
SPECIAL SECTION ON INFORMATION CENTRIC WIRELESS NETWORKING WITH EDGE
COMPUTING FOR 5G AND IOT

Received June 27, 2019, accepted August 8, 2019, date of publication August 21, 2019, date of current version September 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936638

Practical Evaluation of Multi-Source
Coded Downloads
PATRIK J. BRAUN 1,2, MURIEL MÉDARD1, AND PÉTER EKLER 2
1Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
2Department of Automation and Applied Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary

Corresponding author: Patrik J. Braun (pbraun@mit.edu)

The work of P. Ekler was supported in part by the frame of FIEK_16-1-2016-0007 project, implemented with the support provided from
the National Research, Development, and Innovation Fund of Hungary, under the FIEK_16 funding scheme, in part by the BME-Artificial
Intelligence FIKP Grant of EMMI (BME FIKP-MI/SC), and in part by the János Bolyai Research Fellowship of the Hungarian Academy
of Sciences (BO/999/16). The work of P. J. Braun was supported in part by the Hungarian-American Fulbright Commission under the
Fulbright Scholarship program (E0583111) and in part by the 2018 Rosztoczy Foundation Scholarship Program. This work has been done
when P. J. Braun was a visiting student researcher at the Massachusetts Institute of Technology (MIT).

ABSTRACT In this paper, we introduce two multi-source download protocols for loosely orchestrated
networks that have high potential in Information-Centric Networking (ICN). We focus on services with high
bandwidth and low delay requirements, such as video streaming. We propose MUlti-source Transmission
Protocol (MUTP) for uncoded multi-source data delivery and extend it with network coding capabilities to
create Coded MUTP. We investigate their throughput using a custom-designed system that includes browser
extensions and proxy servers. The browser extensions intercept YouTube video downloads and forward them
through our proxy server, using parallel HTTP requests, Uncoded MUTP or Coded MUTP approach. We
present measurement results collected in 2018-2019, over eleven months that include 1,300,000 log records
from more than 960 GBs of video download. We show that even when downloading from only two sources,
our protocols can match the heavily optimized HTTP. Furthermore, by increasing the number of sources
to four or higher, MUTP protocols can outperform HTTP, reaching an up to three-fold goodput (useful
throughput) increase. In addition, we show that the proposed solution avoids the straggler problem, therefore
adding more sources to a network increases its goodput.

INDEX TERMS Edge cloud, JavaScript, multi-source download, network coding, video download,
WebRTC.

I. INTRODUCTION
In a multi-source download, a single receiver downloads the
same data from multiple sources. This has high potential
in Information-Centric Networking (ICN) [1], especially in
video streaming applications [2].

Video streaming accounted for 60% of the mobile Internet
traffic in 2018 [3]. Compared to fixed-line broadband net-
works, the main advantage and also the challenge of mobile
Internet connections is their mobility. On the one hand, users
can watch a YouTube, Netflix, or live steam video while
commuting to work. On the other hand, the majority of ser-
vices that are used over the mobile network are mostly based
on a traditional client-server setup, through protocols like
HyperText Transfer Protocol (HTTP) [4]. In this networking
scenario, the client receives data from exactly one server
Furthermore, the servers are usually placed in the core of the
network, far away from the client. When a user travels on

The associate editor coordinating the review of this manuscript and
approving it for publication was Chi Zhang.

a train or in a car with high speed, their mobile connection
can have bandwidth fluctuations, because of signal losses
or handovers [5]. These fluctuations can lead to a reduction
in video quality or even to stream interruptions [6]. The
interruptions may get worse when seeking or changing the
played content since the application cannot use its pre-cached
buffer to overcome temporary communication errors.

A possible solution to this issue is to use ICN with in-
network caching or to create an edge cloud system [7], [8]. In
both solutions, the content gets cached to the nearby network
infrastructure that can serve as source nodes. If clients can
connect to multiple cell towers, they can download from all
of them simultaneously. This minimizes the effect of having a
single weak connection. To achieve multi-source download,
conventional protocols are not sufficient. Furthermore, in a
mobile video streaming scenario, the available nearby source
nodes are changing as the user travels. Therefore, it is chal-
lenging or not feasible to coordinate all source nodes such
that they do not send the same packets to the receiver.

120304 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-1752-5394
https://orcid.org/0000-0002-2396-3606


P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

There have been several works on multi-source download:
Multi-source content delivery throughmultipath transmission
in ICNs was modeled by Hashmeni and Bohlooli [1]. They
selected virtual round-trip time (VRTT) as a key param-
eter of performance evaluation. They estimated VRTT in
their work and use it to calculate the network throughput.
Miyoshi et al. proposed a congestion control mechanism
for Content-Centric Networking (CCN) with multi-source
content retrieval [9]. They used end-to-end flow control to
regulate the transmission only on the congested paths. Multi-
source and multipath File Transfer Protocol (mmFTP) for
ICN networks was proposed by Thomas et al. [10]. Their
measurement-based results showed that mmFTPmight have a
37% throughput increase compared to a single-source down-
load, while it avoids congested paths or sources. Bruneau-
Queyreix et al. proposed MS-streaming, a multiple-source
streaming solution that splits video into multiple independent
sub-streams and offers methods for bit rate adaptation and
server switching [11]. Compared to optimal Dynamic Adap-
tive Streaming over HTTP (DASH) systems, MS-streaming
can achieve up to a 74% mean bit rate gain. Batalla et al.
investigated station-to-device and device-to-device media
streaming methods in a smart city environment for future
5G networks [12]. They proposed a DASH extension called
Multiple Description - Dynamic Adaptive Streaming (MD-
DASH) with full backward compatibility. Their solution
encodes the same movie with H.264 and H.265 codecs into
different bit rates that are downloaded simultaneously from
multiple sources. The authors showed that their solution
could exploit the benefits of multiple sources and achieve
a significant performance improvement compared to uni-
path approaches. Pucha et al. propoesd Similarity-Enhanced
Transfer (SET), a file handprinting solution to tag the simi-
larities in different files [13]. SET is aimed to improve data
availability, and thus the network throughput in distributed
systems, by downloading data from multiple sources. Once
the files are tagged, SET can reach up to a 30% band-
width gain compared to an equivalently configuredBitTorrent
system.

We have previously shown that Random Linear Network
Coding (RLNC) [14] may also be used to improve the
throughput of a multi-source network [15]. RLNC creates lin-
ear combinations of the original packets using random coeffi-
cients. These coefficients are chosen from a sufficiently large
finite field so that the coded packets are linearly independent
with a high probability. The main advantage of RLNC is that
it is a rateless code. Thus, in case of packet loss, new packets
can be generated without changing the coding configuration.
Sundararajan et al. introduced a network coded approach to
Transmission Control Protocol (TCP) and showed that their
scheme achieves a much higher throughput compared to TCP
over a lossy link [16]. They proposed a sliding window net-
work coding approach, where they used feedback to adjust the
window of packets that they coded on. Kim et al. introduced
a model to analyze the performance of TCP with network
coding [17]. They showed that network coding could prevent

FIGURE 1. Screenshot of downloading a YouTube video with our
multi-source MUTP protocols and with parallel HTTP requests.

TCP’s performance degradation that often can be observed
in lossy networks. Sørensen et al. have presented Network
Coded Filesystem Shim (NCFSS), a filesystem-level solution
for multipath, and multi-source download with RLNC [18].
They provided a proof-of-concept implementation of their
proposed solution and showed that it improves access and
download time by a factor of two to five compared to down-
loading from a single source. In our work, we design and
implement an RLNC-based protocol for multi-source down-
load and compare its goodput with an uncoded multi-source
protocol and with a Parallel HTTP-based approach.

The straggler problem is also a challenge [19], [20] in
distributed systems. The network throughput may drop if the
client has to wait for a packet that is unusually late to arrive.
In this paper, we propose a solution that avoids the straggler
problem.

A. MAIN CONTRIBUTIONS
In this paper, we extend our previous works on coded multi-
source download [15], [21]. We propose two protocols for
multi-source download and evaluate their goodput through
measurements. The main contribution of this paper can be
summarized as follows:
• Section II describes the problem formally.
• Section III presents our proposed protocols for multi-
source download. The first protocol is the MUlti-source
Transmission Protocol (MUTP) that transfers uncoded
packets from several servers to one client. We also
describe a testbed in this section that can intercept
YouTube video downloads. The testbed downloads the
intercepted video through several servers, using one
of our protocols or a simple parallel HTTP requests-
based approach that starts multiple HTTP downloads
for the same data and chooses the fastest among them.
FIGURE 1 shows an example of our solution download-
ing a YouTube video.

• Section IV describes the measurement preparation and
setup. We ran our testbed in the Amazon Cloud with
18 servers located in Europe and the USA over eleven
months.

VOLUME 7, 2019 120305



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

FIGURE 2. Multi-source download scenario with M servers and N ≤ M
connections.

• Section V presents our results.
• Section VI summarizes the results and describes our
future research plans.

B. SIGNIFICANCE OF OUR WORK
Our solution differs from previouswork in threemain aspects.
1) We focus on loosely-orchestrated networks where the
servers cannot cooperate. 2) We propose protocols that can
be applied in the transportation layer or over User Datagram
Protocol (UDP) in the application layer. The protocols also
avoid the straggler problem. 3) We use RLNC as part of the
protocol.

The significance of our work is that we show that our
uncoded MUTP protocol outperforms the Parallel HTTP
solution. Applying rateless RLNC encoding on the trans-
mitted data further increases goodput. We obtained these
results by analyzing more then 1,300,000log records, where
each record represents one video chunk download. The log
records were obtained by running an extensive measurement
campaign for eleven months in Europe and the USA.

II. PROBLEM DEFINITION
In this paper, we focus on a scenario that has M servers and
one client as FIGURE 2 shows. All M servers contain the
same L original data packets that the client would like to
download. The client connects to N < M nodes and starts to
download the original data. Connections between the client
and the servers are unreliable in both directions.

We measure the client progress with Degrees of Freedom
(DoF). DoF increases by one if the client receives a new, use-
ful packet. The client sends cumulative feedback that contains
information about all of its previously received packets. It is
not required to acknowledge each packet separately. There-
fore, the client may also decide to skip sending feedback for
some of the received packets. There is no constraint on the
frequency of sending feedback during download, but once the
client has all L original data packets, it should send a feedback
packet to indicate that the download is ready. If a feedback
packet gets lost, we consider the event to be the same as if the
client skipped sending it.

In this paper, we focus on a loosely orchestrated scenario.
The server nodes do not have information about each other,

FIGURE 3. Strict moving window example for window w = 4, assuming
0 round trip time and that the connection between the server and the
client is reliable.

i.e., they do not know howmany nodes the client is connected
to, and the bandwidth of the nodes is also not available for
packet scheduling. For packet scheduling, a server must rely
on two information: 1) the previously sent packets, 2) the
information from the feedback. Note that the feedback from
the client to the server is delayed. Thus, the servers never have
full information about the network.

Servers maintain a window of size w ≤ L to limit the
memory needed for transmission.

In a conventional sliding window approach, packets with
the lowest packet id are chosen from the window for trans-
mission. If a packet with the lowest id gets successfully trans-
mitted, it can be removed from the window, and the window
can slide to include new packets. In a multi-source scenario,
we cannot use this conventional sliding window, since in
that case, all servers would send the same packet. Therefore,
in this paper, we consider a strict moving window setup.
A server may schedule any packets from its window. A packet
can be removed from the window if the client successfully
received and acknowledged its reception. To have a constraint
on the packet delay, we defineW(t), the set of packets in the
window at time t the following way:

W(t) = {i ∈ L | wmin ≤ i < wmin + w}

L = {0, . . . ,L}
Lacked(t) = {i ∈ L | packet i was acknowledged by time t}

wmin = min(L\Lacked(t)), (1)

where L is the set of original data packets, Lacked(t) is the
set of all successfully received and acknowledged packets
by time t and wmin is the not-yet-acknowledged packet with
the lowest index. An example of the strict moving window is
shown in FIGURE 3.

In this paper, we focus on finding the achievable maxi-
mum goodput (useful throughput) of a system that fulfills the
model that is presented in this section.

III. SYSTEM DESCRIPTION
We propose two protocols for multi-source download in
loosely orchestrated network scenarios, where data source
cannot cooperate. We design the MUlti-source Transmis-
sion Protocol (MUTP) for uncoded data transfer from

120306 VOLUME 7, 2019



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

FIGURE 4. System overview.

multiple sources. Based onMUTP, we propose CodedMUTP
with network coding for encoded multi-source data transfer.
We also refer to these protocols as Uncoded and Coded
MUTP to emphasize their differences.

We also design a system that supports Uncoded and Coded
MUTP downloads. FIGURE 4 shows our system setup, con-
sisting of an Origo server and several proxy servers and
clients. The responsibility of the Origo server is to manage
the proxy servers, serve as the entry point to the system, and
receive metadata messages from the client and proxy servers,
such us statistical log data or error reports. The proxy servers
use WebSocket [22] with socket.io1 to connect to the Origo
server. Through this connection, the proxies periodically send
status updates to the Origo server. Each client uses HTTP
requests to download the list of the available proxies from
the Origo server and to send metadata to the Origo server.
We have designed a JavaScript library, ProxyClientLib,

which runs on the client. ProxyClientLib connects to N prox-
ies and requests the same data from all of them. To achieve
this, the client sends the URL of the requested data to the
proxies. Each proxy server downloads data from the URL.
ProxyClientLib can download the content from the proxies
in three different ways: over a simpleParallel HTTP, or using
Uncoded MUTP or Coded MUTP protocols. FIGURE 5
shows the network stack for the three different approaches.
Parallel HTTP sends the same HTTP request over TCP to all
connected proxies and uses the fastest response as the result
of the download (once the data is obtained the other HTTP
connections are terminated). In the case of Parallel HTTP,
feedback and re-transmissions are handled by the underlying
protocol. Uncoded MUTP and Coded MUTP use Stream
Control Transmission Protocol (SCTP) protocol in unreliable
mode over the data channel of Web Real-Time Communica-
tion (WebRTC) to connect to the proxies. We chose WebRTC

1socket.io: https://socket.io/

FIGURE 5. Network stack.

because it is the only way to create an unreliable connection
from JavaScript without the need of installing any third-party
application to the user’s machine.

We have also designed browser extensions for Firefox
and Chrome that intercept YouTube video downloads and
use ProxyClientLib to download video over all three ways.
We have used JavaScript and browser extensions to make
it as convenient as possible for our users to participate in
this research. FIGURE 1 shows a screenshot of our Chrome
extension.

A. MULTI-SOURCE TRANSMISSION PROTOCOL (MUTP)
With MUTP protocol, proxies slice the original data into
L packets of 1100 bytes.2 Each proxy maintains two lists:
in-window packets, and in-transit packets. In-transit packets
are those that have been sent, but no feedback has yet been
received.

The client maintains a list of received packets that
increased its DoF (DoF increases at the client if it receives
a packet with an ID that was not present in its received list).
The client sends cumulative feedback based on its received
list. It may also decide to skip sending some of the feedback.3

The frequency that the client sends feedback is a parameter
of our testbed.

Based on the obtained received list from the client and the
in-transit list, each server creates a sendable list of packets.
The servers use this to choose a packet for transmission. Since
the proxies cannot communicate with each other, optimal
scheduling is not possible. Therefore we implement a random
scheduler, that chooses a packet uniformly at random from the
sendable list without replacement.

2According to our observation, packets bigger than 1100 bytes over
WebRTC get fragmented in the IP layer that results in throughput drop.

3Sending a feedback packet in the application layer withWebRTC triggers
an acknowledgment to that feedback in the lower network layers. This
behavior significantly reduces throughput, and the system performs better
if some of the feedback packets are skipped. We set the feedback frequency
empirically.

VOLUME 7, 2019 120307



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

B. CODED MUTP
Coded MUTP uses a similar approach as Uncoded MUTP to
transmit packets, but instead of sending the original packets,
it uses random linear network coding (RLNC) to create coded
packets. To achieve this, Coded MUTP first organizes the
original L packets into g sized groups, called generations.
Following this, the packets within a generation are linearly
combined over a given finite field. Compared to the uncoded
approach, servers keep generations in their window instead
of individual packets. We use Kodo [23] for RLNC encoding
over the field size of 28. Kodo is a C++ library that we
compile to JavaScript with emscripten.4

Similarly to the Uncoded MUTP, the Coded MUTP client
also tracks the received DoF in a received list, but it does this
at the generation level: the DoF of a generation is the number
of received, linearly independent packets of that generation.
The client sends this received list to the server as cumulative
feedback. To keep the comparison fair, Coded MUTP sends
feedback with the same frequency as Uncoded MUTP.

Servers also keep track of the packets in transit per gener-
ation. Servers schedule packets based on their in-transit and
received list (from the client’s feedback). We use a rarest
generation first approach for packet scheduling, based on
the rarest piece first algorithm of BitTorrent [24]. Rarest
generation first sends a packet from a generation that has
the least received DoF and in transiting packets. We chose
this method to schedule a generation for sending because it
has already shown potential to improve throughput in RLNC
enhanced distributed systems [15], [25].

C. SYSTEM CONFIGURATION AND DATA PROCESSING
Our system has more than 60 different configuration options,
including the number of connected proxies, window size,
and generation size. To measure the impact of changing the
configuration, we collect 58 basic characteristics of a single
download, including gross downloaded data and duration.
Based on these, we further derive 14 characteristics, like
throughput or goodput. We have also developed a detailed
administration website to follow the status of our proxies.
The website also provides a robust toolbox for analyzing
data live, right after it is collected, without the need of any
post-processing. Among the 58 basic characteristics, we have
collected data about a download as detailed as the time and
the originating proxy of each downloaded packet (from the
perspective of the client). FIGURE 6 shows a screenshot
about the administration website.

We used this tool to fine-tune our measurements and to
obtain a quick insight into our system.

IV. MEASUREMENT PREPARATION
Before starting our measurements, we ran our system for
more than two months in beta mode with limited users to
find the best configuration (like window size, generation size,
feedback sending frequency) for our measurement and to
discover improvement possibilities in our implementation.

4emscripten: https://kripken.github.io/emscripten-site/

FIGURE 6. Screenshot about the andministrator page of our testbed,
showing a list of measurement results.

For our main measurements campaign, we used Docker5

containers in Amazon Web Services (AWS)6 to host one
Origo server and 18 proxy servers. The servers were dis-
tributed among five locations: Virginia, Ohio, and Oregon
in the USA and Frankfurt and Paris in Europe. We have
uploaded our browser extension to ChromeWeb Store7 and to
Firefox add-ons8 with the name RLNC Proxy client. We have
also created an official website (www.mitproxy.com) for the
project and asked visitors to use our extension. Apart from
setting up the website, we run an advertisement campaign
to get publicity for our research. FIGURE 7 shows posters
that were distributed at MIT, USA. Furthermore, we also
contacted European universities like BME (Hungary), and
TU-Dresden (Germany) and asked their students to
participate.

Our measurements run between in June 2018 and
April 2019. Throughout these months, there were more than
75 extension installs and more than 25 active weekly users.
Our system collected more than 1,300,000 log records (each
record represents one download) that were generated by
watching more than 960 GBs of YouTube videos. Since our
system uses HTTP over TCP and SCTP over WebRTC based
connections and the achievable throughput of a WebRTC
connection is significantly lower than an HTTP over TCP
connection [26], we decided to limit the bandwidth of proxy
connections to make the performance of the protocols com-
parable. Furthermore, this is a better representation of the
multi-source scenario, when multiple connections are needed
to utilize the available download bandwidth at the client fully.
We limited 14 of our proxies to 896 KB/s and four proxies to
1,792 KB/s. We used the built-in linux commands qdisc9 and
iptables10 for in- and outbound traffic shaping.

As we described in Section I and II, we focus on loosely
orchestrated scenarios where the number of connected

5Docker: https://www.docker.com/
6Amazon Web Services: https://aws.amazon.com/
7Chrome extension: https://chrome.google.com/webstore/detail/rlnc-

proxy-client/jgkegjhffajllgamghkdopkeabjbclfh
8Firefox extension: https://addons.mozilla.org/firefox/addon/rlnc-proxy-

client
9tc qdisc manual page: https://linux.die.net/man/8/tc
10iptables manual page: https://linux.die.net/man/8/iptables

120308 VOLUME 7, 2019



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

FIGURE 7. Posters for our measurement campaign.

proxies and their bandwidth are not known in advance,
so this information cannot be used for packet scheduling.
We emulate this behavior by having the clients connect
to proxy servers at random. A client randomly chooses
N ∈ {1, 2, 4, 6} among the available 18 proxies to connect
to. Furthermore, we restricted our extension to only connect
to proxies within 3,000 km of the user to avoid connections
with a high round trip time (RTT).

V. RESULTS
Throughout our measurement campaign, we obtained our
results in three steps: 1) first, we investigated our protocols
in details, by observing the arrival of the individual packets
at the client. 2) then we measured the distribution of YouTube
video chunk size.11 3) Finally, we evaluated the collected
data, focusing on the measurements results about the most
common chunks sizes.

A. UNCODED AND CODED MUTP PROTOCOL INSIGHT
FIGURE 8 and FIGURE 9 show an example for packet arrival
and feedback (ACK) timing for downloading 1.92 MB with
Uncoded MUTP and Coded MUTP, respectively. The fig-
ures show that during this sample run, CodedMUTP received
significantly less duplicate packets (i.e., packets that do not
increase DoF at the client) and could finish the download
significantly earlier. On the other hand, there is a gap between
the download finish and the arrival of the late (after-finishing)
packets. This gap corresponds to the post-processing of the
downloaded packets. During this post-processing, our appli-
cation cannot handle any incoming packets, as JavaScript
is single-threaded. Therefore the after-finishing packets are
handled right after processing is finished. As FIGURE 9
shows, the post-processing gap is larger for the CodedMUTP.

11According to our observation, a YouTube video is downloaded through
several smaller data chunks, which size varies between approximately 1 KB
to 5 MB.

FIGURE 8. Sample of packet arrivals while downloading a 1.92 MB chunk
with Uncoded MUTP (window size w = 360).

FIGURE 9. Sample of packet arrivals while downloading a 1.92 MB chunk
with Coded MUTP (window size w = 360, generation size g = 24).

Coded MUTP needs to decode the RLNC encoded packets
and also concatenate them, while the Uncoded MUTP only
needs to concatenate them. Furthermore, the figures give a
good insight into the applied strict moving window mecha-
nism and the distribution of duplicate packets over time. In the
case of Uncoded MUTP, the duplicates arrive throughout the
whole download. With Coded MUTP, the effect of the rarest
first generation approach can be observed, as the duplicate
packets arrive in a burst at the end of each RLNC generation.

B. YOUTUBE VIDEO CHUNK SIZE DISTRIBUTION
FIGURE 10 shows statistics about our collected data based
on the downloaded YouTube video chunk size. We have
observed data chunks between a few KBs to 5 MB, but most
of our data lie in the range of 1 MB - 2 MB. Therefore, our
evaluation focuses on this range.

C. SYSTEM GOODPUT
In our results, we compare the throughput, goodput and
normalized goodput of different setups. We define these
quantities the following way:

throughput [byte/s] =
gross download [byte]

duration [s]

goodput [byte/s] =
net download [byte]

duration [s]

normalized goodput =
goodput [byte/s]

throughput [byte/s]
(2)

VOLUME 7, 2019 120309



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

FIGURE 10. YouTube video chunk size distribution.

We use the normalized goodput to compare the amount
of received packets that increase the DoF at the client to
all received packets. We introduce normalized goodput to
have a better comparison between Parallel HTTP and the
MUTP protocols since the throughput of a WebRTC based
protocol is significantly lower than the throughput of HTTP
as FIGURE 11 also shows for downloading data with one
connection.

We present our result in a grouped boxplot arrangement.
For each setup (each tick on the x-axis), we present a boxplot
for all three download approach. Each boxplot contains data
at least from 100 video chunk downloads. The box part of
the boxplot is the interquartile range (IQR) that represents
data between Q1: 25 percentile and Q3: 75 percentile, while
the horizontal line on the box is the median (i.e., Q3: 50 per-
centile). The whiskers are at Q1−1.5∗ IQR and at Q3+1.5∗
IQR. The circles outside the whiskers are outliers.

a: DOWNLOADING 1-2MB CHUNKS
FIGURE 11 shows combined results of downloading 1-2MB
sized chunks from N ∈ {1, 2, 4, 6} connection with different
upload bandwidth. Results show that the throughput of all

three approaches increases continuously as N grows. This
characteristic comes from the fact that in our measurements,
the client has usually higher download rate than the combined
upload rate of the servers. In contrast, the goodput of Parallel
HTTP is approximately equal to the fastest upload rate of
the servers. This shows that Parallel HTTP operates with sig-
nificant overhead on the network. Furthermore, we observe
a slight goodput decrease in the HTTP connection with the
increase of N . In our interpretation, this is caused by the
client’s connection getting saturated, thus resulting in a con-
nection with a reduced bandwidth to the fastest server. These
results show that in the investigated scenario, the simple
Parallel HTTP can utilize the upload rate of the fastest server,
but with the cost of a significant overhead on the network.

The two MUTP protocols have approximately the same
performance regarding goodput if N = 1. Increasing N ,
Coded MUTP has a slightly better mean goodput than
Uncoded MUTP, while Uncoded MUTP has slightly better
throughput than Coded MUTP. The lower throughput for
the Coded MUTP originates from the RLNC calculation
overhead. This overhead decreases the packet send rate at
the Coded MUTP, but using RLNC increases the chance that
the received packet will be useful (i.e., increases the DoF
at the client). The goodput mean results show that, even
with fewer sent packets, CodedMUTP outperforms Uncoded
MUTP regarding the received useful data per second.

Comparing the MUTP protocols to Parallel HTTP,
we observe that using the random packet scheduling approach
for Uncoded MUTP significantly increases the probability
that a received packet is useful. The goodput of the MUTP
protocols reaches the goodput of the parallel HTTP in case
of N = 2, and they significantly outperform the HTTP-
based approach with N ≥ 6. Furthermore, using only two

FIGURE 11. Grouped boxplot representation of downloading 1-2MB data from N ∈ {1, 2, 4, 6} servers with 896 KB/s and 1,792 KB/s upload bandwidth
with window size w = 240 and generation size g = 24.

120310 VOLUME 7, 2019



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

FIGURE 12. Normalized goodput for downloading video data chunks with
different size over one 1,792 KB/s and three 896 KB/s connections with
window size w = 240 and generation size g = 24.

896KB/s connections, the MUTP connections outperform
Parallel HTTP regarding normalized goodput. The gain of our
protocols further increases as N increases, compared to the
HTTP-based approach. This shows that our protocols avoid
the straggler problem since the newly added sources do not
limit the network goodput.

Our current implementation of the MUTP protocols
cannot optimally utilize the extra bandwidth that a faster
server provides in case of in heterogeneous network,
as FIGURE 11 shows this in column 1:1,792KB/s, 3:896KB/s
and 4:896KB/s. This characteristic is caused mainly by
WebRTC and could have been avoided if we had full control
over the underlying protocol.

Normalized goodput shows that if all three download
approaches have the same packet send rate, Uncoded MUTP
has an up to two-fold performance increase compared to
Parallel HTTP. Furthermore, CodedMUTP has an up to three-
fold performance increase compared to Parallel HTTP and a
25% performance increase compared to Uncoded MUTP.

b: NORMALIZED GOODPUT WITH REGARDS TO DATA SIZE
We have investigated the normalized goodput of our system
with one 1,792 KB/s and three 896 KB/s connections, based
on the downloaded data size as shown in FIGURE 12.
Throughput results show that with larger chunk size, the con-
gestion control in the underlying protocols has time to speed
up. Results show that the MUTP protocols increase their
goodput at a higher rate as the chunk size increases. As we
compare the received useful packet to all received packets
in the normalized goodput figure, we observe that the

FIGURE 13. Normalized goodput of downloading 1-2MB chunks with
generation size g ∈ {12, 20, 24} over one 1,792 KB/s and three 896 KB/s
connections with window size w = 240.

FIGURE 14. Normalized goodput of downloading 1-2MB chunks with
window size w ∈ {120, 240, 360} over one 1,792 KB/s and three 896 KB/s
connections with generation size g = 24.

approaches show stable performance. We also observe a
slight increase in normalized goodput as chunk size increases
that come from the mentioned congestion control speed up
of the underlying protocols. It is also important to note that
CodedMUTP significantly outperforms Parallel HTTP, start-
ing from the 256-512 KB range. This shows that using RLNC
can be beneficial even for small data transfers.

c: NORMALIZED GOODPUT FOR GENERATION SIZE
g ∈ {12, 20, 24}
We found that the generation size does not have significantly
impact normalized goodput, as FIGURE 13 shows. This is an
important result because we can reduce the generation size
and thereby the computation overhead of the system, without
having significant performance loss.

d: NORMALIZED GOODPUT FOR WINDOW SIZE
w ∈ {120, 240, 360}
FIGURE 14 presents normalized goodput for different win-
dow sizes. The performance of Parallel HTTP is not affected
by the window size we set. In case of small window size,
UncodedMUTP has the same normalized goodput as Parallel
HTTP. With the increase of w, Uncoded MUTP performs sig-
nificantly better, reaching a 40% gain for w = 480 compared
to the HTTP approach. Coded MUTP has a further up to 16%
performance gain compared to Uncoded MUTP regarding
normalized goodput.

e: GOODPUT IMPACT OF PACKET LOSS
Our system is capable of measuring the packet loss rate
for our MUTP protocols that work over the WebRTC data
channel. Since it is not possible tomeasure the packet loss rate

VOLUME 7, 2019 120311



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

FIGURE 15. Goodput of downloading 1-2MB chunks over lossy link with
one 1,792 KB/s and three 896 KB/s connections with window size
w = 240 and generation size g = 24.

from JavaScript for anHTTP download, therefore we inferred
the loss rate for the Parallel HTTP downloads: For each down-
load, we saved the completion time and also the used proxies
and a Universally unique identifier (UUID) that anonymously
identifies the downloading client. We calculated the packet
loss rate for the HTTP downloads by averaging the loss
rate for those downloads that was initialized by the same
client with the same proxy servers in the last or following
30 seconds.

FIGURE 15 shows the goodput for different packet loss
rates. If the packet loss rate is below 0.5%, the throughput
and goodput of the system are constant. There is a significant
throughput drop as the loss rate is over 0.5%. The twoMUTP
protocols only have a small performance decrease, while the
throughput of the Parallel HTTP reduces significantly. In the
case of the goodput, while the drop rate is below 0.5%, all
three download approaches perform similarly. As the loss
rate reaches 1%, Parallel HTTP has a significant performance
loss compared to the MUTP protocols. The results also show
that the higher loss rate does not have a negative influence
on the packet scheduling of the MUTP protocols since the
normalized good stays constant for all measured loss rates.

f: COMPARISON TO RELATED WORK
We also compared our system to the Network Coded Filesys-
tem Shim (NCFSS) from Sørensen et al. [18]. They have
proposed a filesystem-level solution for multipath, and multi-
source download through three approaches: Naive, Chunked
and RLNC Coded. Their Naive solution slices the source file
into large, equal-sized parts, and the client requests one part

from each source. In contrast to that, we focus on a loosely
orchestrated scenariowhere the number of responding servers
is not always known in advance. Therefore we use a Parallel
HTTP solution, where the same source data is requested from
all sources. Furthermore, in the case of the Naive approach,
some parts may become straggler if some of the sources have
significantly lower bandwidth. The Chunked approach slices
the source file into small (16-32 KB) chunks, like Uncoded
MUTP, but their solutionworks in a pull fashion by requesting
each chunk separately, instead of a push fashion as Uncoded
MUTP works. Their RLNC Coded approach applies network
coding on the Chunked parts, just as Coded MUTP extends
Uncoded MUTP.

Their empirical result shows that the Naive approach out-
performs the Chunked solution as Chuked requests each
chunk separately that adds significant overhead to the com-
munication. In contrast to that, our Uncoded MUTP out-
performs the Parallel HTTP as MUTP can skip some of
the feedback that can significantly reduce the communica-
tion overhead. Furthermore, Parallel HTTP request the same
source data from all sources, and the fastest response is used,
instead of requesting different parts from all sources. Their
Coded solution outperforms their Naive and Chunked solu-
tion, just as Coded MUTP outperforms Parallel HTTP and
Uncoded MUTP. On the other hand, their Coded solution has
a significantly higher gain over the other two approaches than
Coded MUTP has. The gain difference comes from the used
technology as JavaScript has a poor performance on carrying
out extensive mathematical calculations. They used 10 MB
and 100 MB data size, while YouTube chunks tend to be less
than 5MB, and results show that on bigger data, network cod-
ing has higher throughput. Furthermore, our solution avoids
the straggler problem because of the commutative feedback
that adds extra overhead to the system.

VI. CONCLUSION
In this paper, we have proposed two multi-source down-
load protocols for loosely orchestrated multi-source network
scenarios: MUlti-source Transmission Protocol (MUTP) and
Coded MUTP. To test the performance of our protocols,
we developed a system that contains browser extensions on
the client-side and several proxy servers on the server-side.
The browser extensions intercept YouTube video downloads
and forward them through multiple proxies by using a simple
Parallel HTTP, the Uncoded MUTP or the Coded MUTP
approach. We deployed our proxy servers to five different
locations on multiple continents using Amazon Web Ser-
vices. We carried out an extensive measurement campaign
that ran for more than eleven months. Our results show that
the heavily optimizedHTTP protocol outperforms ourMUTP
protocols when downloading from only a single server. As
we increase the number of sources to two, the mean goodput
of Coded MUTP matches the mean goodput of the HTTP
approach, when downloading 1-2 MB sized data. Further
increasing the number of sources to four, both MUTP pro-
tocols outperform the simple Parallel HTTP. Throughout our

120312 VOLUME 7, 2019



P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

measurements, we achieved two- and three-fold normalized
goodput increase with Uncoded MUTP and Coded MUTP,
respectively. Our results show that applying Random Linear
Network Coding in a loosely orchestrated multi-source sce-
nario can achieve significant goodput increase. Furthermore,
we show that our multi-source protocols avoid the strag-
gler problem. Therefore, adding new sources to the network
increases the goodput.

As future work, we plan to investigate further packet
scheduling methods for both Uncoded and Coded MUTP
protocols. In this research, we used WebRTC as the under-
lying protocol for our MUTP protocols, to make our system
widely available and easy to use, as it only required a simple
browser extension install. As we presented in our results,
WebRTC introduced a significant overhead compared to a
UDP connection. We plan to adapt our MUTP protocols
to work directly over UDP to have better control over the
configuration of the underlying network.

Our work shows the potential of coded multi-source
downloads that has high applicability in Information-Centric
Networking (ICN) [1] and distributed systems [27].

REFERENCES
[1] S. N. S. Hashemi and A. Bohlooli, ‘‘Analytical modeling of multi-

source content delivery in information-centric networks,’’ Comput. Netw.,
vol. 140, pp. 152–162, Jul. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1389128618302056

[2] L. Kong, J. Zhu, R. Dai, and M. N. Sadat, ‘‘Impact of distributed caching
on video streaming quality in information centric networks,’’ inProc. IEEE
Int. Symp. Multimedia (ISM), Dec. 2017, pp. 399–402.

[3] (Nov. 2018). Ericsson Mobility Report. Ericsson. [Online]. Available:
https://www.ericsson.com/assets/local/mobility-report/documents/2018/
ericsson-mobility-report-november-2018.pdf

[4] (2018). Global Internet Phenomena. Sandive. [Online]. Available: https://
www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-
report.pdf

[5] R. Ahmad, E. A. Sundararajan, N. E. Othman, and M. Ismail, ‘‘Handover
in LTE-advanced wireless networks: State of art and survey of decision
algorithm,’’ Telecommun. Syst., vol. 66, no. 3, pp. 533–558, Nov. 2017.
doi: 10.1007/s11235-017-0303-6.

[6] N. Wehner, S. Wassermann, P. Casas, M. Seufert, and F. Wamser, ‘‘Beauty
is in the eye of the smartphone holder a data driven analysis of Youtube
mobile QoE,’’ in Proc. 14th Int. Conf. Netw. Service Manage. (CNSM),
Nov. 2018, pp. 343–347.

[7] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, ‘‘Bringing the
cloud to the edge,’’ in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr./May 2014, pp. 346–351.

[8] P. J. Braun, S. Pandi, R.-S. Schmoll, and F. H. P. Fitzek, ‘‘On the study and
deployment of mobile edge cloud for tactile Internet using a 5G gaming
application,’’ in Proc. 14th IEEE Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2017, pp. 154–159.

[9] J. Miyoshi, S. Kawauchi, M. Bandai, and M. Yamamoto, ‘‘Multi-source
congestion control for content centric networks,’’ in Proc. 3rd ACM
Conf. Inf.-Centric Netw., New York, NY, USA, 2016, pp. 205–206. doi:
10.1145/2984356.2985235.

[10] Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, ‘‘Mul-
tisource and multipath file transfers through publish-subscribe internet-
working,’’ in Proc. 3rd ACM SIGCOMM Workshop Inf.-Centric Netw.,
New York, NY, USA, 2013, pp. 43–44. doi: 10.1145/2491224.2491238.

[11] J. Bruneau-Queyreix, M. Lacaud, D. Négru, J. M. Batalla, and E. Borcoci,
‘‘Adding a new dimension to HTTP adaptive streaming through multiple-
source capabilities,’’ IEEE Multimedia Mag., vol. 25, no. 3, pp. 65–78,
Jul./Sep. 2018.

[12] J. M. Batalla, P. Krawiec, C. X. Mavromoustakis, G. Mastorakis,
N. Chilamkurti, D. Negru, J. Bruneau-Queyreix, and E. Borcoci, ‘‘Effi-
cient media streaming with collaborative terminals for the smart city
environment,’’ IEEE Commun. Mag., vol. 55, no. 1, pp. 98–104,
Jan. 2017.

[13] H. Pucha, D. G. Andersen, and M. Kaminsky, ‘‘Exploiting similarity for
multi-source downloads using file handprints,’’ in Proc. 4th USENIX Conf.
Netw. Syst. Design Implement., Berkeley, CA, USA, 2007, p. 2.

[14] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, ‘‘Network information
flow,’’ IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Sep. 2006.
doi: 10.1109/18.850663.

[15] P. J. Braun, D. Malak, M. Médard, and M. Ekler, ‘‘Multi-source coded
downloads,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–7.

[16] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzenmacher,
and J. Barros, ‘‘Network coding meets TCP: Theory and implementation,’’
Proc. IEEE, vol. 99, no. 3, pp. 490–512, Mar. 2011.

[17] M. Kim, T. Klein, E. Soljanin, J. A. Barros, and M. Médard, ‘‘Modeling
network coded TCP: Analysis of throughput and energy cost,’’ Mobile
Netw. Appl., vol. 19, no. 6, pp. 790–803, Dec. 2014. doi: 10.1007/s11036-
014-0556-1.

[18] C. W. Sørensen, D. E. Lucani, and M. Médard, ‘‘On network coded
filesystem shim: Over-the-top multipath multi-source made easy,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–7.

[19] M. A. M. Songze Li and A. S. Avestimehr, ‘‘A unified cod-
ing framework for distributed computing with straggling servers,’’
2016, arXiv:1609.01690. [Online]. Available: https://arxiv.org/abs/1609.
01690

[20] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, ‘‘Reining in the outliers in map-reduce clusters using
mantri,’’ in Proc. 9th USENIX Conf. Operating Syst. Design Imple-
ment., Berkeley, CA, USA, Oct. 2010, pp. 265–278. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924962

[21] P. J. Braun, D. Malak, M. Médard, and M. Ekler, ‘‘Enabling multi-source
coded downloads,’’ in in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Milan, Italy, Jul. 2019, pp. 21–24.

[22] (Dec. 2011). Websocket. [Online]. Available: https://tools.ietf.org/html/
rfc6455

[23] M. V. Pedersen, J. Heide, and F. H. P. Fitzek, ‘‘Kodo: An open and
research oriented network coding library,’’ in Proc. Int. Conf. Res.
Netw., V. Casares-Giner, P. Manzoni, and A. Pont, Eds. Berlin, Germany:
Springer, 2011, pp. 145–152.

[24] R. L. Xia and J. K. Muppala, ‘‘A survey of BitTorrent performance,’’ IEEE
Commun. Surveys Tuts., vol. 12, no. 2, pp. 140–158, 2nd Quart., 2010.

[25] P. J. Braun, M. Sipos, P. Ekler, and F. H. P. Fitzek, ‘‘On the performance
boost for peer to peer WebRTC-based video streaming with network
coding,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[26] S. Taheri, L. A. Beni, A. V.Veidenbaum,A.Nicolau, R. Cammarota, J. Qiu,
Q. Lu, and M. R. Haghighat, ‘‘WebRTCbench: A benchmark for per-
formance assessment of webRTC implementations,’’ in Proc. 13th IEEE
Symp. Embedded Syst. Real-time Multimedia (ESTIMedia), Oct. 2015,
pp. 1–7.

[27] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry, ‘‘Survey on
peer-assisted content delivery networks,’’ Comput. Netw., vol. 116,
pp. 79–95, Apr. 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128617300464

PATRIK J. BRAUN received the B.Sc. degree
from the joint program of Budapest University
of Technology and Economics (BME), Hungary,
and Karlsruhe Institute of Technology, Germany,
in 2013, and the M.Sc. degree from BME, in 2015,
where he is currently pursuing the Ph.D. degree
with the Department of Automation and Applied
Informatics. He was a Guest Researcher as part of
his Ph.D. at the Dresden University of Technology,
Germany, during the summer of 2015, 2016, and

2017. He was a Fulbright Visiting Researcher with the Massachusetts Insti-
tute of Technology (MIT), from 2017 to 2018. His research interests include
networks, communication theory, and distributed caching.

VOLUME 7, 2019 120313

http://dx.doi.org/10.1007/s11235-017-0303-6
http://dx.doi.org/10.1145/2984356.2985235
http://dx.doi.org/10.1145/2491224.2491238
http://dx.doi.org/10.1109/18.850663
http://dx.doi.org/10.1007/s11036-014-0556-1
http://dx.doi.org/10.1007/s11036-014-0556-1


P. J. Braun et al.: Practical Evaluation of Multi-Source Coded Downloads

MURIEL MÉDARD is currently the Cecil
H. Green Professor with the Electrical Engineer-
ing and Computer Science (EECS) Department,
Massachusetts Institute of Technology (MIT), and
leads the Network Coding and Reliable Communi-
cations Group, Research Laboratory for Electron-
ics, MIT. She has cofounded three companies to
commercialize network coding: CodeOn; Stein-
wurf; and Chocolate Cloud. She was the President
of the IEEE Information Theory Society, in 2012,

and has served on its Board of Governors for 11 years. She received the
2009 IEEE Communication Society and Information Theory Society Joint
Paper Award, the 2009 William R. Bennett Prize in the Field of Commu-
nications Networking, the 2002 IEEE Leon K. Kirchmayer Prize Paper
Award, the 2018 ACM SIGCOMM Test of Time Paper Award, and several
conference paper awards. She was a cowinner of the MIT 2004 Harold E.
Edgerton Faculty Achievement Award, and received the 2013 EECS Gradu-
ate Student Association Mentor Award. She has served as the Housemaster
for seven years. In 2007, she was named a Gilbreth Lecturer by the U.S.
National Academy of Engineering. She received the 2016 IEEE Vehicular
Technology James Evans Avant Garde Award, the 2017 Aaron Wyner
Distinguished Service Award from the IEEE Information Theory Society,
and the 2017 IEEE Communications Society Edwin Howard Armstrong
Achievement Award. She has served as the Technical Program Committee
Co-Chair for many of the major conferences in information theory, commu-
nications, and networking. She has served as an Editor for many publications
of the Institute of Electrical and Electronics Engineers (IEEE), of which she
was an Elected Fellow, and has served as the Editor-in-Chief for the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.

PÉTER EKLER received the Ph.D. degree from
Budapest University of Technology and Eco-
nomics (BME), in 2011, where he is currently
an Associate Professor with the Department of
Automation and Applied Informatics. He has been
working with mobile peer-to-peer (P2P) and social
networks for six years. He is the creator of the first
BitTorrent client for mainstream mobile phones
based on Java ME platform. He was the coau-
thor of several mobile-related scientific papers and

book chapters. His fields of research include mobile-based social networks,
P2P solutions, data analysis, and power law distributions in large networks.
He has participated in several data warehouse and business intelligence
related projects. He teaches mobile software development for several mobile
platforms.

120314 VOLUME 7, 2019


