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ABSTRACT The multi-label classification problem in Unmanned Aerial Vehicle (UAV) images is particu-
larly challenging compared to single-label classification due to its combinatorial nature. To tackle this issue,
we propose in this paper a deep learning approach based on encoder-decoder neural network architecture
with channel and spatial attention mechanisms. Specifically, the encoder module which is based on a pre-
trained convolutional neural network (CNN) has the task to transform the input image to a set of feature
maps using an opportune feature combination. To improve the feature representation further, this module
incorporates a squeeze excitation (SE) layer for modelling the interdependencies between the channels of
the feature maps. The decoder module which is based on a long short terms memory (LSTM) network has
the task of generating, in a sequential way, the classes present in the image. At each time step, it predicts the
next class-label by aligning its hidden state to the corresponding region in the image by means of an adaptive
spatial attention mechanism. The experiments carried out on two UAV datasets with a spatial resolution
of 2-cm show that our method is promising in predicting the labels present in the image while attending
the relevant objects in the image. Additionally, it is able to provide better classification results compared to
state-of-the-art methods.

INDEX TERMS UAV imagery, deep learning, attention neural network, multi-label image classification.

I. INTRODUCTION
The increase adoption of unmanned aerial vehicles (UAVs),
commonly known as drones have proven their effectiveness
in collecting images with extremely high spatial details over
inaccessible areas and limited coverage zones due to their
small size and fast deployment. The availability of this type
of imagery has opened the door for several methodological
developments such as classification, object detection and
more recently multi-label classification [1], [2].

Multi-label image classification aims to assign multi-
ple class labels from predefined a set of objects. It has
a wide range of applications, such as visual object recog-
nition [3]–[5], image content annotation [6], [7], and
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content-based image retrieval [8]–[10]. The multi-label clas-
sification task is particularly challenging compared to the
single-label classification due to its combinatorial nature.

The general literature of computer vision convoys several
approaches to solve the multi-label classification problem.
The existing methods can be divided into transformation or
adaptation methods. In the first group, the baseline method is
to decompose a multi-label task into a set of binary classifica-
tion problems [11]. The idea of the binary classification is to
independently learn one binary classifier for each label [12].
This method becomes costly when the number of classes is
high. Other methods cast the task of multi-label classification
into a multiclass problem, where each multiclass problem
represents one or more labels [13]. Other work uses label
ranking techniques which ranks the related labels before
the unrelated ones [14]. The second group, the adaptation
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methods, includes adaptive boosting [16], and lazy learn-
ing [17]. For more details, we refer the reader to Huang et al.
work [15].

Recently, deep learning strategies have been introduced as
a promising solution to improve further the representation
aspect [18]. For instance, Gong et al. [19] proposed a con-
volutional neural network (CNN) with a similar structure to
AlexNet [20] and then uses various multi-label loss functions
for training the network. In particular, they generalize the
standard softmax loss function widely used for single-label
classification to handle tomulti-label classification scenarios.
Wei et al. [21] introduced a novel Hypotheses-CNN-Pooling
(HCP) where a set number of object segment hypotheses are
taken as the inputs. Then a shared CNN is connected with
each hypothesis, and finally the CNN output resulting from
different hypotheses are fused with max pooling to gener-
ate the multi-label predictions. In another work, the authors
propose to better exploit the correlation information between
labels [22] by maximizing the score of labels present in the
image over the absent ones based on a predefined margin in
addition to the correlation between the extracted features and
their corresponding labels through a learned semantic space.
Zhu et al. [24], introduced a spatial regularization network
(SRN) based on attention maps to capture both semantic
and spatial relations of the multiple labels present in the
image. The SRN generates attention maps for all labels and
captures the underlying relations between them via learnable
convolutions.

Furthermore, recurrent neural networks (RNNs) were also
used to discover the correlation between labels in a multi-
classification problem. The authors in [23] combined RNNs
with CNNs to learn a joint image-label embedding to
characterize the semantic label dependency as well as the
image-label relevance. The CNN is employed as the image
representation, while the recurrent layer captures the informa-
tion of the previously predicted labels. Then the output label
probability is computed according to the image representa-
tion and the output of the recurrent layer. Wang et al. [25]
proposed a spatial transformer layer with a long short-terms
memory (LSTM) network. The spatial transformer layer aims
to locate regions from the convolutional feature maps in a
region-proposal-free way while the LSTM network predicts
the semantic labeling scores.

In the context of remote sensing imagery, few contributions
have been reported to solve the problem of multi-label clas-
sification compared to the general literature of computer
vision. For instance, the authors in [1] proposed to exploit the
spatial contextual information besides label cross-correlation
between adjacent tiles in UAV images through a multi-label
conditional random field (CRF) method. In a first step,
the UAV image is subdivided into a grid of tiles, which are
then, processed using a bag of word (BOW) model followed
by an encoder network for generating the feature represen-
tation. Then the output of this module is fed to another
neural network for providing the tile-wise multi-label pre-
diction probabilities. In the second phase, the multi-label

CRF model is applied by integrating the spatial correlation
between adjacent tiles and the correlation between labels
within the same tile to improve iteratively themulti-label clas-
sification map. In another work, Zeggada et al. [2] proposed
to combine radial basis function neural networks (RBFNN)
and a customized thresholding layer for label detection. For
such purpose, the authors use the outputs of the RBFNN as
indicators of presence/absence of the corresponding object.
During the prediction phase, the thresholding layer is used
for deciding on the presence/absence of classes instead of an
intuitive decision mechanism which uses the simple rule ‘‘the
object is present if the output is greater than 0.5, otherwise it
is absent.’’

While these methods provide an interesting set of solutions
to the problem; they are mainly based on the combination of
several tools and are not trainable in an end-to-end manner.
In this paper, we propose an alternative solution based on
encoder-decoder neural network architecture with channel
and spatial attention mechanisms. Specifically, the encoder
module based on a CNN has the task to transform the UAV
image to a set feature maps. To improve further the feature
representation by modelling the interdependencies between
the channels, this module incorporates a squeeze excitation
(SE) layer. The decoder module based on LSTM network has
the task of predicting in a sequential way the classes present
in the image. At each time step, it predicts the next class-label
by aligning its hidden state to the corresponding region in the
image by utilizing a spatial attention mechanism. The main
contributions of this paper can be summarized as follows:

1) Propose an end-to-end deep learning method for UAV
image multi-labeling based on CNN-LSTM networks;

2) Incorporate channel and spatial attention mechanisms
to improve the feature representation, and the detection
of the regions corresponding to the classes present in
the image;

3) Validate the method on two UAV datasets with a spatial
resolution of 2-cm acquired over the cities of Trento
and Civezzano (Italy) in 2011 and 2012, respectively.

The paper is organized into five sections. In Section 2,
we review the inception-v3 network used as a pre-trained
CNN in addition to the LSTM network. In Section 3,
we describe the proposed method in detail. In Section 4,
we present the experimental results. Finally, we provide con-
cluding remarks and directions for future developments in
Section 5.

II. BACKGROUND
A. INCEPTION-V3 NETWORK
The inception-v3 network [26] was proposed by a research
team from Google. This network is composed of 42 layers
and includes three types of inception modules composed
of convolutions filters with sizes in the range of 5 × 5 to
1 × 1. The main architecture of this network is given in
Figure 1. The inception modules aim to reduce the number of
parameters owing to the factorization of larger convolution
layers into smaller layers. They use convolution filters of
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FIGURE 1. Inception-v3. Architecture [26].

FIGURE 2. LSTM structure.

sizes 1 × 1 to reduce the number of input channels and
then perform different parallel operations, which are then
concatenated at the output. The 5×5 convolution filters of the
original inception module are replaced by stacking two 3× 3
convolutions with fewer parameters. As the network goes
deeper, it uses high dimensional representations using two
inception modules of type C referred as 2×Inception Module
C (Figure 1). This network includes more improvements in
the architecture compared to the original GoogLeNet network
(inception-v1) which was the winner of the ILSVRC14 (Ima-
geNet Large Scale Visual Recognition Competition). These
improvements include; 1) the RMSProp optimizer, 2) Fac-
torized 7 × 7 convolutions, 3) BatchNormalization in the
auxiliary classifiers, and 4) Label Smoothing, which is a type
of a regularizing component added to the loss formula that
prevents the network from becoming too confident about a
class and prevents overfitting.

B. LSTM NETWORK
The LSTM [28] is a special type of the traditional recurrent
neural networks (RNN), characterized by its capability of
learning over long-term dependencies. As shown in Figure 2,
the LSTM has four types of gates at time step t in memory
cell. These are the input gate it , the update gate ct , the output
gate ot , and the forget gate f t . At each time step, the gates
receives as input the previous LSTMhidden state ht−1 and the

current input yt . The cell memory updates itself recursively
based on the interaction of its previous values with the forget
and update gates’.

The main working mechanism of the LSTM network is
given as follows:

it = sigmoid
(
W i.

[
ht−1, yt

])
(1)

f t = sigmoid
(
W f .

[
ht−1, yt

])
(2)

c̃t = tanh
(
Wg

[
ht−1, yt

])
(3)

ct = f t∗ct−1 + it∗c̃t (4)

ot = sigmoid
(
Wo

[
ht−1, yt

])
(5)

ht = ot ∗ tanh (ct) (6)

where ∗ denotes the Hadamard product andW i,W f ,Wg, and
Wo are learnable weights. For simplicity, we can model the
hidden state ht as follows:

ht = LSTM (ht−1, yt , rt−1) (7)

where rt−1 is the memory cell vector at time t − 1.

III. PROPOSED METHOD
Let us consider D =

{
X i, yi

}n
i=1 as a multi-label UAV

dataset with n training images. Each training image Xi is
associated with its corresponding ground-truth class labels
yi = (y1i, y2i, . . . , yTi). In a multi-label setting, the image X i
can be assigned to more than one object based on its content.
Our goal is to learn a set of weights W for the encoder-
decoder architecture depicted in Figure 3 that allows inferring
in a sequential manner the objects contained in a test UAV
image unseen during the training phase. Detailed descriptions
of the method are provided in next sub-sections.

A. ENCODER MODULE WITH CHANNEL ATTENTION
In the image encoding module, we use the inception-v3
network described previously as a backbone. In particular,
we fuse the outputs of the intermediate inception layers
Mixed4 (V4) and Mixed7 (V7) of dimensions 28× 28× 288
and 14 × 14 × 768, respectively as shown in Figure 3-b.
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FIGURE 3. Proposed multi-labeling method with channel and spatial attention mechanisms (figure 3-a): The UAV image is fed to an encoder module
based on a pre-trained CNN (inception_v3) for feature generation. The features are obtained by fusing the outputs of Mixed7 and Mixed4 using an
opportune fusion mechanism (figure 3-b) followed by Squeeze excitation layer (SE) shown in figure 3-c for feature calibration. The resulting feature
maps are fed to a decoder module composed on an LSTM with spatial attention (figure 3.d) for predicting in a sequential way the labels while attending
the corresponding regions in the image. The complete architecture is learnable end-to-end with the backpropagation algorithm.

This choice is motivated by the fact that the Mixed4 layer has
a better spatial details compared to the Mixed7 layer, but on
the other side it is less discriminative. Thus the combination
of both outputs aims to attend different regions in the image
while using discriminative features. The combination is done
by convolving both outputs with two filters of dimensions
(1,1,128). Then the low spatial feature maps are up-sampled
with a factor 2 and added to the feature maps with high spatial
dimensions yielding features maps V of dimensions equal to
(28,28,128).

To attend informative features and suppress less useful
ones, we apply a squeeze (SE) layer to the resulting acti-
vation maps V for feature calibration [27]. The aim is to
improve further the feature representation by modelling the
interdependencies between the channels of the feature maps.
As shown in Figure 3b. The feature maps are then squeezed
through a global average pooling operation (GAP) to yield
features of dimension (1, 1, 128), which are then fed to fully
connected layer followed by ReLU activation function for
dimensionality reduction with a reduction ratio equal to 8
(Figure 3-c). Then, we use another fully connected layer of
dimension 128 to recover the original dimensions followed by

a sigmoid activation function. The resulting feature vector s is
used to modulate the channels ofV through a simple channel-
wise scaling operation. In brief, the SE layer operates as
follows:

s = Sigmoid (W2 (ReLU (W1 (V)))) (8)

VSE = s� V (9)

where s is the scaling vector and � is the channel-wise
multiplication operation. Thus, the outputs of this module are
feature activationmapsVSE ∈Rd×w×h, where d = 128 is the
number of the activation maps, while and w = h = 28 rep-
resents their width and height. For computation convenience,
we set VSE = [v1, v2, . . . , vK ] ∈ Rd×K , where each feature
vector vk ∈ Rd and K = w× h is the total number of feature
vectors.

B. DECODER MODULE WITH SPATIAL ATTENTION
This module (Figure 3-d) has of aligning the current hidden
state of the LSTM to attend the corresponding region in the
image by means of a spatial attention mechanism. Basically,
the image features VSE obtained from the encoder module
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are combined with the hidden state ht ∈ Rd of the LSTM
network through a Softmax layer to generate the attention
weights:

αt = Softmax
(
wT5 tanh(W3VSE �W4ht

)
(10)

where W3 ∈ RK×d , W4 ∈ RK×d and wT5 ∈ RK are
learnable weights, and αt ∈ RK is the attention weight vector
with

∑K
k=1 αtk = 1.

Based on the attention distribution, the context vector ct
can be obtained by:

ct =
∑K

k=1
αtkvk (11)

where ct and ht are combined to predict the probability for
the next label through a classification module composed of
fully connected layer followed with a softmax classification
layer as shown in Figure 3-a. The probability output of the
current label conditioned by the previous predicted labels is
given as follows:

p(yti|Xi, y1i, . . . y(t−1)i)=Softmax
(
W s

(
ht + γ ct

))
(12)

where γ ∈ R and W s ∈ RT×d are learnable parameters.
The scaling variable γ allows controlling the contribution of
the context vector. It is worth recalling that this spatial atten-
tion layer is similar to the one proposed in [29] mainly for
image captioning but with some modifications. In particular,
we multiply the outputs of the LSTM to each column of the
reshaped feature maps instead of an addition (equation 10)
and use a scaling parameters γ to weight the contribution
of the context vector ct (equation 12). In the experiments,
we found that these modifications lead to a better alignment
of the labels to their corresponding regions in the UAV image.

To learn the set of weights of the proposed encoder-decoder
model W = {W1,W2,W3,W4,w5,W s, γ }, we propose to
minimize the negative of the log-likelihood function:

L (D,W )

= −
1
n

∑n

i=1

∑T

t=1
log

(
p
(
yti|X i; y1i, . . . y(t−1)i;W

))
(13)

To optimize the cost function L (D,W ), we use the RMSProp
optimization method, which is one of the most popular adap-
tive gradient algorithms introduced by Hinton to speed up
the training deep neural networks. The RMSProp divides the
gradient by a running average of its recent magnitude.

E[g2]t = βE[g
2]t−1+(1− β)

(
∂L
∂W

)2

(14)

Wt = Wt−1−α

(
∂L
∂W

)
1√

E[g2]t
(15)

where E[g2]t is the moving average of squared gradients
at iteration t, ∂L

∂W is the gradients of the loss function with
respect to the weights W , while α is the learning rate and β
is the moving average parameter. In the experiments, we set
the parameter β to its default values (β = 0.9), while for the

FIGURE 4. UAV used for the acquisition of the images.

learning parameter α, we set it initially to 0.001 and decrease
by a factor of 1/10 after 20 epochs.

IV. EXPERIMENTS
A. DATASET DESCRIPTION
In the experiments, we evaluated the proposed attention
network on two UAV datasets acquired over the faculty
of science of the University of Trento (Italy) and near the
city of Civezzano (Italy) on October 2011 and 2012 by
means of a UAV equipped with imaging sensors span-
ning the visible range (Figure 4). All acquisitions are
made using a Canon EOS 550D camera characterized by
a CMOS APS-C sensor with 18 megapixels. Both datasets
contain UAV images of dimension 256 × 256 × 3 pixels
with a spatial resolution of approximately 2 cm. For the
Trento dataset, 1000 images are used for training and
3000 images for testing. The dataset contains 13 classes
named as: {‘Asphalt’, ‘Grass’, ‘Tree’, ‘Vineyard’, ‘Pedestrian
Crossing’, ‘Person’, ‘Car’, ‘Roof1’, ‘Roof2’, ‘Solar Panel’,
‘Building Façade’, ‘Soil’, and ‘Shadow’}. The Civezzano
dataset, on the other hand, contains 1000 training images
and 3105 testing images and it has 14 classes named as
{‘Asphalt’, ‘Grass’, ‘Tree’, ‘Vineyard’, ‘Low Vegetation’,
‘Car’, ‘Roof1’, ‘Roof2’, ‘Roof3, ‘Solar Panel’, ‘Building
Facade’,’ Soil’, ‘Gravel’, and ‘Rocks’}. Figure 5, shows sam-
ple images from these two datasets with the corresponding
classes.

B. PARAMETER SETTING
To learn the set of weights W of the network composed of
a total of 605845 learnable parameters including the con-
volution layers, the channel and spatial attention layers and
the LSTM parameters, we used the RMSprop optimization
method with a mini-batch size of 50 images. We set the
parameter β to its default values (β = 0.9), while for the
learning parameterα, we set it initially to 0.001 and decreased
by a factor of 1/10 after 20 epochs.

For performance evaluation, we present the results in terms
of sensitivity

(
Se = TP

TP+FN

)
, specificity

(
Sp = TN

TN+FP

)
, and

average accuracy
(
Ac = Se+Sp

2

)
, where TP, FN ,TN refer to

the true positives, false negatives and true negatives, respec-
tively. We use also the Hamming loss (HL) for measuring
the fraction of incorrectly predicted labels; the label ranking
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FIGURE 5. (a) Trento and (b) Civezzano datasets (green color indicates
the labels associated with each image).

loss (RL) for computing the average number of label pairs that
are incorrectly ordered; the Precision score

(
Pr = TP

TP+FP

)
;

which is the proportion of labels correctly classified of the
predicted positive labels; and the mean average precision
(mAP), which refers to the average fraction of relevant labels
ranked higher than the irrelevant ones.

We run all experiments on an HP Omen Station with the
following characteristics: Central processing Unit (CPU)-
Intel core (TM) i9-7920× CPU @ 2.9GHz with a RAM
of 32 GB and an NVIDIA GeForce GTX 1080 Ti Graphical
processing Unit (GPU) (with 11 GB GDDR5X memory).
All code was implemented using Keras with TensorFlow
backend, which is an open-source deep neural network library
written in python.

C. RESULTS
Figure 6 shows the evolution of the loss function during the
training phase of the proposed encoder-decoder network with
channel and spatial attention mechanisms for both datasets.
As can be seen, the training process converges after 30 itera-
tions. In Table 1, we report the classification results obtained
on the test sets. In terms of (Acc, and mAP) the network
yields (83.59%, and 54.60%) and (86.93%, and 62.76%) for
Trento and Civezzano, respectively. In Figure 7, we show the
class activation maps obtained by the attention module during
the generation of the classes present in the image. Although,

FIGURE 6. Loss versus the number of epochs obtained during the training
phase for Trento (blue color) and Civezzano (red color).

FIGURE 7. The class activation maps generated by the attention
mechanism during the sequential prediction of the class labels detected
in the image.

no prior information is given about the class location during
the training phase, the network exhibits an interesting behav-
ior in providing different attention weights to each class in
the image.

To analyze further the effect of the attention layers and the
fusion trick of the activation maps proposed in Figure 3-b,
we repeat the above experiments but with three different con-
figurations of the network. In the first scenario, we remove the
spatial attention layer; while in the second and third scenarios
we apply the spatial attention layer to the activation maps V4
and V7 independently. For the first scenario without spatial
attention, we obtain an (Acc, and mAP) of (79.00%, and
47.46%) and (82.00%, and 53.03%) for Trento and Civez-
zano, respectively. The application of the spatial attention to
the activationmapsV4 yields theworst results as these feature
maps are less discriminative. On the other side, the utilization
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TABLE 1. Classification results obtained for: (A) Trento, and (B) Civezzano datasets. ↑ (↓) Indicates that the larger (smaller) the value, the better the
performance.

TABLE 2. Comparasion against state-of-the-art methods: (A) Trento, and (B) Civezzano datasets. ↑ (↓) Indicates that the larger (smaller) the value, the
better the performance.

of V7 shows better improvements as it yields an (Acc, and
mAP) of (82.09%, and 53.12%) and (84.68%, and 59.25%)
for Trento and Civezzano, respectively. Yet, the combination
of V4 and V7 besides the application of the channel and
spatial attention layer provides better results confirming the
effectiveness of the proposed network.

In Table 2, we compare our method to several state-of-
the-art methods. The CNN-RBFNN method proposed in [2],
which uses a customized thresholding layer for detecting the
class labels. The CNN-MaxMarginmethod [22], which uses a
max-margin loss to maximize the score of positive labels ver-
sus the scores of negative labels not present in the image. The
CNN-softmax method [19], which uses a modified softmax
loss function suitable for multi-label classification. Addition-
ally, we compare our results against the standard CNN-LSTM
method [23] in addition to another CNN-LSTM method [29]
based on a spatial attention mechanism. The results reported
in Table 2 confirm clearly the effectiveness of the proposed
method. For instance, for Trento dataset, our method yields
an accuracy of 83.59% and a mAP of 54.60%. For Civez-
zano dataset, it yields an accuracy of 86.93% and a mAP
of 62.76%. The closest method based on spatial attention
provides an accuracy of 80.17% and mAP of 49.27% for
Trento and 83.14% and 59.86% for Civezzano.

V. CONCLUSION
In this paper, we have proposed an encoder-decoder network
for UAV multi-labeling. This network incorporates a channel

attentionmechanism tomodel the interdependencies between
the channels of the feature maps. It uses also a spatial atten-
tion layer to identify the regions corresponding to the labels
available in the image. The experimental results obtained
on two UAV datasets confirm the promising capability of
the proposed method compared to state-of-the-art solutions.
For future developments, we propose to use other pretrained-
CNN models, and enhance the decoder layer by adding addi-
tional loss function that allows exploiting the image-to-label
correlation and label-to-label correlation in a better way.
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