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ABSTRACT This paper considers a Gaussian interference channel (IC), where two transmitters send two
messages to two receivers respectively. By utilizing the in-band full-duplex (FD) amplify-and-forward (AF)
scheme, transmitter cooperations are deployed to enhance the system performance. In particular, each
transmitter is capable of listening to its counterpart and then simultaneously transmits both the source
signals to achieve higher power gain. Based on the proposed scheme, the equivalent channel model as
well as the statistics of the accumulated residual self-interference and noise (ARIN) introduced by the
transmitter cooperations and imperfect self-interference (SI) cancellation is analyzed. With the joint and
single-user decoding schemes, the corresponding achievable rate regions are derived and a two-stage iterative
algorithm is proposed to characterize these regions: in each step, fix the covariancematrix of the interferences
and noises, and then adopt a two-step iterative semidefinite relaxation (SDR) method to optimize the two
transmitters’ transmission parameters, respectively. Simulation results reveal that the proposed scheme can
significantly improve the achievable rate under several channel conditions.

INDEX TERMS Interference channel, full-duplex (FD), amplify-and-forward (AF), rate region, semidefinite
relaxation (SDR).

I. INTRODUCTION
For the forthcoming 5G cellular systems, interference man-
agement is one of the most crucial tasks for physical-layer
transmissions and network-level user scheduling, especially
in the ultra dense networks, where numerous randomly
deployed access points and mobile users are located within
an area of interest [1]. As the network becomes denser,
interferences between the access points and mobile users
become more complicated. For example, when two mobile
users are closely located at the edge of two cells, respec-
tively, co-channel interference, which is very strong due to the
similar path losses between the access points and the mobile
users, becomes a major obstacle in increasing the network
throughput.

From the information theoretical view point, multiple
transmission and reception pairs sharing the same fre-
quency band and interfering with each other is modeled
as the interference channel (IC); this channel was initially

The associate editor coordinating the review of this article and approving
it for publication was Prabhat Kumar Upadhyay.

studied by Shannon [2] and later by Carleial [3]. For the
two-user IC case, the best known achievable result was
obtained by Han and Kobayashi by the following scheme
[4]: Each source message is split into two sub-messages,
one as a common message decoded by both the receivers
and one as a private message decoded by the intended
receiver; each receiver decodes its desired message and
the common message from the other transmitter, and the
private message from the undesired receiver is treated as
interference. In particular, when the co-channel interfer-
ence is very weak [5], single-user decoding scheme, for
which each receiver only decodes its own desired message
and simply treats the other transmitter’s signal as interfer-
ence, is optimal to achieve the channel capacity [5], [6];
on the other hand, when the co-channel interference is
very strong [7], joint decoding of both the source mes-
sages at each receiver is optimal to achieve the channel
capacity [8].

Furthermore, literature [9]–[15] showed that by introduc-
ing transmitter cooperations, the achievable rates of the IC
can be potentially improved. Transmitter cooperations can
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be established in two different manners: out-of-band con-
ferencing links [9], [11], [12] and in-band full-duplex (FD)
communications [13]–[15]. For the first case, transmitters
talk to each other via conferencing links within limited
communication rates, and the transmitter cooperation links
are orthogonal to the transmitter-receiver channels. The
authors in [9] extended the conferencing strategy proposed by
Willems in [16] to the case of the Gaussian compound mul-
tiple access channel (MAC) and derived the corresponding
capacity region. Wang and Tse [11] investigated the benefits
of limited transmitter cooperations for the Gaussian IC by fur-
ther dividing messages into noncooperative and cooperative
ones, and applying linear beamforming for the cooperative
messages, and the gap between the achievable rate and chan-
nel capacity was shown to be bounded with finite bits. For
the symmetric Gaussian IC, Bagheri et al. [12] proposed a
transmission strategy following the Han-Kobayashi scheme,
while applying zero-forcing to partially suppress the private
messages at each receiver. It is worth pointing out that the
aforementioned transmitter cooperations are based on the
decode-and-forward (DF) scheme [17], [18] and each trans-
mitter (partially) decodes the messages from its counterpart
via the conferencing links.

In contrast to the aforementioned case, transmitter coop-
erations utilizing the in-band FD communications, where
the transmitters transmit and receive simultaneously at the
same frequency band, will not consume extra frequency
resources, while it may introduce more interference. For
the two-user Gaussian IC with source cooperations, Høst-
Madsen [13] derived the upper bounds for the capacity region
and the DF scheme and dirty paper coding were applied
to obtain the achievable rate for both the asynchronous and
synchronous transmitter cases, respectively. Under the same
IC setup, Prabhakaran and Viswanath [14] proposed a cod-
ing scheme based on the Han-Kobayashi scheme with the
source message being partially decoded at each transmit-
ter and obtained the achievable rate within a constant gap
of the newly derived upper bound. Li et al. [15] investi-
gated the diversity-multiplexing tradeoff of the delay-limited
symmetric two-user fading IC and showed that the DF
transmitter cooperations can notably improve the diver-
sity performance. However, the above works assumed ideal
self-interference (SI) cancellation at these FD transmitters
and thus neglected the effect of the residual SI.

In this paper, we consider a Gaussian IC with two trans-
mitters sending two messages to two receivers, respectively1.
As explored in our previous study [19], transmitter cooper-
ations can be constructed by in-band FD communications:
The transmitters are capable of transmitting and receiving
at the same frequency band; the transmitter cooperations
and transmitter-receiver communications are with the same
frequency band; and the SI cancellation at the transmitters is

1Since the signal processing and optimization methods for the single-user
decoding scheme are similar to the ones for the joint decoding scheme,
we omit the analysis of the single-user decoding scheme for simplicity.

imperfect and the residual SI is thus remained in the received
signal. Based on the above setup, we adopt the amplify-
and-forward (AF) scheme at each transmitter to forward
the received signals from its counterpart, which provides a
much simpler analog receiver processing strategy compared
with the conventional DF scheme. Moreover, to improve the
achievable rates of the considered system, a repeated trans-
mission strategy is adopted and each transmitter sends its own
message twice in two successive time slots: At the first time
slot, the two transmitters ‘‘exchange’’ their transmit signals,
whereas the one from its counterpart may be corrupted by the
residual SI (introduced by the imperfect SI cancellation) and
the additive noise; at the second time slot, each transmitter
sends its own message again as well as the received signal
from its counterpart in the first time slot to form certain ‘‘com-
mon message’’ and transmitter beamforming is then applied
to achieve higher power gain [20]. Meanwhile, since the
residual SI and the additive noise at the transmitters cannot be
eliminated, it will accumulate over time and thereby possibly
degrades the system performance. The main contributions of
this paper are summarized as follows:

1) First, an in-band FD transmitter cooperations frame-
work with the AF scheme is proposed for the Gaus-
sian IC and the equivalent channel model is analyzed.
In particular, each transmitter first sends its own
codewords and receives a corrupted version from its
counterpart; then, after the SI cancellation and other
processes, these two signals are obtained by both the
transmitters and sent again to the destinations with
properly designed transmission parameters that con-
trol the transmitter beamforming. At each receiver,
we show that the channel for the considered system
is equal to a two-tap MAC channel, with the addi-
tive noise determined by the accumulated residual
self-interference and noise (ARIN).

2) Then, we investigate the statistics of the ARIN. As time
passes, the ARIN at each transmitter is shown to form
a Markov process, and when the time slot tends to
infinity, the ARIN approaches a stationary state when
certain convergence conditions for the transmission
parameters are satisfied. When the stationary state is
achieved, the covariance of the ARIN is also computed.

3) Finally, under the stationary state, we derive the aver-
age achievable rate regions for the IC based on the joint
decoding and single-user decoding schemes. To char-
acterize these regions, we adopt a two-stage iterative
algorithm: First, the covariance matrix for the inter-
ference and noise of the equivalent two-tap channel
are fixed, as well as the power of the ARIN, and
then the transmission parameters are optimized by
utilizing a two-step iterative method, with each step
alternatively optimizing each transmitter’s transmis-
sion parameters using a semidefinite relaxation (SDR)
approach; next, the covariance matrix and the power of
the ARIN are updated with the obtained transmission
parameters.
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FIGURE 1. Interference channel with two full-duplex transmitters.

The remain of the paper is organized as follows: Section II
introduces the system model; Section III analyzes the statis-
tics of the ARIN, studies the rate regions for the two joint
decoding schemes, and then proposes an efficient algo-
rithm to compute the transmission parameters; Section IV
presents some simulation results to validate our analysis; and
Section V presents the conclusions.
Notations: log(x) and |x| denote the base-2 logarithm

and 2-norm of x. C∗ and <(C) denote the conjugate and
real part of a complex number C . MT , MH , Tr(M), and
Rank(M) denote the transpose, conjugate transpose, trace,
and rank of matrix M. Diag(x1, x2, · · · , xn) denotes a diag-
onal matrix with x1, · · · , xn being the diagonal elements.
M � 0 means that M is a positive semidefinite matrix.
In this paper, we denote j as index number of the transmitter
j, j = 1, 2.

II. SYSTEM MODEL
In this paper, a Gaussian IC is considered as shown in Fig. 1,
where two transmitters can cooperatively transmit messages
and the two receivers decode the messages from both the
transmitters. Transmission cooperations are established via
in-band FD communications between the two transmitters:
The transmitters are capable to simultaneously transmit and
receive at the same frequency band, and each transmitter can
receive the signal from its counterpart as well as that from
itself, which is treated as SI and needs to be cancelled before
further processions. The links between the two transmitters
share the same frequency band as the other links between the
transmitters and the receivers. Moreover, the channel coef-
ficients among the transmitters and receivers are fixed after
channel realizations and exactly known to the transmitters
and receivers. In this paper, we consider the transmissions of
N source messages at each transmitter, which are encoded
separately into codewords xj(1), xj(2), · · · , xj(N ). The trans-
missions of N pairs of codewords are over N + 1 time slots
and the asymptotic performance of the considered system is
considered as N →∞.

With the above setup, the transmissions and receptions for
the considered IC are described in Fig. 2, where transmitter j̄
denotes the counterpart of transmitter j, j = 1, 2. At the first

time slot, transmitter j sends signal tj(1) = xj(1) to its counter-
part and the two receivers. Meanwhile, transmitter j receives
the signals tj(1) and tj̄(1) from itself and transmitter j̄, respec-
tively. For the received signal rj(1) = tj(1)+tj̄(1)+nj(1), tj(1)
with much larger power compared to that of tj̄(1) is treated
as SI and needs to be cancelled, while part of it will still be
remained due to the imperfection of the SI cancellation. After
the cancellation of tj(1), the AF scheme is adopted to forward
the residual signal yj(1) = xj̄(1) + ŷj(1), where ŷj(1) is the
residual SI and noise, to both receivers at the second time
slot. Obviously, ŷj(1) will be retained in the transmitted signal
at the rest of the N time slot, and we call this phenomena
as ARIN accumulation. At the second time slot, transmitter
j sends its own new signal xj(2) and its previous xj(1) again,
as well as yj(1). It is easy to observe that at the second time
slot, both transmitters send x1(1) and x2(1), and potential
power gain [20] can be achieved by properly designing the
transmission parameters for transmitting these signals. In this
paper, we assume the channel state information is exactly
known after some channel estimation processes. In the fol-
lowing subsections, the signal transmissions and receptions
for the i-th time slot are introduced, and the corresponding
signal model is derived.

A. TRANSMISSION AT THE TRANSMITTERS
At the i-th time slot, transmitter j sends signal tj(i) to trans-
mitter j̄ and the two receivers, which consists of three parts:
one new signal xj(i) sent for the first time at the current time
slot, one old signal xj(i − 1) also sent at the previous time
slot, and the residual signal yj(i− 1) after the SI cancellation
of transmitter j at the (i−1)-th time slot. Thus, the transmitted
signal tj(i) at transmitter j is given as

tj (i)=wj1xj(i)+wj2xj(i− 1)+wj3yj(i− 1), j = 1, 2, (1)

where wj1, wj2, and wj3 are the complex transmission param-
eters to be designed in this paper. Signals xj(i) and xj(i − 1)
are with unit power, i.e., E[|xj(i)|2] = E[|xj(i − 1)|2] = 1.
The power of signal yj(i − 1) is denoted as ptj , i.e.,
E[|yj(i − 1)|2] = ptj . Thus, the transmitted signal tj(i)
satisfies a power constraint with the power budget Pj at
transmitter j, i.e.,

E
(
|tj(i)|2

)
= |wj1|2 + |wj2|2 + |wj3|2ptj ≤ Pj. (2)

B. RECEPTION AT THE TRANSMITTERS
At the end of the i-th time slot, transmitter j receives signal
tj(i) from itself and signal tj̄(i) from transmitter j̄. Thus,
the received signal rj(i) at transmitter j is given as

rj(i) = hj̄jtj̄(i)+ h̄jtj(i)+ nj(i), (3)

where hjj̄ denotes the channel coefficient from transmit-
ter j to transmitter j̄, h̄j denotes the SI channel coeffi-
cient for transmitter j, and nj(i) is the independent and
identically distributed (i.i.d.) complex circularly symmetric
Gaussian (CSCG) noise with zero mean and variance σ 2

n .
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FIGURE 2. Transmissions and receptions of Gaussian IC over N + 1 time slots.

By substituting (1) into (3), rj(i) can be rewritten as

rj(i) = hj̄jwj̄1xj̄ (i)+ sj1(i)+ sj2(i)+ sj3(i)

+ sjN (i)+ nj(i), (4)

with

sj1(i) = h̄jtj(i), (5)

sj2(i) = hj̄jhjj̄wj̄3wj1xj (i− 1) , (6)

sj3(i) = hj̄jwj̄2xj̄(i− 1), (7)

sjN (i) = hj̄jwj̄3ŷj̄ (i− 1) , (8)

where xj̄(i) is from transmitter j̄, sj1(i) denotes the SI directly
from transmitter j, sj2(i) is a distorted version of signal xj(i−1)
(initially transmitted from transmitter j to transmitter j̄ at the
(i− 1)-th time slot and then forwarded by transmitter j̄ at the
i-th time slot), sj3(i) is signal xj̄(i− 1) sent from transmitter j̄
at the i-th time slot, and sjN (i) is the ARIN from the previous
time slots.

C. SI CANCELLATION AT THE TRANSMITTERS
From (4), we observe that: Signal sj1(i) is the SI from trans-
mitter j itself and can be partially cancelled; signal sj2(i) is
actually the signal xj(i − 1), which is known to transmitter j
and thus can be cancelled; and signal sj3(i) can be estimated
from signal yj(i − 1) after SI cancellation at the previous
time slot and thus can also be partially cancelled (this issue
will be discussed later in this subsection). Since the residual
interferences are dominated by the ARIN with overwhelming
power, the residual power of signal sj2(i) is rather smaller and
can be neglected after SI cancellation. Hence, we denote the
signal after the SI cancellation as yj(i), which is composed of
the desired signal xj̄(i) and the ARIN, i.e.,

yj(i) = hj̄jwj̄1xj̄ (i)+ ŷj(i), (9)

where ŷj(i) is the sum of the residual parts of sj1(i) and sj3(i)
denoted as ŝj1(i) and ŝj3(i), respectively, the ARIN sjN (i) from
the previous time slot, and the CSCG noise nj(i), i.e.,

ŷj(i) = ŝj1(i)+ ŝj3(i)+ sjN (i)+ nj(i). (10)

As commonly implemented by SI cancellation process [21],
the residual SI ŝj1(i) is modeled as CSCG noise with zero
mean and variance P̂j, where P̂j is treated as a specific residual

power, and is independent across different transmitters and
different time slots.
Now, we introduce how to partially cancel signal sj3(i) and

derive the expression for its residual signal ŝj3(i). From (9), it
is easy to see that xj̄(i− 1) can be estimated by 1

hj̄jwj̄1
yj(i− 1),

and then signal sj3(i) can be estimated by the processed signal
yj(i− 1) at the (i− 1)-th time slot. Thus, ŝj3(i) is given by

ŝj3(i) = sj3(i)−
wj̄2
wj̄1

yj(i− 1)

= hj̄jwj̄2xj̄(i− 1)−
wj̄2
wj̄1

yj(i− 1)

= −
wj̄2
wj̄1

ŷj(i− 1). (11)

From (11), we observe that signal ŝj3(i) is determined by
the ARIN ŷj(i − 1) from the previous time slot, which is
independent with signal ŝj1(i) and noise nj(i). By substituting
(8) and (11) into (10), it follows

ŷj(i) = αj̄ŷj(i− 1)+ hj̄jwj̄3ŷj̄ (i− 1)+ fj(i), (12)

where fj(i) = ŝj1(i)+nj(i) and αj̄ = −
wj̄2
wj̄1

. In particular, when

wj̄1 = 0, αj̄ is defined as 02.
Remark 1: From (12), we observe that:
• The ARIN

[
ŷ1(i), ŷ2(i)

]
at the i-th time slot is related

to the ARIN
[
ŷ1(i− 1), ŷ2(i− 1)

]
at the (i− 1)-th time

slot and also affected by random variables f1(i) and f2(i).
Therefore, the ARIN process over time forms a Markov
process [22].

• From (1) and (9), it can be observed that at the i-th time
slot, each transmitter sends both transmitters’ signals
x1(i − 1) and x2(i − 1). Thus, possible power gain
can be achieved by properly designing the transmission
parameters wj1, wj2, and wj3. We should point out that
since there are two receivers and the channel coefficients
for the two MACs are not the same, we cannot simulta-
neously achieve the maximum power gains at both the
receivers.

2 When wj̄1 = 0, transmitter j̄ does not transmit its own messages, and
thus wj̄2 is equal to 0. Hence, signal sj3(i) consisting of transmitter j̄’s signal
xj̄(i− 1) is also 0, as well as the residual part ŝj3(i).
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D. RECEPTION AT THE RECEIVERS
Receiver k (k = 3, 4, and receiver k̄ denotes the counterpart
of receiverk.) receives the signals from both the transmitters,
and the received signal rk (i) is given as

rk (i) =
2∑
j=1

hjk tj(i)+ nk (i), k = 3, 4, (13)

where hjk is the channel coefficient from transmitter j to
receiver k , and nk (i) is the CSCG noise with zero mean and
variance σ 2

n . By substituting (1) and (9) into (13), it follows

rk (i) =
2∑
j=1

((
hjkwj2 + hj̄khjj̄wj̄3wj1

)
xj(i− 1)

+hjkwj1xj(i)+ vk (i)

)
, (14)

with vk (i) =
∑2

j=1 hjkwj3ŷj(i− 1)+ nk (i).
Remark 2: From (14), it is observed that for each receiver,

the equivalent channel model is very similar to the two-tap
MAC [23]. Due to the one-block delay generated by the
forwarding operation at the transmitters, signal xj(i−1) at the
(i−1)-th time slot will interfere signal xj(i) at the i-th time slot,
which may cause some trouble in decoding at the receivers.
On the other hand, the additive noise vk (i) contains ARIN
from both the transmitters, where the two ARIN ŷ1(i − 1)
and ŷ2(i−1) are Markov processes according to (12). Hence,
the noises {vk (i)} across different time slots are correlated and
their correlation will make the decoding at each receiver more
complicated.
Remark 3: From (14), it can be observed that the trans-

mission of the N pairs of block messages will cost a total
of N + 1 time slots. In this paper, we consider the case
that N tends to infinity; thus, the one-block delay generated
by the AF operation at the transmitters can be neglected.
In the next section, we will further show that the statistics
of the ARIN at the i-th time slot will converge to a sta-
tionary state, as well as the achievable rate pair for the two
transmitted messages, as both N and i go to infinity. Thus,
the average achievable rate pair of the considered IC with
transmitter cooperations is given by that under this stationary
state.

III. ACHIEVABLE RATE REGIONS
In this section, we focus on the joint decoding scheme, where
each receiver decodes both the source messages, and charac-
terize the corresponding achievable rate regions for the con-
sidered IC with transmitter cooperations. First, we analyze
the statistics of the ARIN.

A. STATISTICS OF ARIN
In this subsection, the statistics of the ARIN at the stationary
state, i.e., i→∞, is first computed. Define the ARIN vector
at the i-th time slot as Ŷ(i) =

[
ŷ1(i), ŷ2(i)

]T , and (12) can be
rewritten as a matrix form

Ŷ(i) = AŶ(i− 1)+ F(i), (15)

where A is a two by two matrix

A =
[

α2 h21w23
h12w13 α1

]
, (16)

and F(i) = [f1(i), f2(i)]T , with fj(i) = ŝj1(i) + nj(i) being
defined in (12). Then, bymathematical induction, we can eas-
ily obtain the following proposition, whose proof is omitted
due to space limitation.
Proposition 1: The ARIN vector Ŷ(i) can be recursively

computed as

Ŷ(i) =
i−1∑
n=0

AnF(i− n). (17)

From the above proposition, matrixA determines the speed
of the accumulation of the ARIN: The larger the eigenvalue
of A is, the faster the power of the ARIN increases. Now,
with the above analysis, we arrive at the main result about the
statistics of the ARIN.
Proposition 2: When N and i→∞, the covariance of the

ARIN Ŷ(i) defined in (17) is computed as the following two
cases:

1) Case I: Matrix A has two different eigenvalues λ1 and
λ2, λ1 6= λ2. Thus, according to Theorem 7.1.6 in [24],
matrix A can be decomposed as

A = P
[
λ1 0
0 λ2

]
P−1, (18)

where P =
[
p11 p12
p21 p22

]
is a two by two invertible

matrix. Then, when |λj| < 1 and i, k → ∞, the
covariance matrix of Ŷ(i) is asymptotically given as
(19), as shown at the top of the next page, where (x)+ =
max(x, 0),$ = i− k , and[
f11 f12
f ∗12 f22

]
= P−1

[
P̂1 + σ 2

n 0
0 P̂2 + σ 2

n

] (
P−1

)H
,

(20)

where P̂j, j = 1, 2, is the power of the residual SI ŝj1(i),
and σ 2

n is the power of the CSCG noise nj(i).
2) Case II: Matrix A has two identical eigenvalues,

i.e., λ1 = λ2 = λ. Thus, according to The-
orem 7.1.9 in [24], matrix A can be decomposed
as a Jordan canonical form with an invertible
matrix P, i.e.,

A = P
[
λ 1
0 λ

]
P−1. (21)

Similarly, when |λ| < 1 and i, k →∞, the covariance
matrix of Ŷ(i) is asymptotically given as (22), as shown
at the top of the next page, where

c11 =
f11

1− |λ|2
+

f12λ
(1− |λ|2)2

+
f ∗12λ
∗

(1− |λ|2)2

+
f22(1+ |λ|2)
(1− |λ|2)3

, (23)
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E
(
Ŷ(i)Ŷ(k)H

)
= P

[
λ1 0
0 λ2

]($ )+
[ 1

1−|λ1|2
f11 1

1−λ1λ∗2
f12

1
1−λ∗1λ2

f ∗12
1

1−|λ2|2
f22

][
λ∗1 0
0 λ∗2

](−$ )+

PH , (19)

E
(
Ŷ(i)Ŷ(k)H

)
= P

[
λ 1
0 λ

]($ )+ [ c11 c12
c21 c22

] [
λ∗ 0
1 λ∗

](−$ )+

PH , (22)

E
[
|ŷ1(i)|2

]
=

1
1− |λ1|2

|p11|2f11 +<
(
p∗11p12

1
1− λ∗1λ2

f ∗12

)
+

1
1− |λ2|2

|p12|2f22, (26)

E
[
|ŷ2(i)|2

]
=

1
1− |λ1|2

|p21|2f11 +<
(
p∗21p22

1
1− λ∗1λ2

f ∗12

)
+

1
1− |λ2|2

|p22|2f22. (27)

c12 =
f12

1− |λ|2
+

f22λ∗

(1− |λ|2)2
, (24)

c21 = c∗12, c22 =
f22

1− |λ|2
. (25)

Proof: Please see Appendix A.
Remark 4: As mentioned in the previous section,

the power of the ARIN will accumulate as time goes. Notice
that if we do not consider the power constraint in (2), when
|λj| ≥ 1 and i tends to infinity, the power of the ARIN ŷj(i)
will also tend to infinity and submerge the desired signals.
On the other hand, when |λj| < 1, the power of the ARIN
will converge to a finite constant. Hence, we only consider
the stationary state as i→∞ with max(|λ1|, |λ2|) < 1.
Corollary 1: According to Proposition 2, when

max(|λ1|, |λ2|) < 1 and i → ∞, the power of the ARIN
is given as

• Case I: (26) and (27), as shown at the top of this page.
• Case II:

E
[
|ŷ1(i)|2

]
= |p11|2c11 +<

(
p∗11p12c

∗

12
)
+ c22|p12|2,

(28)

E
[
|ŷ2(i)|2

]
= |p21|2c11 +<

(
p22p∗21c

∗

12
)
+ c22|p22|2.

(29)

Based on the above results, we can explicitly compute the
sum power constraint in (2). From (9) and (10), the power of
signal yj(i) given in (9) can be computed as

ptj = E
[
|yj(i)|2

]
= E

(
|hj̄jwj̄1xj̄(i)|

2
)
+ E

(
|ŷj(i)|2

)
= gj̄j|wj̄1|

2
+ âj, (30)

where âj = E
(
|ŷj(i)|2

)
is given in Corollary 1 and gj̄j =

|hj̄j|
2. Hence, by (30), the sum power constraint in (2) can

be rewritten as

|wj1|2 + |wj2|2 + |wj3|2
(
gjj̄|wj̄1|

2
+ âj

)
≤ Pj. (31)

Therefore, we define the transmitter power region as

P =
{
(wj1,wj2,wj3) : (31), j = 1, 2

}
. (32)

B. JOINT DECODING SCHEMES
From the two-tap channel model in (14), the optimal decoder
for the considered IC with transmitter cooperations is simul-
taneously decoding all the messages transmitted at all the
time slots. However, this optimal decoding scheme requires
the receivers to buffer all the received signals and the decod-
ing complexity becomes exponentially high as N increases,
which makes this decoder too complicated to be realized
in practice. As a tradeoff for the decoding complexity,
we mainly focus on some suboptimal while simple decoding
schemes, which require each receiver to sequentially decode
only themessages of the codewords x1(i) and x2(i) transmitted
at the i-th time slot. From (14), it is observed that both
rk (i) and rk (i + 1) contain the codewords x1(i) and x2(i).
As such, in order to achieve higher received signal-to-noise
ratio (SNR) for the decoding of these two messages, we need
to utilize both rk (i) and rk (i + 1) to decode them. However,
the codewords x1(i) and x2(i) are interfered by signal xj(i−1)
or xj(i + 1) (see (14)), depending on the decoding order for
the transmitted signals. Therefore, we consider the following
two decoding schemes [25]:
1) Forward decoding scheme: Each receiver decodes the

source messages from the first time slot to the last time
slot, and thus, the receiver only needs to buffer the
signals at two successive time slots. At the i+1-th time
slot, it is assumed that xj(1), · · · , xj(i − 1) have been
successfully decoded, and thus x1(i−1) and x2(i−1) can
be completely eliminated from r3(i) and r4(i). Then,
each receiver tries to decode x1(i) and x2(i) transmitted
at the i-th time slot, and treats x1(i + 1) and x2(i + 1)
as interference. Based on (14), the equivalent channel
input and output relationship for the forward decoding
is given as

Rk = Hjkxj(i)+Hj̄kxj̄(i)+ Zfk , (33)

where Rk = [rk (i+1), rk (i)]T , Hjk =

[
bjk+cj̄k , ajk

]T
,

Zfk =
[
zfk1, z

f
k2

]T
, and

zfk1 = nk (i+ 1)+
2∑
j=1

ajkxj(i+ 1)+ ejk ŷj(i), (34)
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zfk2 = nk (i)+
2∑
j=1

ejk ŷj(i− 1), (35)

with ajk=hjkwj1, bjk=hjkwj2, ejk=hjkwj3, and
cjk=hjkhj̄jwj3wj̄1.

2) Backward decoding scheme: Each receiver decodes
the source messages from the last time slot to the first
time slot, and thus the receiver needs to buffer all
the received signals at all the time slots. When each
receiver tries to decode x1(i) and x2(i), it is assumed
that xj(i+1), · · · , xj(N ) have already been successfully
decoded, and thus x1(i + 1) and x2(i + 1) can be
completely eliminated from r3(i + 1) and r4(i + 1).
Then, x1(i) and x2(i) can be decoded at each receiver,
and x1(i − 1) and x2(i − 1) are treated as interference.
Based on (14), the equivalent channel input and output
relationship for the backward decoding is given as

Rk = Hjkxj(i)+Hj̄kxj̄(i)+ Zbk , (36)

where Zbk =
[
zbk1, z

b
k2

]T
, with

zbk1 = nk (i+ 1)+
2∑
j=1

ejk ŷj(i), (37)

zbk2 = nk (i)+
2∑
j=1

(bjk + cj̄k )xj(i− 1)+ ejk ŷj(i− 1).

(38)

Remark 5: From (33) and (36), we observe that the equiv-
alent channel models for the two decoding schemes are quite
similar: 1) The channel gains for the desired information x1(i)
and x2(i) are the same; 2) the equivalent channel coefficient
Hj,k comes from the transmission parameters wj1, wj2, and
wj3, j = 1, 2, and properly designed transmission parame-
ters can achieve different requirements for the transmission
rates of the two transmitters; and 3) the additive noises for
the two schemes are different, and significantly affect the
performance of the two schemes.

Now, we are ready to compute the covariance matrix Qk
of the additive noise Zk . Here, without introducing any con-
fusion, we ignore the superscript f and b for the variables
Qk and Zk , and will add them to specify the forward and
backward decoding schemes when necessary.

1) For the forward decoding scheme, it follows

Qk = Qf
k = E

[
Zfk ·

(
Zfk
)H]

=

[
σ 2
n +|a1k |

2
+|a2k |2 + Yi,i Yi,i−1
Y ∗i,i−1 σ 2

n + Yi−1,i−1

]
,

(39)

where Yi,j is calculated by the statistics of the ARIN
obtained in (19) and (22),

Yi,j =
[
e1k e2k

]
E
(
Ŷ(i)Ŷ(j)H

) [
e1k e2k

]H
. (40)

2) For the backward decoding scheme, it follows
(41) and (42), as shown at the top of the next page.

In contrast to joint decoding scheme, single-user decoding
scheme allows each receiver to decode the desired transmit-
ter’s messages while treating the other transmitter’s signals
simply as noises. Here, due to space limitation, we omit the
analysis for the single-user decoding scheme in which the
aforementioned forward and backward decoding schemes can
be easily applied to this scheme with the covariance matrix
Qk being calculated in similar ways (39), (41).

C. ACHIEVABLE RATE REGIONS
Based on the equivalent parallel channel models given in
(33) and (36) for the joint forward and backward decoding
schemes, the achievable rate regions C(P) is asymptotically
obtained by the results for the conventional MAC [20], [26],
i.e., (43), as shown at the top of the next page.

For the single-user decoding scheme, the rate
region [13], [27] is characterized as (44), as shown at the top
of the next page.

In this paper, we adopt the rate profile approach [28] to
characterize the rate regions defined in (43). Choose a rate
profile parameter α, 0 ≤ α ≤ 1, and let ᾱ = 1 − α.
Then, we define the sum rate as Rsum = R1 + R2, and set
R1 = αRsum and R2 = ᾱRsum. For a fixed α, we solve the
following sum rate maximization problem intended for the
joint decoding scheme (similarly for the single-user decoding
scheme by replacing the rate constraints with (44)) subject to
the rate constraints in (43), the power constraint in (32), and
the forwarding constraint max(|λ1|, |λ2|) < 1, i.e.,

max
Rsum,{wjl }

Rsum

s. t. αRsum ≤ log
(
1+HH

1kQ
−1
k H1k

)
,

ᾱRsum ≤ log
(
1+HH

2kQ
−1
k H2k

)
,

Rsum ≤ log
(
1+HH

2kQ
−1
k H2k +HH

1kQ
−1
k H1k

)
,

(wj1,wj2,wj3) ∈ P,
max(|λ1|, |λ2|) < 1, k = 3, 4, (45)

where Rsum ∈ R, wjl ∈ C, R is the set of all real values,
and C is the set of all complex values. However, it is obvious
that all the constraints in (45) are non-convex. Thus, in this
paper, we turn to a suboptimal while efficient algorithm to
solve problem (45).

D. ALGORITHM
We adopt an iterative method to approximately solve problem
(45) which can be easily extended to single-user decoding
scenario, and in each iteration, the following two steps are
taken:

1) FixQk and the power of the ARIN âj defined in Corol-
lary 1, and optimize the transmission parameters {wjl};

2) updateQk and âj with the obtained transmission param-
eters {wjl} in step 1).

For Step 2), the newQk can be computed using (39) and (41).
Thus, in the sequel, we mainly focus on Step 1).
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Qk = Qb
k = E

[
Zbk ·

(
Zbk
)H]

(41)

=

[
σ 2
n + Yi,i Yi,i−1
Y ∗i,i−1 σ 2

n + |b1k + c2k |
2
+ |b2k + c1k |2 + Yi−1,i−1

]
. (42)

C(P) ,
⋃

(wj1,wj2,wj3)∈P
max(|λ1|,|λ2|)<1

(R1,R2)
∣∣∣∣∣∣∣∣∣
R1 ≤ log

(
1+HH

1kQ
−1
k H1k

)
R2 ≤ log

(
1+HH

2kQ
−1
k H2k

)
R1 + R2 ≤ log

(
1+HH

2kQ
−1
k H2k +HH

1kQ
−1
k H1k

), k = 3, 4

 . (43)

C(P) ,
⋃

(wj1,wj2,wj3)∈P
max(|λ1|,|λ2|)<1

(R1,R2)
∣∣∣∣∣∣
R1 ≤ log

(
1+HH

13Q
−1
3 H13

)
R2 ≤ log

(
1+HH

24Q
−1
4 H24

)
 . (44)

Considering Hjk given in (33) and (36), it is easy to
observe that the transmission parameters of the two trans-
mitters are coupled together. Hence, we utilize a two-stage
iterative method to optimize these transmission parameters:
In each iteration, we fix one transmitter j̄’s parameters wj̄1,
wj̄2, and wj̄3, optimize transmitter j’s parameters wj1, wj2, and
wj3, and repeat the aforementioned optimization process by
exchanging the places of the two transmitters’ parameters in
the optimization problem. Now, without loss of generality,
we show how to optimize wj1, wj2, and wj3 with the fixed
wj̄1, wj̄2, and wj̄3, and the alternative optimization problem
is similar. First, to simplify the notations, we define two
variables wj1 ∈ C2 and wj2 ∈ C2 as follows

wj1 =

[
wj2
wj1

]
, wj2 =

[
wj3
1

]
, (46)

whereCn is the set of all complex n×1 vectors. Then, matrix
Hjk defined in (33) and (36) can be simplified as

Hjk =

[
hjkwj2 + hj̄khjj̄wj̄3wj1

hjkwj1

]
= Gj̄k1wj1 = Gjk2wj̄2,

(47)

where

Gj̄k1 =

[
hjk hj̄khjj̄wj̄3
0 hjk

]
, (48)

Gjk2 =

[
hj̄khjj̄wj1 hjkwj2

0 hjkwj1

]
. (49)

Therefore, based on the above notations, we can formulate
the transmission parameters design problem of transmitter j
for problem (45) as

max
Rsum,{wij}

Rsum

s. t. 2αRsum − 1 ≤ wH
jj Tj̄kjwjj,

2ᾱRsum − 1 ≤ wH
jj̄ Tj̄k j̄wjj̄,

2Rsum − 1 ≤ wH
jj̄ Tj̄k j̄wjj̄ + wH

jj Tj̄kjwjj,

wH
j1wj1 +

(
wH
j2wj2 − 1

)
mj ≤ Pj,

gj̄jw
H
j1Diag(0, 1)wj1 ≤ P̄j̄,

max(|λ1|, |λ2|) < 1, k = 3, 4, (50)

where P̄j̄ =
Pj̄−w

H
j̄1
wj̄1

wH
j̄2
wj̄2−1

− âj̄, Tj̄kj = GH
j̄kj
Q−1k Gj̄kj, Tj̄k j̄ =

GH
j̄kj̄
Q−1k Gj̄k j̄, mj = gjj̄|wj̄1|

2
+ âj are all constants, with gjj̄ =

|hjj̄|
2 and âj being given in (30). However, problem (50) is still

non-convex: The rate constraints in (50) are non-convex since
the matrices Tj̄kj and Tj̄k j̄ are indefinite Hermitian matrices;
and the eigenvalue constraint max(|λ1|, |λ2|) < 1 is also non-
convex. In the following, we will show how to handle these
constraints and efficiently solve problem (50).

1) EIGENVALUE CONSTRAINT APPROXIMATION
In the following Propositoin 3, we approxiamte the com-
plicated eigenvalue constraint max(|λ1|, |λ2|) < 1 with two
simpler quadratical constraints, which might cause the loss
of some feasible points of problem (50) and introduce some
infeasible ones. In the sequel, we will further show how to
deal with the drawbacks of this method.
Proposition 3: The constraint max(|λ1|, |λ2|) < 1 in prob-

lem (50) can be approximated by

wH
j1E0wj1 ≤ 0, (51)

gjj̄w
H
j2E1wj2 ≤ 1, (52)

where E0 = Diag(1,−1) and E1 = Diag(1, 0).
Here, we argue the plausibility of the proposed method.

The above approximation in Proposition 3 can be adjusted by
modifying the constant parameters on the right side of (51)
and (52). For example, by considering two new constraints
wH
j1Diag(1, −0.25)wj1 ≤ 0 and gjj̄w

H
j2E1wj2 ≤ 0.25, which

is equivalent to |aj| = |
wj2
wj1
| ≤ 0.5 and |hjj̄wj3| ≤ 0.5, we can

show that the eigenvalues λ1 and λ2 satisfy

|hjj̄wj3| ≥ |λj + aj| (53)

≥ |λj| − |aj|, (54)
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FIGURE 3. Feasible sets of w11 under the constraint max(|λ1|, |λ2|) < 1
and Proposition 3.

where (53) is by Gershgorin circle theorem [24]. With
(54), it follows |λj| ≤ |aj| + |hjj̄wj3| ≤ 1, and thus
max(|λ1|, |λ2|) ≤ 1. Obviously, this approximation leads
to a subset of the constraint max(|λ1|, |λ2|) ≤ 1, whereas
it may cause the loss of too many feasible points of the
original constraint. To reduce the effect of this issue, we relax
the eigenvalue constraint as (51) and (52) (by simulations,
the approximation given in (51) and (52) provides a good
performance), while it may introduce some infeasible points.
Now, we provide an example to describe this phenomenon.
By choosing the parameters w12 = −1.6549 − 1.1231i,
w13 = −0.0023 + 0.0299i, w21 = −3.9919 − 3.01i,
w22 = −0.9651 − 3.8818i, w23 = 0.0071 + 0.0039i,
Pj = 20 dB, h12 = h21 = 10, and âj = 0, we draw the
sets of w11 under the constraint max(|λ1|, |λ2|) < 1 and
Proposition 3 in Fig. 3 (both of them are subject to the power
constraint in (31)),
where area A ∪ C is the feasible set given by max(|λ1|, |λ2|)
< 1 and area B∪C is the feasible set given by Proposition 3.
From Fig. 3, it is observed that the proposed approximation
will lose the feasible set A and introduce infeasible set B,
and leads the solution of problem (50) to be suboptimal and
infeasible under certain cases (In the following part (III)(III)(III),
we will further show how to deal with these drawbacks.).

2) SEMIDEFINITE RELAXATION
Define variables Wj1 = wj1wH

j1 and Wj2 = wj2wH
j2 , and

the rank-1 constraint rank(Wj1) = rank(Wj2) = 1. Then,
problem (50) after the approximation of Proposition 3 is
equivalent to the following form

max
Rsum,{Wij}

Rsum

s. t. 2αRsum − 1 ≤ Tr(Tj̄kjWjj),

2ᾱRsum − 1 ≤ Tr(Tj̄k j̄Wjj̄),

2Rsum − 1 ≤ Tr(Tj̄kjWjj)+ Tr(Tj̄k j̄Wjj̄),

rank(Wj1) = rank(Wj2) = 1, Tr
(
E2Wj2

)
= 1,

Wj1 � 0, Wj2 � 0,
(
Wj1,Wj2

)
∈ P0,

Tr(E0Wj1) ≤ 0, gjj̄Tr(E1Wj2) ≤ 1, k = 3, 4, (55)

where P0 satisfies (56), as shown at the bottom of the next
page, E2 = Diag (0, 1), Wij ∈ H2, and Hn is the set of all
complex n × n Hermitian matrices. It is noticed that since
the second element of vector wj2 is 1, we set the (2, 2)th

element of matrix Wj2 is 1, i.e., Tr
(
E2Wj2

)
= 1.

It is observed that the rank-1 constraint constraint
rank(Wj1) = rank(Wj2) = 1 in (55) is non-convex and all the
other constraints are convex. Thus, we drop the non-convex
rank-1 constraint and obtain a relaxed version of problem (55)
as follows

max
Rsum,{Wij}

Rsum

s. t. 2αRsum − 1 ≤ Tr(Tj̄kjWjj),

2ᾱRsum − 1 ≤ Tr(Tj̄k j̄Wjj̄),

2Rsum − 1 ≤ Tr(Tj̄kjWjj)+ Tr(Tj̄k j̄Wjj̄),

Wj1 � 0, Wj2 � 0,
(
Wj1,Wj2

)
∈ P0,

Tr(E0Wj1) ≤ 0, gjj̄Tr(E1Wj2) ≤ 1,

Tr
(
E2Wj2

)
= 1, k = 3, 4 (57)

Problem (57) is the SDR of problem (50) and can be
effectively solved by the interior-point algorithm [29].

3) GAUSSIAN RANDOMIZATION
When the obtained solution of problem (57) is not rank 1 or
not feasible for the eigenvalue constraint max(|λ1|, |λ2|) < 1,
we apply the following Gaussian randomization [30] to con-
struct an approximated solution for problem (50). The main
idea of this method is described as follows: First, obtain
an optimal solution {W∗ij} of problem (57); then, generate
multiple random samples ŵij ∈ C2 according to the Gaus-
sian distribution with zero mean and covariance matrix W∗ij,
i.e., ŵij ∼ CN (0,W∗ij), and set the second element of ŵj2
as 1; next, adopt a scaling method to ensure all the generated
samples satisfying the power constraint in (31): When the
generated vectors exceed the maximum power budget in (31),
we can shrink them as follows

ŵj1 =
ŵj1
√
Pj√

ŵH
j1ŵj1 +

(
ŵH
j2ŵj2 − 1

)
mj

, (58)

ŵj1(2) =
ŵj1(2)

√
P̄j̄√

gj̄jŵ
H
j1E2ŵj1

, (59)

ŵj2 =
ŵj2
√
Pj√

ŵH
j1ŵj1 +

(
ŵH
j2ŵj2 − 1

)
mj

, (60)

where ŵj1(2) is the second element of ŵj1; next, drop the
samples that are not feasible for the eigenvalue constraint
max(|λ1|, |λ2|) < 1; finally, among these feasible samples,
choose one couple of vectors ŵj1 and ŵj2, which maximize
the sum rate R̂sum defined as (61), as shown at the bottom of
the next page, according to the rate constraints in (50).
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TABLE 1. Algorithm 1: Gaussian randomization method for optimizing
wj1 and wj2.

With the above setup, we reach the main algorithm of the
Gaussian randomization method to optimizewj1 andwj2 with
the fixed wj̄1 and wj̄2, which is summarized in Table 1.

After step 1), we update Qk and âj with the obtained
transmission parameters {wjl} and then iteratively execute
the two steps until the sum rate sequence Rsum converges to
a finite constant. Here, Rsum is equivalent to R̂sum in (61),
whereas the matricesTj̄kj andTj̄k j̄ are updated by the obtained
transmission parameters in Step 1). Based on Algorithm 1,
the two-step iterative algorithm for solving problem (45)
is summarized in Table 2. Here, without loss of general-
ity, the initial transmission parameters of Algorithm 2 for
each rate-profile α are obtained as follows: One transmitter
transmits its own messages with the full power budget and
the other one sorely forwards its counterpart’s messages,
i.e., w0

11 =
[
0,
√
P1
]T , w0

12 = [0, 1]T , w0
21 = [0, 0]T ,

and w0
22 =

[√
P2

g21P1+â2
, 1
]T

.

TABLE 2. Algorithm 2: Two-step iterative algorithm for optimizing
transmission parameters of problem (45) with a fixed rate-profile α.

IV. SIMULATION RESULTS
In this section, we present some simulation results to validate
our analysis, compared with the upper bound with source
cooperation [14] and the capacity region of Gaussian IC
with noncooperation [31]. In particular, the inner bounds of
the noncooperation cases, with disabled transmitter coopera-
tions, are specialized by utilizing two decoding schemes: joint
decoding scheme and single-user decoding scheme further
improved by optimal power control. To better demonstrate
the cooperation gains, we consider a simple channel model
[27]: the channel have fixed magnitude with i.i.d. random
phase uniform between 0 and 2π . Hence, h = |h|ejθ and
θ ∼ U(0, 2π ), which are fixed after channel realization. As a
rule of thumb, we assume the cooperative channels h12 = h21
and set the maximum power budget at each transmitter as
P1 = P2 = 20 dB and the power of the CSCG noise
as σ 2

n = 0 dB. Moreover, for simplicity, we focus on a
magnitude-symmetric case, i.e, |h23| = |h14| and |h13| =
|h24|. Note that all the simulation results are based on an
average over 5000 channel phase realizations with the sample
number I = 100 in Algorithm 1, and are all executed by
CVX [32].

P0 =

{(
Wj1,Wj2

)
: Tr(Wj1)+ Tr(E1Wj2)mj ≤ Pj, gj̄jTr(E2Wj1) ≤ P̄j̄

}
(56)

R̂sum , min


1
α
log

(
ŵH
jj Tj̄3jŵjj + 1

)
, 1
ᾱ
log

(
ŵH
jj̄
Tj̄3j̄ŵjj̄ + 1

)
,

log
(
ŵH
jj̄
Tj̄3j̄ŵjj̄ + ŵH

jj Tj̄3jŵjj + 1
)
, 1
α
log

(
ŵH
jj Tj̄4jŵjj + 1

)
,

1
ᾱ
log

(
ŵH
jj̄i
Tj̄4j̄ŵjj̄i + 1

)
, log

(
ŵH
jj̄
Tj̄4j̄ŵjj̄ + ŵH

jj Tj̄4jŵjj + 1
)
 , (61)
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FIGURE 4. The convergency of Algorithm 2 for joint decoding.

FIGURE 5. Achievable rate regions for ideal SI cancellation cases.

First, the convergency of Algorithm 2 is presented in Fig. 4
to see the variations of the object sum-rate Rsum as iterations
increase. Typically, we consider the scenario for joint decod-
ing scheme with the rate-profile α = 0.5, i.e., R1 = R2,
the residual SI power P̂1 = P̂2 = 0 dB, h12 = h21 = 1 and
randomly setting h13 = 0.0563+ 0.0826i, h24 = −0.0996−
0.0084i, h14 = 0.3969 − 0.0499i, and h23 = −0.3986 −
0.0336i. Then, the sum rate Rsum initiated from different
initial transmission parameters over the iterations is plotted
in Fig. 4, showing that as the number of iterations increases
to approximately 13 or larger, the sum rates Rsum initiated
at different points will converge to a same constant. Similar
results can be obtained for single-user decoding scheme and
most channel conditions.

Next, the AF achievable rate regions, considering the ideal
SI cancellation, are plotted to compare with the capacity
upper bound of the interference channel [14]. In particular,
the forward decoding scheme is omitted here, due to its weak-
ness in contrast to the backward decoding scheme (which is
described latter). Hence, by setting |h13| = |h24| = 0.1,
|h23| = |h14| = 0.12, and |h12| = |h21| = 1, as shown
in Fig. 5, it is observed that the maximum sum rate of the joint
backward decoding scheme can be achieved within around
1.2 bit of the upper bound under this scenario.

Fig. 6 and Fig. 7 plot the AF achievable rate regions with
imperfect SI cancellation for joint and single-user decod-
ing schemes to compare with the noncooperations cases.

FIGURE 6. Achievable rate regions in a strong interference scenario
(|h13| = |h24| < |h23| = |h14|): |h13| = |h24| = 0.1, |h23| = |h14| = 0.12
|h12| = |h21| = 1, and P̂ = P̂1 = P̂2 = 0 dB.

FIGURE 7. Achievable rate regions in a weak interference scenario
(|h13| = |h24| > |h23| = |h14|): |h13| = |h24| = 0.15, |h23| = |h14| = 0.1
|h12| = |h21| = 1, and P̂ = P̂1 = P̂2 = 0 dB.

From Fig. 6, it is observed that despite decreasing around
0.5 bits/s/Hz from ideal SI cancellation case, the joint back-
ward decoding scheme with residual SI still provides consid-
erable rate gain comparedwith the noncooperation case, so do
the other decoding schemes. For instance, the maximal sum
rate gain is about 0.4 bits/s/Hz given by the joint backward
decoding and about 0.7 bits/s/Hz given by the single-user
backward decoding scheme. Furthermore, it is shown that in
this case the joint decoding schemes always perform better
than the single-user decoding schemes. It is because the
strong interference, i.e., undesired signals are rather stronger
than the desired ones. On the opposite, as shown in Fig. 7,
the single-user decoding schemes perform better than the
joint decoding schemes. It is due to the fact that in this case,
the interference signals are much weaker than the desired
signal since all the cross-channels are very weak. In addi-
tion, another important observation is that for all channel
conditions, the backward decoding scheme is always better
than forward decoding scheme, due to a intuition explana-
tion that in the aforementioned two-slot decoding schemes,
the potential power gain is dedicated to the backward time
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FIGURE 8. Achievable rate regions in an asymmetric scenario,
i.e., |h13| 6= |h24| and |h23| 6= |h14|.

FIGURE 9. The effect of the cross-channel coefficients |h23| = |h14| on
the maximum Rsum.

slot, in which the forward decoding are not able to eliminate
interferences induced by unknown time slot signals.

Fig. 8 plots the AF achievable rare regions in an asym-
metric scenario where |h13| = 0.15, |h24| = 0.1, |h23| =
0.2, |h14| = 0.1, |h12 = h21| = 1 and P̂ = P̂1 =
P̂2 = 0 dB. It is observed that the proposed AF scheme
also shows a good performance in the asymmetric case.
To be details, the maximal sum rate of the joint backward
decoding scheme is about 0.2 bits/s/Hz better than that of
the joint non-cooperative scheme. In addition, the single-
user backward decoding scheme performs better than the
forward one and achieves about 0.3 bits/s/Hz better than the
non-cooperation scheme.

Fig. 9 shows a plot of the maximum sum rate versus the
cross channel coefficients |h23| = |h14|. Here, we set the
rate-profile α = 0.5, |h12| = |h21| = 2, P̂1 = P̂2 = 0 dB, and
|h13| = |h24| = 0.12. From Fig. 9, it is observed that as the
cross links become stronger, the rate improvement induced by
the AF schemes will be enhanced. As |h23| = |h14| increase
beyond around 0.1, the joint decoding schemes are better than
the single-user decoding schemes.

FIGURE 10. The effect of SI cancellation on the maximum Rsum.

FIGURE 11. The effect of the cooperative channel coefficients
|h12| = |h21| on the maximum Rsum.

Fig. 10 studies the maximum sum rate Rsum versus the
residual SI P̂1 = P̂2 by setting α = 0.5, |h12| = |h21| = 2,
|h13| = |h24| = 0.1, and |h14| = |h23| = 0.15. From Fig. 10,
it is observed that the increasing of the residual SI power
shows a negative impact on the performance of the system.
For instance, as P̂1 = P̂2 increase to 8 dB or larger, the sum
rate rapidly declines.

Fig. 11 plots the maximum sum rate Rsum versus the
cooperative channel coefficients |h12| = |h21|. Here, we set
P̂1 = P̂2 = 0 dB, α = 0.5, |h13| = |h24| = 0.1, and
|h14| = |h23| = 0.15, to show the effect of the cooperative
channels on the achievable rates. In Fig. 11, as the channel
coefficients |h12| and |h21| increase, we observe a significant
increase in the rates. For instance, for the joint backward
decoding scheme, the maximum rate Rsum increases by nearly
0.9 (bits/s/Hz) as |h12| and |h21| increase from 0.5 to 2.
Note that in the small channel coefficients regime, the pro-
posed schemes with transmitter cooperations perform worse
than the cases without cooperation. The explanation is:When
the cooperative channels go worse, as shown in Fig. 11,
the performance benefits brought by the transmitter cooper-
ations decrease and finally tend to zero. Hence, the optimal
solution for the weak cooperative channels is to disable the
transmitter cooperations. However, the proposed algorithm
converges to a suboptimal solution still with the transmitter
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E
(
Ŷ(i)Ŷ(k)H

)
= E

[(
i−1∑
n=0

AnF(i− n)

)(
k−1∑
m=0

FH (k − m)(Am)H
)]

(64)

= E

[(
i−1∑
n=0

AnF(i− n)

)(
k−i−1∑
m=0

FH (k − m)(Am)H +
k−1∑

m=k−i

FH (k − m)(Am)H
)]

(65)

= E


(
i−1∑
n=0

AnF(i− n)

)
k−i−1∑
m=0

FH (k − m)(Am−k+i)H

+

i−1∑
m=0

FH (i− m)(Am)H

 (Ak−i)H

 (66)

=


i−1∑
n=0

k−i−1∑
m=0

AnE
(
F(i− n)FH (k − m)

)
(Am−k+i)H

+

i−1∑
n=0

i−1∑
m=0

AnE
(
F(i− n)FH (i− m)

)
(Am)H

 · (Ak−i)H (67)

=

(
i−1∑
n=0

i−1∑
m=0

AnE
(
F(i− n)FH (i− m)

)
(Am)H

)
· (Ak−i)H (68)

=

(
i−1∑
n=0

AnE
(
F(i− n)FH (i− n)

)
(An)H

)
· (Ak−i)H (69)

=

(
i−1∑
n=0

P
[
λn1 0
0 λn2

]
P−1

[
P̂1 + σ 2

n 0
0 P̂2 + σ 2

n

] (
P−1

)H [ λ∗1n 0
0 λ∗2

n

]
PH
)
· (Ak−i)H (70)

= P

(
i−1∑
n=0

[
|λn1|

2f11 λn1λ
∗

2
nf12

λ∗1
nλn2f

∗

12 |λn2|
2f22

])[
λ∗1 0
0 λ∗2

]k−i
PH (71)

→ P

[ 1
1−|λ1|2

f11 1
1−λ1λ∗2

f12
1

1−λ∗1λ2
f ∗12

1
1−|λ2|2

f22

][
λ∗1 0
0 λ∗2

]k−i
PH . (72)

cooperations and thus results in a worse performance than the
noncooperative scheme.

V. CONCLUSION
In this paper, we proposed anAF transmission strategy via FD
communications in a Gaussian IC. By analyzing the transmis-
sion process, we found an ARIN accumulation phenomenon
between the two-transmitter cooperations, performing as a
Markov process. Under a stationary state, the asymptotic
achievable rates for the considered system were derived by
both the joint and single-user decoding schemes. To char-
acterize the achievable rate regions, an SDR-based itera-
tive algorithm was proposed to optimize the transmission
parameters. The results revealed that the proposed scheme
achieves a better performance for all the channel conditions
and the backward decoding performs better than the forward
decoding.

APPENDIX A
PROOF OF PROPOSITION 2
To prove Proposition 2, we first compute the covariance
matrix for the stochastic process {F(i)} in Proposition 1. Since
the residual SI ŝj1(i) and nj(i) are modeled as CSCG noise

and are independent across different time slots and different
transmitters, the covariance matrix of {F(i)} is obtained as

E
(
F(i)F(i)H

)
=

[
P̂1 + σ 2

n 0
0 P̂2 + σ 2

n

]
, (62)

E
(
F(i)F(k)H

)
= 0, i 6= k, (63)

where P̂j, j = 1, 2, is the power of the residual SI ŝj1(i), and
σ 2
n is the power of the CSCG noise nj(i).
Based on Theorem 7.1.6 and Theorem 7.1.9 in [24], we can

decompose matrix A as the following two cases:
• Case I:MatrixA has two different eigenvalues, i.e., λ1 6=
λ2, and thus matrix A can be decomposed as (18) with
a invertible matrix P. If k > i, the covariance of Ŷ(i)
can be calculated as (64)-(72), as shown at the top of
this page.
Here, we explain the above equations in details.
From (17), (64) can be easily obtained. (66) can be
obtained by extracting the common factor (Ak−i)H

from (65). According to (62) and (63), it follows
i−1∑
n=0

k−i−1∑
m=0

AnE
(
F(i− n)FH (k − m)

)
(Am−k+i)H = 0,

and thus (68) and (69) can be obtained. By substituting
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E
(
Ŷ(i)Ŷ(k)H

)
= P

(
i−1∑
n=0

[
λn nλn−1

0 λn

] [
f11 f12
f ∗12 f22

] [
λ∗n 0
nλ∗n−1 λ∗n

])
PH (Ak−i)H (74)

= P

(
i−1∑
n=0

[
a11 a12
a21 a22

])
PH (Ak−i)H , (75)

→ P
[
c11 c12
c21 c22

] [
λ∗ 0
1 λ∗

]k−i
PH , (76)

(62) and (18) into (69), (70) can be easily obtained.
By substituting (20) into (70), we can simplify the nota-
tions in (70) and the equivalent equation is given as (71).
According to (71), when i tends to infinity, the sum of the
matrices in (71) has each element converging to a finite
constant if and only if there hold |λ1| < 1, |λ2| < 1,
|λ1λ

∗

2| < 1, and |λ∗1λ2| < 1, which are equivalent to
the constraint max(|λ1|, |λ2|) < 1. Under this constraint,
the covariance of Ŷ(i) converges to (72) as i, k → ∞.
Similarly, if k ≤ i, it follows

E
(
Ŷ(i)Ŷ(k)H

)
= P

[
λ1 0
0 λ2

]i−k
×

[ 1
1−|λ1|2

f11 1
1−λ1λ∗2

f12
1

1−λ∗1λ2
f ∗12

1
1−|λ2|2

f22

]
PH.

(73)

Therefore, for Case I, (19) is satisfied.
• Case II: Matrix A has two identical eigenvalues,
i.e., λ1 = λ2 = λ, and thus matrixA can be decomposed
as (21) with an invertible matrix P. If k > i, we obtain
the covariance calculations for Case II similar as (64)-
(69). By substituting (20) and (21) into (69), it follows
(74)-(76), as shown at the top of this page.
where a11 = |λ|2nf11+nλ∗|λ|2(n−1)f ∗12+nλ|λ|

2(n−1)f12+
n2|λ|2(n−1)f22, a∗21 = a12 = |λ|2nf12 + nλ∗|λ|2(n−1)f22,
and a22 = |λ|2nf22. Under the constraint |λ| < 1
and i, k → ∞, (75) converges to (76) with {cij} being
defined in (23)-(25). Similarly, if k ≤ i, it follows

E
(
Ŷ(i)Ŷ(k)H

)
= P

[
λ 1
0 λ

]i−k
×

[
c11 c12
c21 c22

]
PH . (77)

Hence, (22) is satisfied for Case II.
With the above analysis, Proposition 2 can be proved.
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