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ABSTRACT The randomness, volatility, and intermittence of solar power generation make it difficult to
achieve the desired accuracy of PV output-power prediction. Therefore, the time learning weight (TLW)
proposed in this paper is used to improve the time correlation of the LSTM network. The Fusion Activation
Function (FAF) is used to resolve gradient disappearance. Learning Factor Adaptation (LFA) andMomentum
Resistance Weight Estimation (MRWE) are used to accelerate weight convergence and improve global
search capabilities. Finally, this paper synthesizes the improvement and proposes the AHPA-LSTMmodel to
stabilize the convergence domain. Using actual data verification, the δMAPE indicator of the improved model
is only 2.85% on a sunny day, 5.92% on a cloudy day, 7.71% on a rainy day, and only 5.8% on average.
Therefore, the AHPA-LSTM model under full climate and climatic conditions has a good predictive effect
which is generally applicable to the prediction of ultra-short-term PV power generation.

INDEX TERMS Photovoltaic output power, ultra-short-term prediction, long short term memory (LSTM),
time weight decoupling, adaptive hyperparameter adjustment.

NOMENCLATURE
PV photovoltaic
HEPV hybrid energy-storage PV power generation

system
DNN deep neural network
LSTM long short term memory neural network
Bi-LSTM bidirectional LSTM
RNN recurrent neural network
CELL LSTM cell memory channel
ReLU rectified linear unit
TLW time learning weights
FAF fusion activation function
SVR support vector regression
MLE maximum Lyapunov exponent
MR momentum resistance method
MRWE momentum resistance method with weight

estimate
SDG stochastic gradient descent mathod

The associate editor coordinating the review of this article and approving
it for publication was Zhiyi Li.

Adam adaptive moment estimation mathod
LFA learning factor adaptation method
AHPA adaptive hyperparameter adjustment
RE clear-sky relative error
δMAPE mean absolute percent error
δQRER upper and lower quartile relative percentage

error range
δMBE mean bias error
δRMSE root mean squared error
δNRMSE normalized root mean squared error
δTHI time horizon-invariant metric
δPVV photovoltaic variability metric
δRATIO time horizon-invariant ratio
δREUQ the relative error of the upper quartile
δRELQ the relative error of the lower quartile

I. INTRODUCTION
Photovoltaic power generation prediction can provide a ref-
erence for power grid dispatching and power station main-
tenance, which is conducive to grid security and economical
operation of PV power plants [1]. At the same time, the power
grid dispatching center also needs to understand the power
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generation capacity of the PV power plant and formulate a
scheduling strategy to meet customer needs [2]. PV forecast
can be classified as ultra-short-term, short-term, andmedium-
long-term, with respective time-frames of up to one hour, one
day, and one month to one year [3]. Medium- and long-term
(>24 hours) solar forecasts are useful for energy resource
planning and scheduling. Whereas intraday short-term solar
forecasts, i.e., half-hour, or even five-minute, are useful for
load tracking and pre-scheduling, which reduce the need
for frequency control in actual environment [4]. Moreover,
excessive or insufficient PV power output will affect the safe
and reliable operation of the grid, which limits the application
of large-scale PV systems connected to the grid [5], [6].
Therefore, it is necessary to establish an accurate ultra-short-
term model to predict the output power of the PV modules in
a timely and accurate method.

PV output power predictions can be divided into direct
and indirect forecasts. The indirect method is to predict solar
irradiance based on the functional relationship between irra-
diance and PV output power. A number of indirect meth-
ods for predicting PV power are presented in reference [7],
which generally use irradiance as a medium. The biggest
disadvantage of these methods is that after many predictions,
the overlay error hinders the improvement of PV prediction
accuracy. Furthermore, the direct method is to predict the
detailed historical data of the PV power plant by means of
statistics or artificial intelligence. Wolff et al. [8] proposed
to apply SVR to small-scale PV power generation, and use
real-time climate data and future meteorological data for
prediction. Although SVR has good portability compared
with physical methods, the prediction accuracy needs to be
improved. Marquez et al. [9] and Lorenz et al. [10] pro-
posed direct prediction using remote sensing methods and
numerical weather prediction models(δMAPE ≈ 10% - 20%).
Although satellite imaging predictions can achieve high pre-
diction accuracy, this approach requires access to satellite
cloud maps and large climate databases, greatly increasing
the cost of microgrid power generation.

To reduce forecasting costs, Zhang et al. [11] used vari-
ous surface measurements, i.e., meteorological data (such as
surface temperature, global horizontal irradiance, and diffuse
reflection horizontal irradiance) and astronomical dates (such
as solar time and earth declination) as influencing factors
(δNRMSE ≈ 13% - 29%). Vaz et al. [12] used a nonlinear
autoregressive model with external inputs, including local
meteorological data and observation data from neighbor-
ing PV systems as input (δNRMSE ≈ 9% - 25%), which
was much more economical than the satellite data model.
Espinosa-Gavira et al. [13] uses the snapshot of the radiation
field collected by the wireless solar sensor as input to perform
short-term PV prediction. The low cost and portability of the
measurement equipment make him an appropriate choice for
small and medium-sized PV power plants.

Compared with the experimental method, the probability
space-time model of PV power generation prediction is rel-
atively novel. Scolari et al. [14] used uncertainty estimation

and power reduction strategies to eliminate the unstable state
of short-term PV systems. Agoua et al. [15] provided a
complete PV prediction model (0-6 hours) by establishing
a probability density function and an input variable auto-
matic selection technique. However, the uncertainty predic-
tion depends on the probability distribution, and the output
range has a larger room for improvement than the ordinary
prediction method. Sheng et al. [16] proposed an innova-
tive method using a weighted Gaussian process regression
method, so that data samples with higher outliers have
lower weights and smaller effects on inputs. However, com-
pared to the Gaussian regression process, the nonlinear-
ity of the neural network is superior. Ospina et al. [17]
used the hybrid wavelet LSTM-DNN structural model
to solve the nonlinear prediction problem of PV output
(δNRMSE ≈ 6.6% - 11.7%). However, through experiments,
it can be found that the stability of multi-step prediction needs
to be improved. Therefore, based on the traditional model,
an enhanced LSTM depth neural network is proposed for
prediction.

The LSTM model proposed by Hochreiter and
Schmidhuber [18] is a time-recurrent neural network, which
is a special case of the RNN. Gers et al. [19] proposed
the addition of a forgetting gate to the LSTM network
to enhance its temporal correlation, which is improved by
Graves and Schmidhuber [20], Kudugunta and Ferrara [21].
Greff et al. [22] compared the LSTM depth network of
various structures. LSTMwith forgetting gates and peepholes
is proposed, which has better generalization capabilities.
Srivastava and Lessmann [23] uses LSTM to accurately
predict the PV data of 21 locations. A large number of
experiments show that LSTM has good performance in
PV prediction. However, the following four major challenges
in solar ultra-short-term forecasting still exist:
• The LSTM network in the existing algorithm can only
enhance the temporal correlation of the predictionmodel
by increasing the input dimension. However, excessive
input data dimensions can undermine the predictive
power of traditional LSTM networks.

• The complex structure of deep neural network and
excessive matrix operation seriously affect the training
speed of prediction model. Especially for high latitude
PV ultra-short-term data, the original LSTM network
can not meet the speed requirements of ultra-short-term
prediction.

• With the deep cycle of the neural network, the algorithm
may fall into local extremum, and the update weight will
gradually disappear. This will destroy the accuracy of
PV prediction.

• Deep learning networks are very sensitive to hyperpa-
rameters. Once the hyperparameters are set inappropri-
ately, the predicted output will produce high frequency
oscillation. Ultra-short-term prediction model has very
high requirements for the stability of prediction data,
so it is necessary to propose an improved scheme to
stabilize the output.
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In order to solve the above challenges, Zheng et al. [24]
proposed a short-term prediction method based on MLE
according to the high correlation of PV data with time
and season. Although deep neural networks are not used to
improve the nonlinearity of the model, the model constructs
a time series of PV power generation under different meteoro-
logical conditions, which enhances the attention of time fac-
tors. Han et al. [25] suggested using copula function to reduce
the dimension of input data in LSTM network. Obviously,
the output predicted by traditional LSTMnetworks with fixed
hyperparameters is unstable (δNRMSE ≈ 15%). Therefore,
referring to the concept of time factor and the shortcomings of
fixed parameter neural networks, an adaptive hyperparameter
LSTM network is proposed in this paper. The algorithm
improves the way in which time factors are associated with
traditional models. It aims at obtaining the most accurate
results with fewer iterations and at the same time stabilizing
the predicted output results. The main contributions of this
study are as follows:

1) The problem of excessive dimension of input data is
solved by adding TLW, and a fast predictionmodel with
super memory is established.

2) The global extremum is obtained by constructing FAF
and MRWE, which solves the problem of gradient
disappearance of deep neural network and ensures the
accuracy of prediction results.

3) The training speed of deep neural network is acceler-
ated by constructing LFA, and the high efficiency of
prediction results is guaranteed.

4) Through the synthesis of adaptive hyperparameters and
themodel switching, anAHPA algorithm is proposed to
ensure the convergence region of the predicted output
and stabilize the prediction results.

5) Based on the actual data of China’s power grid PV
power plant in Zhejiang Province, the improved model
was rigorously evaluated, which proved the versatility
of the method under various weather conditions.

The structure of this paper is as follows: Section II proposes
some improved algorithms based on the challenges of PV
ultra-short-term prediction and applies them to the traditional
LSTM model. Section III introduces the prediction-accuracy
evaluation indicators used in this paper. In Section IV,
the proposed LSTM method is verified by actual PV data.
Section V summarizes the paper and suggests future research.

II. UPDATE OF PV ULTRA-SHORT-TERM FORECASTING
MODEL
In order to solve the challenges of PV ultra-short-term
forecasting, the main structure of this section is as fol-
lows: Section II-A introduces the overall framework of the
AHPA-LSTMmodel. Section II-B proposes a TLW structure
based on time correlation improvement and optimizes the
LSTM single neuron. In Section II-C, to solve the problem of
LSTM gradient disappearance, an improved FAF activation
function is proposed. Section II-D proposes an optimized

FIGURE 1. Topological structure of HEPV.

search algorithm LFA based on ultra-short-term prediction,
which improves the global search ability and learning speed
of the original network. Section II-E combines the above
proposed algorithm and stabilizes the convergence ability of
the model, and proposes the AHPA algorithm.

A. OVERVIEW OF THE AHPA-LSTM MODEL FRAMEWORK
In order to maximize the economic benefits of electricity,
PV power plants generally use FIG. 1 for layout [26]. How-
ever, the high cost of lithium batteries limits the number
of charge and discharge cycles. It is necessary to establish
accurate prediction methods to track PV fluctuations and for-
mulate a reasonable scheduling strategy to extend the life of
lithium batteries. Nevertheless, the traditional LSTMnetwork
has not developed well in terms of stability, prediction accu-
racy and prediction speed. Therefore, this section is dedicated
to establishing an improved LSTM network to accurately
monitor the trend of ultra-short-term PV power generation.

The traditional LSTM has problems in PV ultra-short-
term power prediction, such as slow learning speed, falling
into local extrema, gradient disappearance, and lack of time
correlation. For ultra-short-term power prediction, we need
to improve the prediction accuracy as much as possible in a
short period of time. On the other hand, LSTM deep neural
networks usually have several hyperparameters, i.e., learning
factors and penalty factors, in the machine learning process.
The hyperparameter-values do not various with time, which
limits generalization of the model and affects the improve-
ment of prediction accuracy. Therefore, based on the basic
LSTM neural network, this paper uses TLW to enhance the
time factor of PV input data. FAF is used to improve the gra-
dient disappearance of ultra-short-term prediction. MRWE is
used to avoid the local minimum problem. The LFA is used to
estimate the speed of weights, so as to accelerate the conver-
gence of weights. Finally, based on the above improvements,
an AHPA-LSTM model is proposed for ultra-short-term
PV prediction, as shown in FIG. 2.

In this figure, the forecast input data are PV maximum
output power, PV module back surface temperature, Bevel
irradiance, Relative humidity and other meteorological fac-
tors at the current time, and time factors such as year, month
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FIGURE 2. PV ultra-short-term forecasting model framework.

and day. The output data is the PV maximum output power
of the next 5 minutes. The sampling frequency of ultra-short-
term PV training data is 5 minutes.

B. DECOUPLING OF TIME CORRELATION
As a deep neural network, LSTM has more hidden layers
than an original neural network, which exploits the long-
term dependencies in depth with limited data samples. Each
hidden layer contains a certain number of LSTM neuron
units, and each contains a CELL that tries to store information
in the previous iteration [27]. The main idea is to use special
neurons to store and transmit information over a long period
to
• obtain permanent memories,
• capture long-term dependencies in an easier manner,
• slow down the rate of information degradation,
• increase the preponderance of the calculation of
deepness.

Specifically, the LSTM neural network adds three spe-
cial gates to the RNN, i.e., input gate, forgetting gate, and
output gate, to avoid dependency problems [28]. However,
the LSTM network itself does not emphasize the attention to
seasonal factors. Obviously, meteorological data has a high
regularity within a certain time span, and the illumination
radiation also has a specific trend. The original LSTM net-
work can only integrate time information, i.e., year, month
and day, with meteorological data and put it into the neural
network for prediction. This general approach to all fore-
casting methods can only increase the correlation between
input data and time factor. But most neural networks have
high requirements for the dimensions of the input data. Blind
overlaying of data is likely to destroy the accuracy of the
original model. In addition, since the PV output changes
with the amount of cloud in the local climate, it is highly
random and there is no way to describe it in a quantitative
way. Therefore, we propose a new method to improve the

FIGURE 3. Structural variants of LSTM single neuron.

temporal correlation of predictive models to enhance the time
correlation prediction of LSTM, as shown in FIG. 3.

In this figure, we can see ‘tanh’ denotes the activation
function as tanh(x), σ denotes the activation function as
sigmoid (x), ‘+’ denotes the summation of the corresponding
elements of two signal matrices, and ‘×’ denotes the inner
product of two signal matrices. btpo is the output matrix of
other units , btce is the output matrix of other memory chan-
nels, btTi is the input matrix of time weights, x tri is the input
matrix of the unit, t is the current moment, and t − 1 is the
previous moment.

FIG. 3 adds the TLW to the traditional LSTM model,
which enables the LSTM model to increase the consider-
ation of time correlation while deep training. The original
weights are divided into climate weights and time weights.
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Therefore, TLW-LSTM is better able to distinguish
between time information and climate information than
ordinary LSTM. They use powerful nonlinear learning capa-
bilities to solve quantitative representations of time and
climatemodels. This structuremakes LSTMmore sensitive to
partition modeling and detail mastery. The improved LSTM
structure which added TLW has been marked red in FIG. 3,
and the improved recursion equations are as follows, the input
gate are

atig = x tri · wriig + b
t−1
ce · wceig

+ bt−1po · wpoig + b
t−1
Ti · wTiig, (1)

btig = f
(
atig
)
. (2)

The improved forget gate are

atfg = x tri · wrifg + b
t−1
ce · wcefg

+ bt−1po · wpofg + b
t−1
Ti · wTifg, (3)

btfg = f
(
atfg
)
. (4)

The improved memory channel are

atce = x tri · wrice + b
t−1
po · wpoce

+ bt−1Ti · wTice, (5)

btce = btfg · b
t−1
ce + b

t
ig · g

(
atce
)
. (6)

The improved output gate are

atog = x tri · wriog + b
t
ce · wceog

+ bt−1po · wpoog + b
t−1
Ti · wTiog, (7)

btog = f
(
atog
)
. (8)

The output target are

ytpo = wpopo · btpo
= wpopo · btog · g

(
btce
)
, (9)

where wTi is the time weight, wpopo is the output weight,
ytpo is the predicted value of the output, f (x) and g (x) are
the activation function.

As can be seen from Eq. (1) - (9), the TLW-LSTM network
is more sensitive to time factors than the original neural net-
work. The decoupling of the original data can be performed
by the above weight separation, so that the LSTM network
can clearly identify the time factor and the meteorological
factor. We all know that ultra-short-term PV forecasts are
highly dependent on time and future weather data, so this
improvement can effectively segment input data, reduce data
dimensions, and improve the accuracy of LSTM predictions.

C. IMPROVEMENT OF GRADIENT DISAPPEARANCE
The activation function is an important part of the neural
network, and its main function is to provide the learning
ability of network nonlinear mapping. The ReLU, also known
as a modified linear unit, is a commonly used activation
function in artificial neural networks. It usually refers to the

nonlinear function represented by the slope function and its
variants, as follows:

f (n) =

{
x x ≥ 0
0 x < 0.

(10)

We see from Eq. (10) that when x < 0, ReLU is hard
saturated, and when x > 0, there is no saturation problem.
At this point, ReLU can keep the gradient unchanged, thus
alleviating the gradient disappearance problem [29]. How-
ever, with this training, part of the input will fall into the hard-
saturated region (i.e., x < 0), resulting in weights that cannot
be updated, which will destroy the training accuracy of the
original model. In addition, the output of the ReLU function
is greater than zero, so the output is not zero-mean, which
will cause the latter layer of neurons to receive a non-zero
mean output signal (zero drift) of the upper layer as input.
Zero drift and hard saturation error will affect the network’s
convergence. Therefore, based on the one-way saturation and
zero-drift problem of the activation function, this paper pro-
poses to combine ReLU and hyperbolic sinusoidal functions
to form FAF to ensure the stability of the prediction model.
The specific compound equation and derivative equation are

f (n) =
{

x x ≥ 0
tanh (x) x < 0,

(11)

f ′ (n) =
{

1 x ≥ 0
1− tanh (x)2 x < 0.

(12)

It can be seen that when x > 0, the derivative maintains
the gradient of the artificial neural network. When x < 0,
it filters the different external inputs, which is adaptive. The
FAF combines the advantages of the hyperbolic sine and
ReLU functions, with soft saturation on the left side and none
on the right side. The left soft saturation allows the FAF to be
more robust to the input, while the right linear portion enables
the mitigation of the gradient disappearance problem.

D. IMPROVEMENT IN GLOBAL OPTIMIZATION
It is not enough to simply add the FAF to improve the gradient
disappearance of the AHPA-LSTMmodel. For the traditional
LSTM network, the attraction of local minima cannot be
avoided while predicting PV. Therefore, weight estimation
and time-varying learning rate are used to enhance the global
search ability of the model.

1) GET RID OF LOCAL EXTREMUM ATTRACTION
For error surfaces with multiple extremums, once the gradient
method reaches an extremum point, it is assumed that the
answer has been found. However, from a physical point of
view, if a small ball is located on a rugged ramp, the rolling
of the ball will not stop because of a small pit. This is because
the quality of the ball itself keeps it in its original state of
motion. Refer to the physics equation as follows:

Finertia = m · a. (13)

For some narrow and long error surfaces, the error obtained
by the gradient method will produce an oscillating search
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between the valley walls, and never stop. However, from a
physical point of view, if a small ball rolls off the edge of a
narrow canyon. Due to the air resistance, the kinetic energy
of the ball is lost. It is impossible for a ball to bounce back
and forth between narrow rock walls without falling into the
canyon. The aerodynamic equation is as follows:

Fresistance =
1
2
· C · ρ · S · V 2. (14)

It can be seen that in physics, inertia and resistance are a
pair of opposing forces, but they work together to bring the
object back to equilibrium quickly. In order to ensure that the
PV prediction model can quickly and stably transition from
a non-equilibrium state to an equilibrium state, this paper
proposes an MR optimization search algorithm based on ana-
logical physics experience with reference to [30]. In order to
find the extreme points of the error surface, theMR algorithm
establishes an iterative factor similar to physical inertia and
resistance during the iterative process. These two iterative
factors promote and constrain each other, and the error of the
weight update is no longer abrupt with time iteration, so the
global optimal solution can be quickly found. The newweight
gradient change rate is balanced by the combination of the
momentum and resistance factors, and the weight update is
as follows:

di = (1− β + µ) · di−1 + β · g (θi−1)

−µ · g(θi−1)2, (15)

θi = θi−1 − α · di, (16)

where r is the learning factor, d is the weight update rate,
g (θ) is the gradient of the objective function at θ , β is the
momentum factor, and µ is the resistance factor.

Due to the introduction of the momentum factor β, the gra-
dient produces memory. So each calculation has a preorder
gradient g (θi−1) that involves the operation. The weight
update speed d updates the gradient of this iteration by
memorizing the update amount of a part of the previous
iteration. Also, due to the addition of the resistance factor µ,
each gradient has a certain positive attenuation. Referring to
Eq. (14), the air resistance is proportional to the square of the
relative wind speed. A forward attenuation factor g(θi−1)2 is
established, so that weight updating in the iteration process
will not be so fast as to produce oscillation, and the stability
of the update speed is guaranteed. The inertia component
β · g (θi−1) and the resistance component −µ · g(θi−1)2 are
mutually constrained in the iterative process. The balance
of the weight update is maintained at all times. The param-
eter (1− β + µ) mainly acts on the current weight update
direction, so as not to destroy the uniformity of the weight
due to the increase of the inertia component or resistance
component, andmaintains the balance in the update direction.
According to repeated experiments, the inertia and resis-

tance are the main and secondary component, respectively.
Therefore, the momentum factor should generally be 10,
or even 100 times the resistance factor to ensure the stability
of the iteration. When the updated value of the gradient

decrease coincides with the direction of the previous time-
update value, the inertial component is enhanced, and the
learning ability of the weight can be accelerated. Conversely,
when the directions are inconsistent, the inertia component
will be weakened, and the oscillation can be suppressed.

2) ACCELERATE WEIGHT CONVERGENCE
The momentum resistance method is improved from the
Adam algorithm [31]. Each parameter update direction
depends not only on the gradient of the current position
but on the direction of the last parameter update. However,
according to Eq. (15) - (16), since it is known that the
i-th updateweightmust increase the previous time component
α · (1− β + µ) · di−1, the (i-1)-th update weight does not
have to use the current position gradient g (θi−1). We pro-
pose that the component of θi−1 is first added to the (i-1)-th
α · (1− β + µ) · di−1, and then continue to the next update.
Updating in this way will increase the (i-1)-th estimate at
time i-th, and obtain the update compensation of α ·
(1− β + µ) · di−1 by calculation to achieve equilibrium
quickly. However, updating by this method requires solving a
new problem, i.e., obtaining the di−1 component in advance.
Since the di−1 component is unknown at time (i-1)-th and can-
not be obtained by the algorithm. So it is necessary to design
an equivalent estimated component to achieve, as follows:

g (θi) = g (θi−1 − α · di) = g (θi−1)− g (α · di)

= g (θi−1)− α · g (di) , (17)

g (θi−1)− g (θi) = α · g (di) . (18)

From Eq. (17) - (18), the equivalent estimated component
can be derived as [g (θi−2)− g (θi−1)]. However, the propor-
tion of the estimated component in the whole will change
continuously with the iteration, so it is necessary to add an
estimation factor γ to control the weight of the estimated
component:

di = (1− β − γ ) · di−1 + β · g (θi−1)− µ · g(θi−1)2

+ γ · [g (θi−2)− g (θi−1)] . (19)

Thus, we have obtained an improved MRWE algorithm.
The idea is to estimate the parameters first and then calculate
the error from the estimates. If the gradient at the current
moment is larger than the gradient at the previous moment,
there is reason to believe that it will continue to grow larger,
so it is necessary to add the imminent enlargement ahead of
time, and vice versa.

3) IMPROVE THE LEARNING RATE
The MRWE weight estimation method uses a fixed learning
factor, which may cause too many iterations and slow conver-
gence of the deep learning network. At this point, the learning
factor must be adaptively adjusted [32], [33]. Since the learn-
ing factor is always positive, |g (θi−1)| is obtained, shown as

ri = (1− β − γ ) · ri−1 + β · |g (θi−1)|

+ γ · [|g (θi−2)| − |g (θi−1)|] . (20)
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where the learning factor is r , and the step size as the gradient
falls is controlled by the product of the learning factor and the
first derivative of the loss function.

However, due to the obvious difference between the initial
and final stages of iterations, the learning efficiency is high
at the initial stage of the iteration, so a high learning factor
is required. At the final stage of the iteration, the weight
has entered the optimal solution range. If the learning factor
is high at this time, oscillation will occur and the algo-
rithm’s stability will be destroyed. To this end, a function y
is designed to keep the learning rate decay immediately and
to prevent a zero denominator:

y = INT (n/100)+ 1, (21)

θi = θi−1 −
ε

ri + y
· di, (22)

where ε is the initial learning rate, INT (x) is the integer-
valued function, and n is the current iteration number.
The role of LFA is to make the learning rate adaptive.

If the current time gradient is large, then the learning rate
attenuates faster. Conversely, if the current time gradient is
small, the learning rate attenuates more slowly. The method
is suitable for dealing with non-stationary timing targets and
improves the convergence rate of nonlinear and time-varying
prediction of ultra-short-term PV output power data.

E. LSTM OF ADAPTIVE HYPERPARAMETER ADJUSTMENT
After the improvement of Section II-C and Section II-D,
the AHPA-LSTM model has increased the TLW, momen-
tum factor β, resistance factor µ, and estimation factor γ .
In the initial iteration, gradient adjustment requires less iner-
tia, resistance constraints, and larger estimation constraints
in order to quickly reach extreme values. In the mid-late
iterations, inertia and estimation constraints are required to
make the gradient exceed the local extrema, thus requiring
greater inertia constraints. At the end of the iteration, after
the global optimal solution has been found, a large resistance
constraint is needed to stabilize the algorithm and prevent the
oscillation from occurring. Based on this idea, we propose
a adaptive hyperparameter model to adapt to this parameter
change, as shown in Alg. 1 (line 7 and 9).

For deep learning networks, the premise that the gradient
does not oscillate is that the learning rate monotonically
decreases in the late iteration. Although the drag coefficient
proposed in this paper is to prevent the occurrence of vibra-
tion, the second-order momentum of the drag coefficient does
not guarantee themonotonicity of the learning rate. Due to the
difference in data, the second-order momentum may have a
large interference in the latter part of the iteration. Therefore,
in order to make the algorithm run stably, this paper proposes
to add SDG in the algorithm switching later in the algorithm,
i.e., Alg. 1 (line 14 to 18). Once the learning rate occurs in the
late stage of the iteration, the SDG algorithm is immediately
switched to continue the search, which avoids the fluctua-
tion of the prediction accuracy. Finally, we summarized the
AHPA algorithm and proposed Alg. 1.

Algorithm 1 The Specific Description of AHPA
Algorithm
Input: The gradient g (θi−1) and g (θi−2) of LSTM

depth iteration at θi−1 and θi−2;
Updating speed di−1 at i− 1;
Learning speed ri−1 at i− 1;
Number of current iterations n, maximum iteration N ;
Initialize: Initial learning factor ε ∈ [0, 1), resistance

factor µ, momentum factor β, estimation
factor γ ;

1 begin
2 Initialize 1st , 2nd gradient vector: d0, d1← 0;
3 Initialize 1st , 2nd velocity vector: r0, r1← 0;
4 Initialize hyperparameter: β ← 0.5; µ← 0.05;

γ ← 0.1;
5 while n ≤ N and g (θi) not converged do
6 if n > 3N/4 then
7 β ← 0.1; µ← 0.15; γ ← 0.01;
8 else if N/4 ≤ n ≤ 3N/4 then
9 β ←−0.8 · n/N + 0.7; µ←−n/5N ;

γ ←−0.18/N · n+ 0.145;
10 end
11 Weight gradient update value: 1di←

β ·g (θi−1)−µ·g(θi−1)2+γ ·[g (θi−2)− g (θi−1)]
refer to Eq. (19);

12 Learning rate update value:
1ri← γ · [|g (θi−2)| − |g (θi−1)|]+β · |g (θi−1)|
refer to Eq. (20);

13 Weight gradient compensation: di←
[(1− β + µ− γ ) · di−1 +1di] / (β − µ+ γ );

14 if ε

‖ri−ri−1‖+y
· di ≥ θi−1 and n > 4N/5 then

15 SDG algorithm switching: ri← ri−1;
16 else
17 Learning rate compensation:

ri←
(1−β−γ )·ri−1+1ri

β+γ
;

18 end
19 y← INT (n/100)+ 1 refer to Eq. (21);
20 θi← θi−1 −

ε
ri+y
· di refer to Eq. (22);

21 end
22 return Gradient results θi
23 end

III. EVALUATION INDICATORS
In order to evaluate the pros and cons of the prediction model,
we introduce the following evaluation indicators. The main
indicator δMAPE has no positive and negative phase cancel-
lation, which better reflects the mean of the relative error of
prediction, defined as:

δMAPE =
1
n
·

n∑
i=1

|yi − ŷi|
yi

× 100%, (23)

where n is the size of dataset; yi is the true value of the
i-th dataset; ŷi is the predicted value of the i-th dataset.
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TABLE 1. The example of input and output data for forecast.

The main indicator δQRER eliminates the influence of
extreme values and embodies the range of error fluctuations
in the relative error sequence (the smaller the value, the more
stable the error), which is defined as follows:

δQRER = δREUQ − δRELQ. (24)

Due to the scheduling problem involving PV grid-
connected, the PV forecast has a high degree of attention to
the deviation δMBE of the output error, defined as:

δMBE =
1
n
·

n∑
i=1

(yi − ŷi). (25)

The main indicator δRMSE measures the deviation between
the predicted value and the actual PV output power, which
can better reflect the absolute deviation of the error, defined
as:

δRMSE =

√√√√1
n
·

n∑
i=1

(yi − ŷi)2. (26)

Referring to Marquez and Coimbra [34], we define
the δTHI . Meanwhile, we also define the ratio of i-th actual
output PV power yi to that of a clear-sky output PV power
yiclear as clear-sky relative error RE , so as to neglect the
diurnal variability [35].

δTHI =

√√√√1
n
·

n∑
i=1

(
yi − ŷi
yiclear

)2

(27)

RE =
yi − ŷi
yiclear

(28)

The step-changes standard deviation of RE define as δPVV .
Also, the δRATIO directly evaluates the variability effectively
reduced by the forecasting models and normalizing it with
respect to δPVV :

δPVV =

√√√√1
n
·

n∑
i=1

(
yi

yiclear
−

yi−1
yi−1clear

)2

, (29)

δRATIO = 1−
δTHI

δPVV
. (30)

TABLE 2. The structure of verification dataset.

IV. VERIFICATION OF PV OUTPUT POWER FORECAST
In order to verify the validity of the AHPA algo-
rithm, the main structure of this section is as follows:
Section IV-A introduces the source of the data. Section IV-B
introduces the comparison between the AHPA-LSTM model
and the traditional model, highlighting the validity of the
proposed model. Section IV-C describes the prediction capa-
bilities of the AHPA-LSTM model under different climatic
conditions and demonstrates the universality of the model.

A. DETAILS OF TRAINING DATASET
The dataset we used is PV data from Zhejiang Province,
China, with the total peak power ranging from 10 kW
to 15 kW. At the same time, the data also includes the surface
irradiance and global horizontal irradiance of the local solar
sensor network. After the previous data processing and miss-
ing value supplements, we chose a database with relatively
complete data and few missing values for training. The input
and output data of the training are shown in TAB. 1.
The data relates to the period from 2015 to 2016, the sam-

pling period is 06:00-18:00 every day, and the time reso-
lution is 5 minutes. The location is on the southeast coast
of China and belongs to the subtropical monsoon climate.
The annual average temperature is between 13◦C and 20◦C ,
and the average annual precipitation is between 800mm and
1500mm. The four seasons are distinct, with more rain in
autumn and winter and complex clouds. To highlight the
degree of data discrimination, we selected January, April,
July, and October of the year (30 days per quarter) as four
data sets to build the AHPA-LSTM model. Seven days after
the selection of each data set is used as the verification data
set, and the selection structure is as shown in TAB. 2.

To facilitate efficient training of the LSTM network
and prevent overfitting of training, we randomly extracted
90% data from each dataset as training samples, and the
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FIGURE 4. Examples of validation datasets.

remaining 10% as testing samples of the model, as shown
in FIG. 4. Referring to Ospina et al. [17], we propose a
network of 1 input layer, 1 output layer and 16 hidden layers
according to the data characteristics of this paper. In order to
satisfy the high-speed and efficient prediction requirements
as much as possible, we select the maximum number of
iterations as 10 times. At the same time, ITER-LSTM with
100 iterations was established as a comparison. By the way,
we used an Intel Core i7-6700HQ @2.60 GHz CPU, and
24 GB memory as the computer operating environment and
used MATLAB 2018a to build the ultra-short-term power
prediction model of HEPV system.

B. MODEL PREDICTION EFFECT ANALYSIS
To fully illustrate the impact of the AHPA-LSTM model
on ultra-short-term prediction of PV output power, this
Section has established a variety of comparison models. Two
of the traditional prediction models are LSTM and bidirec-
tional LSTM. The others are as follows: Based on the TLW
in Section II-B, here, we establish the Time-LSTMmodel that
adds TLW. Based on the comparison of iterations, 100 itera-
tions of the ITER-LSTM model were established. Based on
the fusion activation function in Section II-C, we establish
the FAF-LSTMmodel that increases robustness of the model.
Based on the local extremum improvement in Section II-D.1,
we establish the MR-LSTM model that suppresses weight
oscillation. Based on the weight estimation improvement in
Section II-D.2, we establish the MRWE-LSTM model that
accelerates weight updating. Based on the improvements to
accelerate the learning rate in Section II-D.3, we establish the
LFA-LSTM model. Based on the stable convergence domain
in Section II-E, the AHPA-LSTM model is established.
In the general climate classification (rainy, cloudy, sunny),

solar radiation is weak in rainy days, which is the most
difficult type of climate classification for predicting power
generation. Therefore, we first select an hour of rainy day to
verify the prediction accuracy of the AHPA-LSTM by image,
as shown in FIG. 5. Secondly, we present the evaluation met-
rics for all validation datasets in tabular form to demonstrate
the overall effectiveness of the model.

It can be seen that the output error of the original
LSTM and the bidirectional LSTM network is large, and the

maximum relative error is about 20%. The main reason for
the large prediction error is that the model does not make
a good distinction between the original inputs, so that the
high dimension of the input data destroys the accuracy of the
prediction. The maximum relative error of the Time-LSTM
model with TLW added in the same time period is about 10%,
which indicates that our improvement effectively improves
the prediction effect. As shown in FIG. 5c and FIG. 5d, when
the original data changes sharply at 12:40-12:55, the AHPA-
LSTM model can effectively adapt to this fluctuation, show-
ing better wave tracking capability. Compared with the other
six models, the AHPA-LSTMmodel not only has the smallest
error interval, but also the error average is closest to zero
and the error standard deviation is the smallest (the error
fluctuated in a small range). Therefore, it can be concluded
that the model has better accuracy and stability.

Nevertheless, FIG. 5 of the forecasted production for
1 hour in August was far from enough to fully evaluate the
comprehensive forecasting ability of theAHPA-LSTMmodel
throughout the year. Therefore, we use the evaluation indica-
tors in Section III to compare the four verification datasets of
the above nine models, and the results were shown in TAB. 3.
Compared with the LSTM and Bi-LSTMnetworks, the Time-
LSTM prediction model with TLW has greatly improved
the performance of each indicator. From the training time
and forecast running time, Time-LSTM has a certain gap
compared with traditional LSTM. The training time of LSTM
is about 30 minutes longer than the traditional mode, how-
ever, Time-LSTM has great advantages in other indicators.
From the δRATIO indicator, Time-LSTM is 0.25 more than
the traditional LSTM and 0.26 higher than the Bi-LSTM.
From the four relative error indicators, the relative fluctuation
range of Time-LSTM is 13.04% lower than the traditional
LSTM by 12.04% compared to Bi-LSTM. And the total
predicted running time of the AHPA-LSTM model is 30.86s,
which meets the shortest time interval (5 minutes). It can be
concluded that the LSTM network that distinguishes between
timeweight and climate weight has higher recognition ability.
While reducing the input data dimension, the learning ability
of traditional neural networks is enhanced.

In addition, compared with the training time and the
predicted running time, except for the ITER-LSTM model,
the time requirements of other models meet the requirements
of ultra-short-term prediction, and the difference in accuracy
of prediction is small. The ITER-LSTM model has a MAPE
of 8.65% and a RATIO of 0.88. However, the model predicted
training time and predicted running timewere 307.65minutes
slower than AHPA-LSTM, exceeding the time requirement
for ultra-short-term forecasting. Therefore, the ITER-LSTM
model with deep iteration is not suitable for ultra-short-term
PV prediction.

In order to compare AHPA-LSTM and the other models
more intuitively, we present indicators of the above models in
the form of statistical graphs. Compared with other parameter
indexes, the δTHI index and δRATIO index ignore diurnal vari-
ability, so these parameters can reflect realistic prediction in
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FIGURE 5. Comparison of PV output prediction results for different models.

PV forecasting. As can be seen in FIG. 6, the δRATIO index of
the AHPA-LSTMwas closer to 0.9, and the accuracy was the
best. ITER-LSTM and Time-LSTM had similar prediction
and evaluation indicators, but there was a huge gap in running
time, which demonstrates that the Time-LSTM model had a
better effect. Compared with Time-LSTM, FAF-LSTM, and
AHPA-LSTM, it shows that adding the TLW and the fusion
activation function had a good effect on accelerating the
search for the optimal solution of a deep learning network and
can alleviate the gradient-disappearance problem of LSTM.
Compared with MR-LSTM, MRWE-LSTM, LFA-LSTM,
and AHPA-LSTM, the simple momentum-resistance and
weight-estimationmethods demonstrate no obvious improve-
ment in the accuracy of ultra-short-term load forecasting due
to the fixed pre-learning factors. The AHPA-LSTM model
combines the above advantages and solves the problems of

local extrema, gradient disappearance, and a slow learning
rate. It had a good performance in PV ultra-short-term power
prediction.

In conclusion, δMAPE of AHPA-LSTM was 5.8%, δQRER
was 5.56%, δRMSE was 1.63 W, δTHI was 1.19E-01, and the
δRATIO index was 0.91, which meet the accuracy require-
ments of PV ultra-short-term power prediction. Regarding
running time, AHPA-LSTM was 50% slower than the non-
improved LSTM model under the same iteration structure
and cycle times. However, as regards overall running time,
the model meets both the actual demand and the ultra-short
prediction time interval (5 minutes). It can be seen that the
AHPA-LSTM model had the best effect on improving the
predicted output, so the adaptive hyperparameter adjustment
AHPA-LSTM model had practical significance for ultra-
short-term PV power prediction.
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TABLE 3. Evaluation indexes for PV data forecast throughout the year.

FIGURE 6. Effect evaluation index of LSTM model prediction after weight
optimization.

C. ANALYSIS OF VERIFICATION SAMPLES UNDER
DIFFERENT METEOROLOGICAL CONDITIONS
Due to the dates of rainy days and sunny days, there were
large differences in the PV output power curves, as shown

FIGURE 7. PV verification datasets under different meteorological
conditions.

in FIG. 7. Therefore, the prediction of PV output power under
full climatic conditions was a great test for the comprehen-
sive performance prediction of the model. Using the trained
AHPA-LSTM model in the previous section, we predicted
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FIGURE 8. Validation samples from 10:00 to 11:55 under different meteorological conditions.

the PV output power under rainy, cloudy, and sunny condi-
tions. Firstly, we can select 11:00 to 12:55 on sunny days
(August 4-6), cloudy days (August 2, 3), and rainy days
(August 1, 7) as verification data, and use images to
display prediction results more intuitively, as shown in FIG. 8.
Secondly, the overall forecast results of the four verifica-
tion datasets for the whole year were displayed in tabular
form.

It can be seen from the different weather conditions that
the AHPA-LSTMmodel had high-accuracy and high stability
under different climatic conditions. From different meteoro-
logical conditions, the relative error of sunny days was the
best, and the relative error of rainy days was the worst. This
demonstrates that the prediction error of the AHPA-LSTM
model under clear-sky conditions was very small. On cloudy
and rainy days, the error was stable at about 6% due to the

randomness of the cloud. However, the verification data of
the excerpts alone cannot be fully evaluated. The annual full-
weather assessment indicators proposed by us were shown
in TAB. 4.

It can be seen from FIG. 9 that for three climate types
(rainy, cloudy, sunny), the relative error of the sunny days
were in the range of 1%, the relative error of the cloudy days
were in the range of 8%, and the relative error of the rainy
days were in the range of 15%. And δMAPE under various
weather conditions was basically kept at around 1%, δRMSE
was kept at around 1 W, and the daily change of δRATIO basi-
cally stays around 0.9. Therefore, this model can accurately
predict the PV power output under different climatic condi-
tions, and the robustness of the model was good, which can
meet the requirements of ultra-short-term PV output power
prediction.
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TABLE 4. Evaluation indexes of PV data forecast under different meteorological conditions.

FIGURE 9. Effect evaluation index of LSTM model prediction under
different meteorological conditions.

In summary, this paper proposes an AHPA-LSTM model
based on the characteristics of nonlinearity, easy interference,
and time variation of PV output power time series. Thismodel
had higher accuracy and was faster than previous models,
which meets the requirements of ultra-short-term PV output
power prediction.

V. CONCLUSION
We have proposed the AHPA-LSTMmodel for the prediction
of ultra-short-term PV output power. The TLW is added
to the model input data to enhance the time correlation
of the PV output power. Then, the momentum resistance
method is used to improve the LSTMweight update to global
extremum. The weight estimation method is used to estimate
the speed of the model, and the learning rate is accelerated.
Since the momentum resistance method and weight estima-
tion method introduce the new hyperparameters momentum
factor β, resistance factorµ, and estimation factor γ , an adap-
tive hyperparameter adjustment scheme is proposed, thus
obtaining the adaptive hyperparameter adjustment AHPA-
LSTM model. Based on the actual PV power plant data and
local meteorological data, we establish nine power-prediction
models of Time-LSTM, MRWE-LSTM, AHPA-LSTM,
etc., to compare with the PV output-power prediction
effects. It can be seen from the prediction results that the
AHPA-LSTM model can meet the high-accuracy application

requirements of PV ultra-short-term power prediction under
different weather conditions with fewer iterations, thereby
improving the economic benefits of a PV grid connection.

In follow-up work, more real-time meteorological data can
be added, such as video monitoring to identify the cloud
amount above the PV module, thereby improving the pre-
diction accuracy of the PV ultra-short-term prediction model
under cloudy weather conditions. In future research, we will
consider implementing the relevant algorithms on the embed-
ded platform, so as to be closer to the actual demands of grid
dispatching.
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