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ABSTRACT With the increasing availability of social networks and biological networks, detecting network
community structure has become more and more important. However, most traditional methods for detecting
community structure have limitations in dimension reduction or parameter optimization. In this paper,
we propose a Density-Canopy-Kmeans clustering algorithm (DCK) to detect network community structure.
Specifically, we define a novel distance metric, which integrates random distance and community structure
coefficient based on the Jaccard distance. After applying the Multidimensional Scaling (MDS) dimension
reduction, we cluster the nodes. KMEANS is combined with density clustering and canopy clustering to
determine the optimal number of communities and the best initial seeds are determined to improve the
accuracy and stability of the K-means algorithm. Compared with traditional community detection methods,
our method has a higher classification accuracy and a better visualization effect. Thus, this method is effective

for analyzing network communities.

INDEX TERMS Network, community detection, the Density-Canopy-Kmeans clustering algorithm, MDS.

I. INTRODUCTION

Complex networks, such as protein interaction networks,
gene regulatory networks, social networks and cooperative
networks, have received more and more attention recently,
especially from interdisciplinary domains [1], [2]. It has
been found that these complex networks have many common
topological properties, among which community structure or
modular structure is one of the most important and widely
studied properties [3]. A community, module or cluster in
a network is a set of nodes such that the nodes within the
community are closely connected, while those in different
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communities are sparsely connected. The communities often
correspond to functional units in real-world networks. There-
fore, the analysis of community structure has a wide range
of applications in the field of biology, physics, computer
graphics and sociology [4], [5].

In order to effectively detect communities and visualize
network structures, we design a new distance metric formula
and constructs a Density-Canopy-Kmeans algorithm (DCK),
which can infer the optimal number of communities and
the best initial seeds for K-means. In addition, based on the
distance metric, we adopt MDS to project a complex network
into a two-dimensional space. The projection graph displays a
more intuitive and clearer community structure while keeping
important connections in the original network. Taking only
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the adjacency matrix of a network as input, the algorithm can
achieve a good community partition for visualization.

Il. RELATED WORK

Community detection algorithms in complex networks
can generally be divided into three categories including
clustering-based algorithms, optimization-based algorithms
and network dynamics-based algorithms. Hierarchical
clustering-based algorithms detect communities according to
the hierarchical clustering of nodes, e.g., agglomerative hier-
archical clustering based on maximal clique (EAGLE) [6],
cluster-overlap Newman Girvan (CONGA) [7] and the
method based on the local optimization of a fitness func-
tion (MSCD-LFK) [8]. With the development of commu-
nity detection algorithms, many evaluation parameters for
community structure such as modularity and conductiv-
ity have been proposed [9]. As a result, there are many
optimization-based algorithms proposed to optimize the
objective functions based on these parameters, such as multi-
objective genetic algorithm for community detection in net-
works (MOGA-NET) [10], heuristic artificial bee colony
(HABC) [11], Order Statistics Local Optimization Method
(OSLOM) [12], LouvainSprs [13], LouvainSgnf [14] and
multi-objective discrete cuckoo search algorithm with local
search (MDCL) [15]. Because of the intrinsic correlation
between network structure and dynamical behaviors in the
networks, many network dynamics-based algorithms uti-
lize the dynamical characteristics of complex networks for
community detection, e.g., random walks and diffusion on
networks [16], maps of random walks on complex networks
(Infomap) [17], the method using random walks (Walktrap)
[18], the Label Propagation Algorithm (LPcopra) [19], and
multiresolution community detection in large-scale networks
(MSCD_HSLSW) [20]. The readers are referred to several
reviews for a comprehensive summary on network commu-
nity detection algorithms [2], [21].

The essence of complex network community detection is
to cluster nodes in a network. Therefore, it is critical to define
the similarity between nodes, based on which a clustering
algorithm can be applied to divide the network into com-
munities. For example, Cai et al. used the internal positive
similarity of community as the node feature to calculate
the distance between two nodes, and applied the clustering
algorithm to cluster the network nodes [22]. However, the
clustering results are very dependent on the distance metric
and the parameters of the algorithm. The visualization of
the networks is generally based on multidimensional scal-
ing (MDS) [23], PCA [24], Laplacian Eigenmaps(LE) [25],
T-SNE [26] and other dimensionality reduction methods.
These methods usually map the nodes in a network to
a low-dimensional Euclidean space, assign a reasonable
k-dimensional coordinate (generally k=2 or 3) to each node,
and draw a graph according to the coordinates for observing
community structure. However, the visualization of com-
munity structure will be highly affected by the dimension
reduction methods and distance metrics.
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lIl. METHODS

Assume that the network to be analyzed is an undirected
and unweighted static network with n nodes. Let A be its
adjacency matrix with A; = 1 if there is an edge between
two node N; and N;, and A;; = 0 otherwise. The algorithm
framework consists of three parts. Firstly, we calculate the
node similarity matrix D based on A. Secondly, the clustering
algorithm is applied to D to generate network communi-
ties. Finally, the distance matrix D is projected by MDS for
visualization.

A. COMPUTATION OF SIMILARITY DISTANCE

At present, there are various methods to calculate similarity
between two nodes in a network. Ten similarity measures
were compared in Lii et al. [27], which showed that the
Jaccard similarity is suitable for measuring topological close-
ness. The Jaccard similarity of node N; and N; is defined as
sii = IN@ONONMI/IN@ UN()|, where N (i) is the neighbor
set of node i and |N (i)| represents the number of elements in
the set N (i) [28].

Each row of the adjacency matrix A indicates the neighbors
of each node, where the elements are 1 for its neighbors and
0 for non-neighbors. Assume that L] represents the number
of corresponding bits the values of which are 1 in both row i
and j; Lo denotes the total number of bits that are 1 in row i
and 0 in row j; L1 denotes the total number of bits that are 0 in
row iand 1 in row j; Ly is the total number of corresponding
bits with a value of 0 in both rows, and thus the total number of
nodes Li1 +Lo1 +L1o+ Loo = n. Then the Jaccard similarity
is s;j = L11/(Lo1 +Lio+L11), and the corresponding Jaccard
distance is

dist;j = (Lo1 + Lio)/(Lo1 + Lio + Li1) (H

The Jaccard similarity will be O if node i and j does not
share any neighbor.

For complex networks, these zero-similar nodes can’t
apply MDS methods to get their two-dimensional coordi-
nates. For this problem, we generate a random symmetric
matrix with the same dimension of the adjacency matrix as
the random distance dist_random;; of each node, where the
random number range is [0, 1]. In this way, a new distance
matrix D is formed, and the formula for calculating its ele-
ments d;; is shown in formula (2)

dij = y - distij + dist_randomj, 2)

where y is the community structure coefficient, and its value
affects the community structure discovery during clustering
and visualization.

B. THE MDS EMBEDDING

Multidimensional Scaling (MDS) is a multivariate data anal-
ysis technique that displays ‘distance’ data structures in low-
dimensional space. As a typical representative of information
visualization technology, MDS can be used to reveal the rela-
tionship between abstract objects, show the spatial clustering
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of data, and help people explore and discover information
in an effective and intuitive visual environment. MDS can
keep distance information when more elements are mapped to
Euclidean space [29]. MDS is a reasonable tool for mapping
network nodes to Euclidean space. The process of MDS is as
follows:

Firstly, calculate the distance matrix D from equation (2)
whose elements d;; are the distance between the nodes N;
and N;.

Secondly, calculate matrix B, where,

by = g xS ddyn+ (30 Dy
j=1 i=1

i=1 j=1

After eigenvalue decomposition of the matrix B, eigenvalues
Al > X > A3 = ... > ), are sorted in descending order,
the two largest eigenvalues A1, A, are taken to form a diagonal
matrix A, and the corresponding eigenvector matrix W is
extracted.

Finally, calculate the bivariate coordinate matrix of
nodes X = WV/A.

C. THE DENSITY-CANOPY-KMEANS ALGORITHM

After the distance matrix of the node is calculated by (2),
the nodes can be clustered after applying MDS for dimension-
ality reduction. K-means is a classic partitioned clustering
algorithm [30], but the traditional K-means needs to spec-
ify the number K of communities in advance. In order to
improve the accuracy and stability of the Kmeans algorithm,
and solve the problem of determining the optimal number
K of clustering and the optimal initial seeds, we construct
the Density-Canopy-Kmeans clustering algorithm. Canopy
belongs to the coarse clustering method and is often used in
conjunction with Kmeans [31], [32].

The traditional canopy algorithm is: set a Canopy initial
center point and a region radius T1 for a certain data set,
and efficiently divide the data set into several overlapping
subsets (i.e., Canopy), so that all objects fall within the range
of Canopy coverage. For the objects falling in the same
area, recalculate the new center point and re-divide the
area to which the object belongs according to the distance
between the object and the new center point; cyclically exe-
cute the process of ‘dividing the Canopy calculation center
point’ until the positions of the k center points no longer
change.

The canopy algorithm needs to determine two parameters,
how to determine them is still unclear. In order to improve the
stability and computational efficiency of the canopy, the prin-
ciple of density clustering is applied further. In the process
of Density-Canopy-Kmeans algorithm, the values of R and
T directly affect the overlap rate and granularity of canopy:
when R is too large, the sample will belong to multiple
canopy, and the difference between canopies is not obvious;
when T is too large, it will reduce the number of canopy, and
when T is too small, it will increase the number of canopy
and the calculation time.

120618

The values of R and T are related to the distance matrix.
The calculation formula is as follows:

R = dpin + 7 - (dmax — dmin) 3)
T = dmin +1- (dmax - dmin) (4)

where dpin is the average value of the minimum distance
between each node and other nodes, dm,x is the aver-
age value of the maximum distance between each node
and other nodes, r is the density radius coefficient, and
tis the distance threshold coefficient. We tested r&t and
found that it is insensitive to the results, and finally we set
r=t=1/6.

The complete algorithm is presented in Alg. 1 and time
complexity is O(n) where n is the number of nodes.

Algorithm 1 DCK
Input: The adjacency matrix A of the network G = (V, E), the
parameter r &t

QOutput: the set of clusters

1: Calculate the Jaccared distance matrix J according to
Eq 1.

2: Calculate the distance matrix D according to Eq 2.

3: Apply MDS to reduce the D is matrix to 2-dimensions and
calculate the Euclidean distance matrix D.

4: for each node V; in network do

5: Count the number of nodes with d < R and set list sorts

from large to small.

: for each node V; in list do

7: Select the first node V7 in order in the List, the nodes of

d < T belong to the V| canopy, and remove these
nodes from the List.

8: Repeat step 7 until the List is empty

9: end for

10: end for

11: Obtain canopy set. If there are fewer than five nodes in
the canopy, these nodes are considered to be isolated
points, and these canopy are invalid.

12: The number of valid canopy sets is the number of clusters
k. Apply Kmeans clustering for nodes in valid canopy
set to get the clustering labels of these nodes.

13: Isolated nodes are defined cluster labels based on their
shortest distance with the clusters center.

[*))

IV. RESULTS

In this section, we will evaluate the performance of DCK on
artificial and realistic networks. In order to test the effec-
tiveness of the proposed algorithm, we mainly use modu-
larity to measure the quality of community detection. The
network modularity evaluation function Q is used to quan-
titatively describe the quality of the network community
structures [33], which is defined as the difference between
the actual number of connections in the communities and
the expected value in the null model (i.e. random networks).
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FIGURE 1. Comparison of different embedding methods in three types of networks: (a) Connected graph, (b) Mixed graph, (c) GN4 (P;, = 0.69,

kout = 4); (d) Pollen single cell.

The calculation formula is as follows:

K
0 =" [(h/H) ~ (du/2H))] ®)

u=1

where K is the number of network communities, H is the
total number of network connections, 4, is the total num-
ber of connections in the community u, and d, is the sum
of the degree of nodes in the community. There are three
parameters y,r,t in the model, and the optimal parame-
ter is determined by the maximum Q value. In general,
the greater the degree of modularity, the higher the qual-
ity of community partitioning in the network, but some-
times it does not fully conform to the community structure.
Therefore, in addition to the modularity, we also use several
widely used measurement indicators [21] with F-measure,
Rand index (RI), Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI) to evaluate networks of known
structures.

The algorithms that are used for comparison include
MSCD-LFK [8], OSLOM [12], Lourvarinsprs [13],
LouvainSgn [14], LPcopra [19], and Kmeans [30]. For the
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algorithm with randomness, we run 10 times and take
the results corresponding to the optimal value of the
module.

A. ARTIFICIAL NETWORKS

The artificial networks with known community structure are
used to test the effectiveness of the community detection
algorithm. In order to compare the visualization effects of
the four projection methods and the test algorithm parameters
and performance, we tested them in the synthetic network,
GN network [33] and LFR network [34].

1) COMPARISON OF DIFFERENT PROJECTION METHODS

We use MDS to project several different networks onto a
two-dimensional plane and compare it to the results of the
other three projection methods: PCA, LE and t-SNE. A path
between any two nodes in the network can reach each other
as a connected graph such as Fig. 1(a). However, most of
the networks have the characteristics of Fig. 1(b), including
some connected communities and disconnected communi-
ties, called mixed graphs. These two networks are computer-
synthesized. For more comprehensive testing, we tested it
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FIGURE 2. Comparison of community structure coefficient.

TABLE 1. LFR network parameter.

N the number of nodes in the networks -
ki the average degree 20
Kmax the maximum degree 50
Crmin/Cmax the minimum/ maximum community sizes 10/50
e exponent for the degree distribution 2

the mixing parameter which determines the ratio | [0.1,0.7]

n of the external degree on each node to the total

degree of the node with respect to community

in the GN network (Pj; = 0.69, kot = 4), and finally
we did a visual test in the Pollen single-cell data set which
is described below. It can be seen that MDS have the best
visualization effect. PCA has better visualization in the first
three networks, but it does not work well in Pollen. LE can
only effectively express the clustering of connected graphs.
T-SNE plot cannot express communities. The reason is that
the given distance metric is not applicable to T-SNE.

2) THE EFFECT OF PARAMETERS ON THE ALGORITHM

In equation (2), the value of the community structure coef-
ficient y has a direct impact on the clustering. Fig. 2 firstly
displays the effects of different values on clustering visual-
ization. It is found that the larger y is, the better the cohesive
effect of the communities is, but when y reaches a certain
level, the cohesive effect will not change any more. Therefore,
we finally determined that y = 100.

3) COMPARISON OF LFR NETWORKS

The definition of parameter of LFR network and their set-
ting are shown in Tab. 1. By increasing the value of wu,
the community structure will become increasingly blurred.
When p < 0.5, the community structure is obvious. A view
of the various u values of the 300 nodes (other parame-
ters are in Tab. 1) in the LFR network is shown in Fig.3.
When u > 0.6, the community structure is invisible. This
shows that DCK has a good view effect when applying MDS
projection.
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FIGURE 3. Comparison of different x in LFR network.

We show a composite comparison of various sizes and u
in LFR network in Tab. 2. By increasing the value of wu,
the community structure will become more and more
blurred. When < 0.5, NMI/Fmeasure/Accuracy/RI/ARI
are well, and the number of community modules is basi-
cally the same as the number of real clusters. When
© > 0.6, NMI/Fmeasure/RI/ARI is greatly reduced. There
are also large deviations between the number of original
communities and the number of DCK clusters. This shows
that the algorithm has high accuracy in estimating the number
of clusters, and other indicators are also very high.

B. REAL-WORLD NETWORK

The importance of community discovery lies in the
community structure discovery in real networks. The
effectiveness of the proposed algorithm has been verified by
artificial networks. To further illustrate the effectiveness of
the proposed algorithm, we compared the DCK algorithm
with other algorithms on real-world networks. These net-
works include a widely used social networks for testing com-
munity detection algorithms (Zachary karate club Network
[35]), dolphins [36] and several biological networks con-
structed by Pollen single-cell RNA-seq data [37] and Treutlin
single-cell RNA-seq data [38]. We have downloaded the gene
expression data of cells from the dataset. Note that Pollen data
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TABLE 2. LFR network test results.

N u Community number Cluster number Modularity NMI F-Measure RI ARI
300 0.1 10.0 10.0 0.759 1.000 1.000 1.000 1.000
300 0.2 13.8 13.8 0.671 1.000 1.000 1.000 1.000
300 0.3 15.8 15.8 0.580 1.000 1.000 1.000 1.000
300 0.4 15.8 15.8 0.487 0.996 0.997 0.999 0.993
300 0.5 15.8 15.8 0.388 0.950 0.964 0.987 0.908
300 0.6 15.8 14.6 0.245 0.755 0.736 0.938 0.554
300 0.7 15.8 10.8 0.069 0.334 0.328 0.857 0.113
1000 0.1 41.8 41.8 0.852 0.996 0.987 0.999 0.989
1000 0.2 51.4 51.2 0.748 0.992 0.972 0.999 0.973
1000 0.3 54.6 54.4 0.637 0.986 0.954 0.998 0.951
1000 0.4 54.6 54.6 0.545 0.981 0.945 0.997 0.931
1000 0.5 54.6 532 0.433 0.966 0.900 0.994 0.870
1000 0.6 54.6 45.4 0.322 0.905 0.791 0.988 0.737
1000 0.7 54.6 41.0 0.148 0.633 0.476 0.968 0.296
2000 0.1 85.8 84.4 0.858 0.992 0.973 0.999 0.972
2000 0.2 100.2 96.2 0.760 0.988 0.954 0.999 0.959
2000 0.3 101.4 98.4 0.661 0.989 0.960 0.999 0.964
2000 0.4 101.4 95.8 0.560 0.980 0.930 0.998 0.926
2000 0.5 101.4 91.0 0.447 0.965 0.880 0.997 0.865
2000 0.6 101.4 73.6 0.356 0.926 0.798 0.994 0.771
2000 0.7 101.4 65.6 0.145 0.644 0.429 0.980 0.267
5000 0.1 230.4 181.0 0.881 0.976 0.887 0.999 0.890
5000 0.2 253.8 171.6 0.787 0.965 0.835 0.998 0.843
5000 0.3 256.2 174.8 0.688 0.964 0.835 0.998 0.841
5000 0.4 256.2 171.4 0.586 0.962 0.824 0.998 0.830
5000 0.5 256.2 155.0 0.486 0.949 0.778 0.997 0.778
5000 0.6 256.2 126.4 0.374 0.908 0.671 0.995 0.646
5000 0.7 256.2 109.0 0.153 0.659 0.351 0.989 0.233

has 300 cells and 11 clusters, and Treutlin data has 80 cells
and 5 clusters. They are not network structures. We con-
struct two kinds of networks by KNN with K=5 and K=10.
The community structure of these real networks are known,
so we can use NMI, ARI, etc. to measure the performance of
algorithms.

We tested the accuracy of the algorithm when determining
the number of clusters. In Table 3, we list the original tag
categories of several real networks and the number of clusters
obtained by each algorithm, and mark the red for the exact
same set, where the number of clusters of KMEANS is also
provided by DCK. It can be seen that DCK can get the correct
number of clusters in most cases. In addition, the NMI and
other evaluation indicators of each algorithm are compared.
DCK s the average of 10 iterations, and DCK-MAX indicates
the best among the 10 groups. A set of results. For the
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best results we also marked the red. For the two- single-cell
data Pollen&Treulin, the clustering results are related to the
parameters of the KNN network, and the effect of k=10 is
better than k=5.

Now we consider the famous Zachary Karate Club net-
work, which has become a common workbench for commu-
nity search algorithms [39], [40]. The club network is divided
into two parts by DCK, which are exactly the same as the
original labels, as shown in Fig 4(a). Dolphin networks are
also considered. The original labels are of two types. DCK
and KMEANS are of three types, in which the open symbols
represent categories that do not match the original labels,
as shown in Fig 4(b). Similarly, we also compared two sets of
single cell data, as shown in Fig 4(c,d). The results show that
under the same settings, DCK better identifies the community
better than KMEANS.
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TABLE 3. Real-work network test results.

data set Method C(;r:nn:ll;::ly r?t}lrflt)zrr NMI F-measure RI ARI

MSCD LFK 2 1 0 0.668 0.487 0

OSLOM 2 1.8 0.363 0.786 0.658 0.323

LPcopra 2 14.8 0.439 0.576 0.64 0.265

Karate LouvainSprs 2 43 0.659 0.821 0.782 0.559

(34 node)  LouvainSgnf 2 59 0.57 0.74 0.73 0.452

KMEANS 2 2 1 1 1 1

DCK 2 2 1 1 1 1

DCK-MAX 2 2 1 1 1 1

MSCD_LFK 2 1 0 0.705 0.556 0

OSLOM 2 1.8 0.524 0.878 0.791 0.558

LPcopra 2 6 0.652 0.871 0.836 0.681

dolphin  LouvainSprs 2 13.6 0.409 0.518 0.553 0.176

(62 node) L ouvainSgnf 2 16.4 0.381 0.462 0.523 0.128

KMEANS 2 3.2 0.631 0.808 0.761 0.539

DCK 2 32 0.648 0.815 0.772 0.56

DCK-MAX 2 3 0.718 0.94 0.913 0.826

MSCD_LFK 11 8 0.892 0.845 0.95 0.781

OSLOM 11 16 0.839 0.719 0.935 0.611

LPcopra 11 21.8 0.836 0.724 0.935 0.608

Pollen  LouvainSprs 11 18.4 0.822 0.718 0.936 0.592
KNN=5

(300 node) LouvainSgnf 11 27.6 0.786 0.628 0.923 0.463

KMEANS 11 16 0.815 0.693 0.929 0.593

DCK 11 16 0.833 0.719 0.938 0.633

DCK-MAX 11 16 0.855 0.783 0.955 0.742

MSCD_LFK 11 4 0.681 0.572 0.75 0.358

OSLOM 11 13.7 0.824 0.736 0.94 0.65

LPcopra 11 12,5 0.879 0.798 0.952 0.741

Pollen  LouvainSprs 11 12.6 0.841 0.763 0.945 0.691
KNN=10

(300 node)  LouvainSgnf 11 19.6 0.822 0.722 0.934 0.585

KMEANS 11 11 0.832 0.765 0.945 0.711

DCK 11 11 0.848 0.782 0.949 0.737

DCK-MAX 11 11 0.889 0.88 0.977 0.883

MSCD_LFK 5 2 0.52 0.627 0.616 0.33

OSLOM 5 4 0.875 0.92 0.961 0.913

LPcopra 5 3.5 0.775 0.828 0.887 0.762

Treutlin  LouvainSprs 5 7.6 0.707 0.716 0.785 0.428
KNN=5

(80nodey  LouvainSgnf 5 10.6 0.68 0.655 0.764 0.347

KMEANS 5 6 0.681 0.706 0.79 0.452

DCK 5 5.8 0.719 0.767 0.833 0.572

DCK-MAX 5 5 0.823 0.913 0.929 0.836

Treutlin -~ MSCD_LFK 2 0.52 0.627 0.616 0.33
KNN=10

(80node) ~ OSLOM 5 3.2 0.758 0.802 0.858 0.708

LPcopra 5 3.5 0.725 0.762 0.831 0.639

LouvainSprs 5 73 0.707 0.731 0.793 0.455

LouvainSgnf 5 9.6 0.661 0.685 0.768 0.374

KMEANS 5 5.6 0.779 0.772 0.845 0.602

DCK 5 5.8 0.791 0.791 0.857 0.634

DCK-MAX 5 5 0.906 0.932 0.976 0.944
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FIGURE 4. The effect of Real-world networks. (a) Visualization of Zachary karate club network and community structure detected by DCK.
(b) Comparison of the original label of dolphin network and the clustering result of DCK algorithm and KMEANS algorithm.

(c) Comparison of the original label of Pollen single cell (k=10) network and the clustering result of DCK algorithm and KMEANS
algorithm (d) Comparison of the original label of Treutlin single cell (k=10) network and the clustering result of DCK algorithm and
KMEANS algorithm, where the open symbol indicates a category that does not match the original label.

V. CONCLUSION
In this paper, we propose a Density-Canopy-Kmeans algo-
rithm based on node adjacency matrix to detect community
structures in networks. The algorithm is based on an intuitive
idea that nodes within the same community are more closely
connected than those between communities. For node dis-
tance metric, we first construct the Jaccard distance according
to the node adjacency matrix, and add random distance and
community structure coefficient to get a new distance metric
that is easier for detecting the community. Then, combined
with density clustering and canopy clustering, the Kmeans
clustering process is improved, and thus the DCK algorithm
is constructed. The algorithm obtains proper canopy sets by
adjusting the parameters r&t, then directly determine the
number k of the clusters and the initial seeds from the number
and average of the canopy sets, and finally detects the com-
munity structure in networks.

There are a few advantages of this method. First of all,
the algorithm is very simple. Second, it does not require
additional prior knowledge about the community structure,
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as long as the adjacency matrix of the network nodes is suffi-
cient. And, a set of optimal parameters is given to effectively
detect communities in networks.

To visualize the networks more effectively, the MDS pro-
jection is performed on the basis of the distance matrix,
and the projection point map of the network in the two-
dimensional plane is drawn. The MDS projection based on
the Jaccard distance can display a more intuitive and clearer
community structure while keeping important connections
in the original network. Experimental results on computer
synthesis and real-world networks have demonstrated the
superiority of the MDS projection algorithm.

Finally, compared with traditional methods, our commu-
nity detection algorithm and network visualization method
have a higher classification accuracy and a better visual-
ization effect. Our method can provide a useful tool for
analyzing network structures. However, current version of
our method is relatively slow especially for large networks.
Moreover, some meaningful extensions of the MDS projec-
tion can be constructed in the future, and improvements can
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be used for the identification and analysis of overlapping
communities.
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