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ABSTRACT Detecting performance bottlenecks is critical to fix software performance issues. A great
part of performance bottlenecks are related to resource usages, which can be affected by configurations.
To detect configuration-related performance bottlenecks, the existing works either use learning methods to
model the relationships between performance and configurations, or use profiling methods to monitor the
execution time. The learning methods are time-consuming when analyzing software with large amounts
of configurations, while the profiling methods can incur excessive overheads. In this paper, we conduct
empirical studies on configurations, performance and resources. We find that 1) 49% performance issues
can be improved or fixed by configurations; 2) 71% configurations affect the performance by tuning
resource usage in a simple way; and 3) four types of resources contribute the main causes of performance
issues. Inspired by these findings, we design PBHunter, a resource-guided instrumentation tool to detect
configuration-related performance bottlenecks.PBHunter ranks configurations by resource usage and selects
the ones that heavily affect resource usages. Guided by selected configurations, PBHunter applies the code
instrumentation technique in resource-related code snippets. The evaluation shows PBHunter can effectively
(36/50) expose the culprits of performance issues with minor overheads (5.1% on average).

INDEX TERMS Software performance, resource management, software tools.

I. INTRODUCTION
Performance is one of the most important metrics in software
systems. Bad performance can negatively affect the software
efficiency, thus damage the user experience. When software
encounters performance issues, the maintainers need to diag-
nose the root causes and fix the problems in the very first
time. Existing works show that a large proportion of per-
formance issues are caused by misconfigurations [1]–[3].
This is because software configurations can easily affect
its performance, while users with limited domain knowl-
edge may frequently setup improper configurations. In this
regard, automatic tools with the capability of detecting root
causes of configuration-related performance issues can help
the diagnosing and fixing processes.

There has been much research on addressing problems
related to performance issues. Many techniques are targeted
at detecting of performance bottlenecks by using profiling
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methods [4]–[9]. Taking HPROF as an example, HPROF is
a widely-used Java profiling tool for heap and CPU profil-
ing shipped with every JDK release. The profiling methods,
however, may be limited in practice, since 1) the straight-
forward profiling strategy can incur excessive overheads;
2) performance issues may be only triggered under certain
workloads or revealed in specific environments. There have
been some works focusing on building performance models
that describe the relationship between configurations and
the software performance [10]–[18]. The building process
are time-consuming, when analyzing software with large
amounts of configurations. This is because the sheer num-
ber of software configurations and the complexity of the
constraints among configurations make it difficult to test
combinations in a brute-force manner.

Performance issues can be caused by 1) inefficient imple-
mentations of source code, also known as performance bugs;
2) resource conflicts or resource shortages, which lead to
the performance bottlenecks. The performance bugs are
well studied by many existing works [19]–[22], while the
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FIGURE 1. The configuration dfsthroughput.buffer.size affects resource
usage.

tools on performance bottlenecks are limited by overhead,
workload and efficiency. In this paper, we focus on the
performance bottlenecks. Our assumption is that as perfor-
mance bottleneck is ultimately bounded by certain types of
resources (e.g. allocated memory), studying resource-related
configurations and a lightweight instrumentation inside the
corresponding code segments are sufficient for exposing
bottlenecks.

To verify our assumption, we investigate 150 real-world
performance issues from 4 popular Java distributed projects,
ZooKeeper, HDFS, Hadoop Common, and MapReduce,
which require for high performances. We find that 49% of
performance issues are related to configurations. This find-
ing is close to the conclusion that 59% performance issues
are related to configurations by previous study on C/C++
non-distributed projects [1]. By analyzing the source code
and the bug reports, we also find configurations affect the
performance through influencing the usage of four types
of resources, and the most affections are implemented in a
simple way. For example, as shown in Figure 1, getInt() reads
the value of dfsthroughput.buffer.size and assign this value to
BUFFER_SIZE in run(), then the value is used to allocate
memory resource in writeLocalFile.
Based on our observations, we explore an approach to

detect performance bottlenecks from resource perspective.
First, we made a resource dependence analysis between
configuration and each type of resources. And the configu-
ration options with heavy impact on resources are selected
as suspicious culprits for performance degradation. Then,
we conduct a profiling method guided by the suspicious cul-
prits for bottleneck detection. Our approach focuses on con-
figurations that consume more software resources, thereby
we need less instrumentations compared to traditional profil-
ingmethods. Traditional profilingmethods instrument source
code or byte-code to measure the running time of methods.
Obviously, these instrumentations result in additional over-
heads which exacerbate performance issues and may also
unintentionally mask the true performance bottlenecks.

There are two main challenges to address. First, it is
difficult to identify the most resource-related configuration
options since they may affect various types of resources in
different ways. Second, it is hard to quantitatively analyze

the impact of configuration options on the usage resources
as configuration option affects not only data flow but also
control flow.

To address these challenges, we analyze the relationship
among configuration options, resources and performance and
score the statements based on the extent of resource usage.
To quantitatively analyze the impact of configurations on
the usage of resources, we introduce a configuration ranking
approach by accumulating the score of the related state-
ments. We also explore an in-house testing approach that
estimates the probability of branch and loop executions.
We design and implement a tool, PBHunter, to automati-
cally detect configuration-related performance bottleneck in
software projects.

In summary, our contributions are as follows:

• We carry out an empirical study on performance issues.
The results verify that configuration options affect soft-
ware performance by influencing the usage of resource
and the most-related configuration options are more
likely to be suspicious culprits of performance issues.

• We design and implement PBHunter, a resource-guided
instrumentation tool to detect configuration-related per-
formance bottlenecks. PBHunter ranks configurations
by resource usage and selects the ones that heavily
affect resource usage. Guided by selected configura-
tions, PBHunter applies a lightweight instrumentation.

• We verify the effectiveness of PBHunter to detect
performance bottleneck in software. The experimen-
tal results demonstrate that PBHunter can effectively
(36/50) expose the culprits of performance issues.
The extra overhead is less than 5.1%.

II. RELATED WORK
A. PROFILING SOFTWARE PERFORMANCE
Profiling tools are critical for understanding and diagnosing
performance bugs. There is a large number of research on
the detection of bottleneck [4]–[9]. Shen et al. [5] imple-
mented GA-Prof that combines a search-based heuristic with
contrast data mining of execution traces to accurately deter-
mine performance bottlenecks. Schur et al. [6] presented Pro-
Crawl, a generic approach to mine behavior models from
web applications. ProCrawl observes the behavior of the
application through its user interface, generates and exe-
cutes tests to explore unobserved behavior. Chilimbi et al. [7]
described a statistical debugging tool called HOLMES that
isolates bugs by finding paths that correlate with failure.
HOLMES can use iterative, bug-directed profiling to lower
execution time and space overheads. Liu et al. [8] designed
and implemented AutoAnalyzer that automates the process
of debugging performance problems of SPMD-style paral-
lel programs, including data collection, performance behav-
ior analysis, locating bottlenecks, and uncovering their root
causes. Han et al. [9] proposed a novel approach StackMine
that mines call-stack traces to help performance analysts
effectively discover highly impactful performance bugs.
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These profiling methods can incur excessive overheads
(e.g., more than 200%). Our evaluation has shown that
PBHunter can expose the culprits of performance issues with
minor extra overheads (5.1% on average).

B. BUILDING PERFORMANCE MODELS
The performance model can describe the relationship
between configuration options and the performance of the
software. There is a lone line of research has been undertaken
to establish such models in order to help developers predict
performance through various sampling and machine learning
methods [10]–[18]. Guo et al. [10], Sarkar et al. [11], and
Siegmund et al. [12] predicted system performance based
on learning influences of individual configuration options
and combinations of configuration options. Nair et al. [13]
improved the above works by measuring a few configura-
tions of a configurable software system and to make state-
ments about the performance of its other configurations.
Siegmund et al. [14] proposed an approach that derives
a performance-influence model for a given configurable
system, describing all relevant influences of configuration
options and their interactions.Medeiros et al. [15] presented a
comparative study of 10 state-of-the-art sampling algorithms
regarding their fault-detection capability and size of sam-
ple sets. Guo et al. [16] proposed a data-efficient learning
approach, called DECART, that combines several techniques
of machine learning and statistics for performance predic-
tion of configurable systems. Grechanik et al. [17] proposed
an adaptive, feedback-directed learning testing system for
finding performance problems in applications automatically
using black-box software testing. Jamshidi et al. [18] learned
the model using samples from simulators that approximate
performance of the real system at low cost. The learning
methods are time-consuming when analyzing software with
large amounts of configurations (e.g., tens of days). Our
evaluation has shown that PBHunter can efficiently (less than
11 minutes) expose the culprits of performance issues.

C. DETECTING PERFORMANCE BUG
There are several techniques that leverage dynamic or
static analysis to detect performance problems [19]–[22].
Nistor et al. [19] presented CARAMEL, a static tech-
nique that detects and fixes performance bugs that have
non-intrusive fixes likely to be adopted by developers.
Nistor et al. [20] presented TODDLER, an automated oracle
for performance bugs, which enables testing for perfor-
mance bugs to use the well established and automated
process of testing for functional bugs. Song and Liu [21]
designed a root-cause and fix-strategy taxonomy for ineffi-
cient loops, and a static-dynamic hybrid analysis tool, LDoc-
tor, to provide accurate performance diagnosis for loops.
Attariyan et al. [22] introduced performance summarization,
a technique for automatically diagnosing the root causes of
performance problems. Jin et al. [28] conducted a compre-
hensive study of 109 real-world performance bugs that are
randomly sampled from five representative software suites.

These works focus on troubleshooting the root causes of
performance issues. PBHunter is used for detecting software
performance bottlenecks, which may not be the root causes
of performance issues. PBHunter is a complementary tool for
these works.

D. DIAGNOSING MISCONFIGURATION
Much previous work has proposed using static program
analysis to identify and fix incorrect or abnormal configu-
rations [29]–[33]. Attariyan and Flinn [29] built a tool called
ConfAid that instruments application binaries to monitor the
causal dependencies introduced through control and data flow
as the program executes. ConfAid uses these dependencies to
link the erroneous behavior to specific tokens in configuration
files. Yuan et al. [30] presented CODE, a tool that automat-
ically detects software configuration errors. CODE is based
on identifying invariant configuration access rules that predict
what access events follow what contexts. Zhang et al. [31]
presented EnCore that automatically detects software mis-
configurations. EnCore takes into account two factors: the
interaction between the configuration settings and the execut-
ing environment, and the correlations between configuration
entries. Keller et al. [32] presented ConfErr, a tool for test-
ing and quantifying the resilience of software systems to
human-induced configuration errors. Xu et al. [33] built
SPEX to automatically infer configuration requirements from
software source code, and then use the inferred constraints
to: expose misconfiguration vulnerabilities, and detect cer-
tain types of error-prone configuration design and han-
dling. These methods are primarily aimed at function-related
misconfigurations and do not apply to performance prob-
lems, while PBHunter helps users to detects performance
bottlenecks.

III. EMPIRICAL STUDY
Several existing works [1]–[3] study real-world performance
issues. For example, 59% performance issues are related to
configurations [1]. Previous works only paid attention to the
relationships between performance and configurations, but
did not consider how configurations affect performance. Our
assumption is that configurations can affect performance by
tuning resource usage, since most performance bottlenecks
are ultimately bounded by certain types of resources. In this
regard, we conduct empirical studies on the relationships
among performance, configurations and resources. Our stud-
ies include the following research questions:

RQ1: What is the percentage of performance issues related
to configuration?

RQ2: How do the configurations affect resource usage?

RQ3:Which types of resources contribute the main causes of
performance issues?

These empirical studies are conducted on four widely-used
software projects written in Java language: ZooKeeper,
HDFS, Hadoop Common, and MapReduce. To answer RQ1,
we analyze 150 performance issues from the issues tracking

VOLUME 7, 2019 117841



S. Li et al.: Detecting Performance Bottlenecks Guided by Resource Usage

systems and select the performance issues that could be
improved or fixed by configurations. To answer RQ2, we ana-
lyze all 516 bool and numeric types of configurations of
the target programs, and select the ones that can affect
resource. To answer RQ3, we analyze bug reports and patches
of configuration-related performance issues sifted by RQ1,
and determine the type of resource leading to performance
degradation.

A. RQ1: WHAT IS THE PERCENTAGE OF PERFORMANCE
ISSUES RELATED TO CONFIGURATION?
The existing work [1] studied the percentage of perfor-
mance issues related to configuration on three C/C++
non-ditributed programs, while we study this question on
four Java ditributed programs. We search the issue track-
ing system for each software using a set of performance-
related keywords (e.g., performance, slow, speed, regression,
degradation, throughout, efficiency), and get 10534 bugs in
total. We randomly select bugs to analyze whether it is a
performance issue. We abandon the bugs without detailed
descriptions and comments for reproducing the performance
issue or pointing out the culprit. We manually check them
by three authors until get 150 performance issues, which are
enough to prove the reliability of our research compared to
previous studies [1], [2].

We further analyze the bug reports and patches of the
issues to determine whether these performance issues are
configuration-related. We consider a performance issue is
related to configurations, when its bug report or comment
clearly points out that this bug is related to a certain con-
figuration. On the other hand, we analyze the patches of the
performance issue. If one patch modifies the value of the con-
figuration option or the method related to the configuration
option to fix the performance issue, we consider this as a
configuration-related performance issues.

The results are shown in Table 1. For example,
in ZooKeeper, we totally find 779 issues by keyword search-
ing, and analyze 57 issues. Among them, 20 issues are
related to performance, while eight are configuration-related
performance issues. The configuration-related performance
issues account for 49% on average, which is close to the
conclusion of 59% of the previous survey [1].

Finding 1: A great part of (49%) performance issues
can be improved or fixed by configurations. Detecting
configuration-related performance bottlenecks helps to fix
about half of performance issues.

B. RQ2: HOW DO THE CONFIGURATIONS
AFFECT PERFORMANCE?
In order to verify that whether a configuration affects perfor-
mance through tuning resource usage, we analyze all 516 bool
and numeric types of configurations from the four target
programs to analyze how configuration affect performance.

TABLE 1. Performance issues.

TABLE 2. Partial resource-related methods.

TABLE 3. Resource-related configurations.

This is a common practice, since bool and numeric types
of configurations are more likely to affect software perfor-
mance. We check if a resource-related method is included in
the statements affected by the configuration. First, we look
for resource-related methods from JDK by analyzing the JDK
documentation. We consider a method is resource-related,
when the documentation shows that this method is related to
resource usage (e.g, Socket() for network, List() for memory).
Table 2 displays partial resource-related methods. Second,
we obtain the statements dependent on the configuration by
slicing. If these statements contain a resource-relatedmethod,
the configuration is considered to be related to resource.

Table 3 shows the number of studied configurations and
the number resource-related configurations for each pro-
gram. For example, 8 of 12 configurations in ZooKeeper are
resource-related. On average, 76% configurations can affect
the performance through tuning resource usage.

Finding 2: More than 50% of configurations can affect the
performance through tuning resource usage. This finding
verifies our assumption that configurations can affect per-
formance by tuning resource usage.

For the resource-related configurations in Table 3, we
manually analyze all related source code from the reading
method of the configuration. We divide the way the config-
urations affect resources into two categories based on the
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FIGURE 2. Examples of confOne and confMul.

number of configurations affect resource usage. 88% usage
of resources are affected by only one configuration option
(confOne), and 12% usage of resources are affected by two
or more configuration options (confMul). confOne usually
directly controls the execution path (e.g., if, while, etc.), size
(e.g., buffer), or threshold (e.g., thread count). For example,
as shown in Figure 2, the value of bufferSize (the size of the
buffer of I/O) is determined by the value of the configuration
option, io.file.buffer.size. On the other hand, confMul means
multiple configurations affect a resource at the same time,
and multiple configuration options interact with each other.
And as shown in Figure 2, end = start + self.getInitLimit() *
self.getTickTime(), where getInitLimit get the value of config-
uration initLimit, getTickTime get the value of configuration
tickTime and start is an initial value of system time. When
electionFinished is set to false, the loop waits until cur >
end .

Finding 3: 88% of resource-related configurations affect
the resource usage in a simpleway. An automation tool can
get the resource usage of one configuration by analyzing
the source code dependent on that configuration.

C. RQ3: WHICH TYPES OF RESOURCES ARE THE
MAIN CAUSES OF PERFORMANCE ISSUES?
We analyze bug reports and source code of each
configuration-related performance issues to determine the
types of resource leading to performance degradation.
We classify these issues into four categories based on

FIGURE 3. Resource classification.

the type of resource: 1) MEM-related, 2) CPU-related,
3) IO-related, and 4) NET-related. For memory-related
performance issues, performance bottleneck is ultimately
bounded by a shortage in buffer/cache or lack of memory. For
example, in MAPREDUCE-6551, dealing with many small
files leads to manymap tasks. In gengeral, amap task will use
the default configMRJobConfig#MAP_MEMORY_MB to set
its memory capacity. In this case, the map tasks cost so much
memory resource for themassive small files. For CPU-related
performance issues, invalid/inefficient calculations or lacks
of CPU lead to software performance bottlenecks. For
instance, in Hadoop-14216, the performance regression is
caused by parsing the XML file. This wastes CPU resources
and makes the software running time longer. The XML
parsing performance can be improved by reusing and making
changes in the XML parser (STAX). For IO-related perfor-
mance issues, performance bottlenecks are related to the
IO operations. While for NET-related performance issues,
performance bottlenecks are caused by network bandwidth.

Figure 3 shows the proportions of each type of resource.
The configuration-related performance issues are related to
the usage of CPU (35%), memory (24%), IO (23%), and
NET (18%).

Finding 4: Four types (i.e., CPU, IO, MEM and NET)
of resources contribute the main causes of performance
issues. For each configuration, we need to consider four
types of resource usages.

IV. DESIGN
In this section, we introduce the design ofPBHunter. Figure 4
illustrates its architecture. PBHunter consists of two main
phases. The resource dependence analysis phase ranks all
configurations according to their impact on the resources
usage. First, PBHunter gets the statements affected by each
configuration option. Then, for each configuration option,
PBHunter accumulates the score of the statements (w.r.t. the
impact of the statement on the resource) that the configuration
option affects. Finally, according to the score of each con-
figuration option, PBHunter ranks all configuration options
and selects the top resource-related configuration options as
suspicious culprits of performance issues. These suspicious
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FIGURE 4. The architecture of PBHunter.

culprits serve as inputs in dynamic phase. In dynamic analysis
phase, PBHunter detects performance bottlenecks related to
these suspicious culprits obtained by resource dependence
analysis. PBHunter monitors the resource consumption of
statements affected by these suspicious culprits by profil-
ing, then reports the bottlenecks as well as corresponding
configuration options to the users.

A. RESOURCE DEPENDENCE ANALYSIS
In the resource-dependence-analysis-phase, we rank the
configuration options according to their level of influ-
ence concerning the usage of resources, and select the top
resource-related configuration options as suspicious culprits
for performance degradation. To achieve this goal, we quan-
tify the influence of all code blocks affected by the con-
figuration option on resources, and denote this influence
as the score of this option. We divide the analysis into
two steps. First, we leverage inter-process slicing to obtain
the statements that the configuration option affects. Second,
we calculate the score of each statement by in-house testing
approach, and rank the configuration options by adding up the
scores of affected statements. This in-house testing approach
does not depend on the real workload, meaning the process
of ranking configuration options is workload-insensitive.

1) OBTAINING CONFIGURATION-RELATED STATEMENT
PBHunter uses the program slicing tool, WALA [23],
to obtain the statements affected by a given option. This tool
requires a seed statement as the start of slicing. PBHunter
regards the statement that reads the option as the seed state-
ment. More than 90% configuration options have get and
set methods, and these get methods follow a good pattern.
For example, in Figures 2, getInitLimit is the read method
of initLimit, getTickTime is the read method of tickTime and
getInt(‘‘io.file.buffer.size’’, 4*1024)) is the read method of
io.file.buffer.size. We summarize the following two patterns
to recognize the read methods: (1) get+Option Name, (2)get
+ Option Type (Option Name).

2) CALCULATING STATEMENTS SCORE
For each configuration, PBHunter accumulates the score of
the statements (w.r.t. the impact of the statement on the
resource) that the configuration affects. To achieve this,

TABLE 4. The scores of partial type of base instruction we used in our
experiment for different types of resources.

we transfer the statements to bytecode instructions with
WALA(Shrike) [23]. First, we predefine the score of each
base instruction by reading official documents of different
processors [24], [25]. Since the NET-related resource can be
regarded as a subtype of IO-related resource, we do not
predefine the score for NET-related resource. Table 4 shows
the scores of partial type of instructions for each resource.
The score represents to what degree this instruction affects
one type of resource. We use OInsType to represent the score
of different Type of each instruction. For example, a DIV
operation is slower than an ADD operation, so theOInsDIV is
larger than the OInsADD.

The score of an instruction can also be affect by its context.
For example, the instruction is located in a loop or branch
statement. In this case, we need to estimate the number of
instruction executions, which has a significant influence on
the score of each configuration option. To achieve this, we use
the instrumentation technique to count the number of loop
executions and to monitor the branch path based on in-house
testing [26]. We test each software with an existing test set
or testing tools. Then, we take the averaged iteration times as
the execution number for each loop, and calculate the average
probability as the execution number for each branch.
Loop:We insert one counter into each nesting loop for each

method to record the number of loop executions. Then, we run
all test cases in the test set to traverse as many as paths. Based
on the output, we take the averaged value of each loop execu-
tion as the base value of the loop. For example, the 5th-16th
instructions are Loop structures, and the execution number of
these instructions is 10 (NumberOfLoop) in Figure 5.
Branch: We consider the following two branch control

structures: (1) if else, (2) switch case. We WALA’s bytecode
library to convert these branch control structures to bytecode
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FIGURE 5. Scoring a code block affected by configuration option (InsScoreType represents the score of different Type of instruction;
OInsType represents the score of different Type of base instruction; In this figure, Type is the type corresponding to each
instruction.).

and instrumentation on bytecode. For each branch, we instru-
ment additional bytecode to monitor which path is executed.
Furthermore, based on the execution numbers of different
branches, we calculate the probability of each branch. For
example, the 19th-23th instructions are if branch structures,
and the number of executions of these instructions needs to be
multiplied by the probability (ProbabilityOfif) of the if branch
in Figure 5.

According to these results, we can calculate the score
of each instruction which is located in the loop or branch
as a description in (1). Where InsScoreType is the score of
an instruction, OInsType represents the score of this Type of
base instruction,

∏n
i=1 Pi is the probability of each nested

branch (n represents the nesting layers of control conditional
branches), and

∏m
j=1 Tj is the number of loop executions if

this statement is in a loop (m represents the nesting lay-
ers of loops). For example, for the 0th instruction Con-
stant, the number of executions of this instruction is 1, then
the score (InsScoreConstant ) of this instruction for the CPU
resource is OInsConstant × 1 = 5 × 1 = 5 by looking
up the Table 4. For the 15th instruction ConditionalBranch,
the type of this instruction is LTInstruction and the execution
number is 10, so the score (InsScoreLT ) of this instruction is
OInsLT × 10 = 5× 10 = 50.

InsScoreType = OInsType ×
n∏
i=1

Pi ×
m∏
j=1

Tj (1)

3) RANKING THE CONFIGURATION OPTIONS
In order to reduce the number of configuration options
that need to be analyzed, PBHunter ranks all configuration
options according to their scores (the impact of configuration
option on resources). Based on the scores of each instruction
in previous section, we accumulate the scores of all the
statements affected by the configuration option as the score of
that configuration option. Thus we score each configuration
option as described in (2), where Scoreconf is the score of a
configuration option, InsScorei is the score of the ith instruc-
tion in all instructions affected by the configuration options.
Finally, according to the scores, we rank all configuration
options.

Scoreconf =
n∑
i=1

InsScorei (2)

B. BOTTLENECKS DETECTION
In the resource-dependence-analysis phase, we rank all con-
figuration options, and select top ranked ones as suspicious
culprits for performance degradation. In this phase,PBHunter
use profiling [27] to identify bottlenecks related to the suspi-
cious culprits. Profiling is a form of dynamic program analy-
sis that measures the space (memory) or time complexity of a
program, the usage of particular instructions, or the frequency
and duration of method calls. One way to implement profiling
is instrumentation [27]. Instrumentation refers to an ability
to monitor or measure the level of a product’s performance,
to diagnose errors, and to write trace information.
PBHunter makes use of instrumentation to monitors the

resource consumption (running times for CPU, Memory con-
sumption for MEM, IO request for IO) of the code blocks
affected by suspicious culprits. First, PBHunter obtains the
code blocks affected by configuration options using static
slicing. Then, PBHunter instrument these code blocks to
monitor the resource consumption. Third, PBHunter runs test
cases for each software, and obtains the resource consump-
tion of all code blocks affected by suspicious culprits. Based
on the amount of resource consumption, PBHunter ranks
code blocks in a descending order and generates a list of
bottlenecks. Finally, the bottlenecks, w.r.t methods, and the
corresponding configuration options are reported to the users.
It would be better if we were able to get the real input and
workload that caused the software performance bottleneck.
In the experiment, we set the input and load according to the
description of the bug report. For the settings not mentioned,
we use the default parameters.

V. EVALUATION
In this section, we conduct experiments to evaluate the effec-
tiveness and the overhead of PBHunter on detecting software
performance bottlenecks. We first evaluate the effectiveness
of the resource-dependence-analysis phase on recognizing
suspicious culprits, i.e., configurations that heavily affect the
resource usage. Then, we evaluate the effectiveness of the
bottleneck-detection phase, which uses of instrumentation to
monitors the resource consumption of suspicious culprits.
After that, we evaluate the overhead of PBHunter, and com-
pare PBHunter with baseline tools. Finally, we evaluate the
parameter in PBHunter, i.e., the threshold used to select top
ranking configurations.
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TABLE 5. Target performance issues and the rankings of bottlenecks (i .e., problem method).

FIGURE 6. The number of performance issues detected by PBHunter.

A. EFFECTIVENESS OF RESOURCE
DEPENDENCE ANALYSIS
PBHunter uses resource dependence analysis to select
suspicious culprits. For instructions affected by a given
configuration, we predefine their scores for each type of
resource, which can be affected by contexts like loop and
branch. To count the loop number and the probability of
branch, we select four widely used benchmark (TestDFSIO,
mrbench, WordCount and zk-smoketest) for in-house testing.
The TestDFSIO can test the speed of reading and writing the
files of HDFS. We select 10 to 100 files (10-100MB each
file) for different workload. The mrbench is a MapReduce
benchmark, we run 10 to 100 times jobs. The WordCount
is the most commonly used test program of Hadoop, and
we select .txt files as the input. zk-smoketest is the standard
benchmark of ZooKeeper.

To illustrate the effectiveness of recognizing suspicious
culprits, we use the same method described in Section II
to select 10 configuration-related performance issues for
ZooKeeper, HDFS, Hadoop Common and MapReduce.
These performance issues are different from those we stud-
ied in Section II. At the same time, we randomly select
10 configuration-related performance issues of Bookkeeper
to further validate whether PBHunter is effective for new
software.

We select top 5% configuration options as the culprits
causing performance degradation, and determine whether
the configuration options causing the performance issue
is in ranking (top 5%). Figure 6 shows the results.

Black indicates that PBHunter detects the configuration
option that causes the performance issue, and white is the
opposite. The results show that PBHunter detect 36 culprits
of performance issues in 50 cases, and the averaged percent-
age of five software reaches 72%. The results indicate that
PBHunter can effectively detect the configurations that cause
software performance issues.

B. EFFECTIVENESS OF BOTTLENECK DETECTION
To evaluate the effectiveness of detecting bottlenecks,
we need to reproduce the performance issues to obtain the
real bottleneck as an oracle. We are still in the process
of reproducing the issues in Section V-A. So far, we have
successfully reproduced 6 configuration-related performance
issues as shown in Table 5, and apply them to PBHunter.
We compare PBHunter to the standard Java profiling tool
HPROF, which is a widely-used standard JAVA profiling tool
in JDK and we can use it very easily. To reduce the impact of
human factors on HPROF, we use default setting of HPROF.
The results are shown in Table 5. The number is the ranking of
root bottleneck. Taking HDFS-11412 as an example, the root
cause is ranked 8th in the ranking by PBHunter and 114th

by HPROF. The ranking of bottleneck of HDFS-11412 in
PBHunter is improved by 114/8 times compared with the
ranking in HPROF.
PBHunter only instruments the methods that are affected

by the suspicious culprits obtained by resource depen-
dence analysis. This strategy can significantly increase the
efficiency of diagnosing configuration-related performance
issues. The ranking of bottleneck in PBHunter can be
improved by 10 times compared with the ranking in HPROF
on average.

C. EVALUATION OF OVERHEAD
PBHunter uses the instrumentation technique to detect per-
formance bottlenecks, which introduces additional overhead.
To measure the overhead, we count the number of instru-
mentations of PBHunter and HPROF. As shown in Table 6,
the number of instrumentations inserted by PBHunter are
182 in average, while the number of HPROF is 794.

We further monitor the running time of three programs
(WordCount, DFSIO-Write, and DFSIO-Read, which are
widely used for testing Hadoop projects) in three cases:
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TABLE 6. Number of instrumentation.

TABLE 7. The average and the worst overheads of PBHunter and HPROF.

1) PBHunter, 2) HPROF, 3) original source code. For Word-
Count, we take the .txt files as the input and increase the
size of the input with the experiment times. For DFSIO-Write
and DFSIO-Read, we leverage their example program to test
the read/write speed of HDFS with 10, 20, 30, and 40 files
(10, 50, 100, 150MB every file). All tests are run 20 times
and we take the average time as the last result. As shown
in Table 7, PBHunter costs 4.7% overhead on average, while
HPROF doubles the original execution time in the Word-
Count cases. As for the DFSIO-Write cases, PBHunter also
has 4.7% overhead on average, and the worst case is 10%.
By contrast, HPROF leads to 23% overhead on average and
59.1% for the worst case. DFSIO-Read is similar to DFSIO-
Write, PBHunter introduces a 5.1% overhead on average,
and the worst case is 8.7%. While the overheads of HPROF
are 32.1% and 69.6%. In summary, PBHunter outperforms
HPROF in these three cases with different workloads, and
the expected overhead of PBHunter is 15% compared with
the overhead of HPROF.

We also measure the efficiency of the resource dependence
analysis. We run the resource-dependence-analysis phase on
each of the four target programs to obtain their running
times. The averaged running time is seven minutes, while the
in-house testing is less than four minutes. This result suggests
that PBHunter is more efficient compared the tools training
machine learning models.

D. EVALUATION OF THRESHOLD
The resource-dependency-analysis phase sifts through con-
figuration options that are highly resource-related by using
a threshold. We select the top x% configuration options as
suspicious culprits. Noise configuration optionsmay be intro-
duced when the threshold is too large. On the other hand,
PBHuntermay miss problem configuration options when the
threshold is too small. We set x% to 5%, 10%, 15% and
20% and judge whether the real culprits of 73 configuration-
related performance issues (in Section II) are selected as
suspicious culprits. Top 10% configuration options detect
50 culprits while top 20% configuration options detect 55.
Although 20% can obtain better result, it will introduce more

noise configuration options which do not cause performance
issues. In this regard, we select top 10% configuration options
as suspicious culprits in resource dependence analysis.

We apply PBHunter on the target programs, and select top
10% configuration options as suspicious culprits. We manu-
ally verify the results by analyzing source code and descrip-
tions of configuration options. The accuracy of resource
dependence analysis is more than 75%.

E. DISCUSSION
In this section, we discuss the limitations of PBHunter.
First, PBHunter cannot directly troubleshoot the root causes
of performance issues. PBHunter monitors software per-
formance bottlenecks based on instrumentation, but perfor-
mance bottlenecks may not be the root causes of performance
issues. When a method takes a long time, it will be identified
as a performance bottleneck by PBHunter. If this method
should have taken a long time and cannot be optimized,
PBHunter may report a false positive. Second, the experi-
ment results of PBHunter will be affected by benchmark.
Different inputs and workloads will lead to different ranking
of configuration options. Our experiments can not enumerate
all potential scenarios. Third, PBHunter can be affected by
poor coding style. PBHunter detects the read methods of con-
figuration options based on the method names. We evaluate
the accuracy of identifying read methods of configuration
options. The result shows 80% configuration options can
map their read methods. In this regard, PBHunter provides
interface for users to manually specify the read methods.

VI. CONCLUSION
A highly configurable system always allows users to
customize their system. However, users often set inappro-
priate configurations, leading to software performance dete-
rioration. Identifying performance bottlenecks is critical to
improve performance of software and troubleshoot perfor-
mance issues. We study 150 performance issues as well as
516 bool and numeric types of configuration options, and ana-
lyze how configuration options affect performance. We find
that performance issues can be correlated to resource-related
configurations. Based on our study, we design and imple-
ment a tool, PBHunter, to detect the bottleneck that the
configuration options affect by using resources dependence
analysis. Our evaluation has shown that PBHunter can effec-
tively (36/50) and efficiently (less than 11 mins) expose the
culprits of performance issues with minor overheads (5.1%
on average).
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