (Fig. 2). Besides, through the reliability analysis of
cracked structures in Example 3 and Example 4, the proposed
model is an useful tool for engineering problems with time-
consuming model. By calling to target performance function
as few times as possible, the proposed method can reduce the
computational time required by reliability analysis of cracked
structures, and obtain more accurate results.

V. CONCLUSION
By analyzing the shortcomings of the existing learning func-
tions in the Kriging-based structural reliability analysis, this
paper proposes a new learning function which integrates the
local accuracy of Kriging model and PDF and applies it
to reliability analysis method. According to studies of four
examples, it shows that: (1) the proposed learning function
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can avoid the unnecessary sampling in the unimportant area
during reliability analysis. (2) Comparing with other meth-
ods, the proposed method can efficiently enhance the Kriging
model, and reduce the number of evaluations of structural
performance function. (3) In the proposed reliability analysis
method, there is no special hypotheses about the nonlinear-
ity of structural performance function or its explicit-implicit
feature, so both linear and nonlinear situations are included
in the performance functions of the examples. Results show
that the proposedmethod can predict the reliability and failure
probability of engineering structures with time-consuming
model. (4) The proposed method is available to calculate the
fracture failure probability of crack structures. The proposed
method can be used to solve the reliability analysis of other
practical engineering problems, especially for implicit com-
plex problems, so it has certain engineering application value.

The method proposed in this paper combines the Kriging
model with MCS. When failure probability of a structure is
small, NMC needs to be very large. For example, NMC will be
above 107 if Pf is about 10−4. In above situation, the com-
putational procedure consumes a large amount of computer
memory, and each iteration may take even longer than an
hour. Combining the proposed learning function with IS and
SS can further increase the computational efficiency.
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