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ABSTRACT With the rapid growth of computation demands from mobile applications, mobile-edge
computing (MEC) provides a new method to meet requirement of high data rate and high computation
capability. By offloading the latency-critical or computation-intensive tasks to the edge server, mobile
devices (MDs) could save energy consumption and extend battery life. However, unlike cloud servers,
resource bottlenecks in MEC servers limit the scalability of offloading. Hence, computation offloading
and resource allocation need to be optimized. Toward this end, we consider a multi-access MEC servers
system in which Orthogonal Frequency-DivisionMultiplexing Access (OFDMA) is used as the transmission
mechanism for uplink. In order to minimize energy consumption of MDs, we propose a joint optimization
strategy for computation offloading, subcarrier allocation, and computing resource allocation, which is a
mixed integer non-linear programming (MINLP) problem. First, we design a bound improving branch-and-
bound (BnB) algorithm to find the global optimal solution. Then, we present a combinational algorithm
to obtain the suboptimal solution for practical application. Simulation results reveal that the combinational
algorithm performs very closely to the BnB algorithm in energy saving, but it has a better performance in
average algorithm time. Furthermore, our proposed solutions outperform other benchmark schemes.

INDEX TERMS Mobile-edge computing, multi-access edge computing, computation offloading, resource
allocation.

I. INTRODUCTION
With the popularity of smart mobile devices (MDs) like
intelligent mobile phones, smart watch/band and Internet
of Things (IoT) devices such as shared power supply,
and shared bike, lots of new mobile applications come
with the tide of fashion [1], [2]. These new mobile appli-
cations, e.g., e-Health care, face recognition, surveillance,
and augmented reality/virtual reality (AR/VR), are not
only computation-intensive but high energy consumption [3].
However, this unparalleled growth does not match the

The associate editor coordinating the review of this article and approving
it for publication was Yue Cao.

improvement on MDs’ batteries and computation capac-
ity. Given the tremendous increase in the usage of the
MDs, mobile-edge computing (MEC) can bridge the gap
between restricted capabilities of MDs and increasing com-
puting demand [4]. MEC performs computation-intensive
tasks instead of MDs by collecting a large amount of idle
resources and storage space distributed at the edge of the
network, so as to meet the strict delay requirements [5], [6].

Nevertheless, offloading generates additional overhead
because of the communication between the MDs and the
MEC servers, and as a result, offloading strategy is par-
ticularly important. In [7], the authors studied the offload-
ing decision among multiple devices and one MEC server.

117054 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-6386-2810
https://orcid.org/0000-0002-6729-1987


X. Yang et al.: Energy Efficiency-Based Joint Computation Offloading and Resource Allocation

For Ultra-Dense Networks in future 5G network, [8] consid-
ered a multi-access MEC scenario and proposed a heuristic
greedy offloading scheme to solve computation offloading
problem. However, both wireless and computing resources
affect the performance of offloading strategy. Because the
former affects the data transmission rate and theMDs’ energy
consumption, and the latter influences the task computing
delay [9].

Currently, a great deal of existing works on MEC
just focus on the computation offloading decision or the
joint wireless and computing resources optimization prob-
lem, and deep learning techniques are also being used
to solve these problems [10], [11]. Recently, joint offload-
ing decision and resource optimization have been taken
into account [12], [13]. In the case of multi-MD scenario,
the authors focused on the offloading strategy problem
along with the power and computation resources optimiza-
tion in [14]. Reference [15] was centered on the offloading
decision, wireless resource optimization, and computational
resource optimization to achieve energy saving. In multi-
MEC servers and multi-MD scenario, MDs need not only
to decide whether to offload but also to decide where
to offload. Paper [16] considered an signal-access MEC
server system with the transmission mechanism of Orthogo-
nal Frequency-Division Multiplexing Access (OFDMA) and
optimized offloading strategy and radio resource allocation.
In [17], genetic algorithm was used for solving the joint
optimization problem in the small cell network (SCN) to find
a suboptimal result. Reference [18] optimized the offload-
ing utility, that is, the weighted sum of time and energy
consumption of each user in the scenario of multi-user and
multi-server. In the paper [19], the author studied three kinds
of computation offloading strategies in the distributed MEC
system, namely local computing, offloading tasks to local
regional servers and offloading to nearby regional servers,
and solved the problem in the short term through the idea of
game theory. In [20], the author studied bits resource alloca-
tion in multi-user MEC offloading system to minimize the
weighted sum of energy consumption. Paper [21] solved the
problem of joint computation offloading and user association
in the multi-task MEC system, where the allocation of com-
putation resources and transmission power is also considered,
so as to save the overall energy consumption of the sys-
tem. In [22], the author proposed a distributed optimization
algorithm in heterogeneous networks with MEC to minimize
mobile terminals’ cost, where joint optimized the computa-
tion offloading, subchannel allocation, power allocation and
CPU-cycle allocation.

In this paper, we consider a MEC system with multiple
MEC servers serving multiple MDs, and propose optimal
and sub-optimal algorithms for the joint optimization of the
offloading decision, wireless resources allocation, and com-
putation resources allocation to minimize the energy con-
sumption of MDs under the constraint of delay, so that save
energy for devices. The main contributions of this paper are
listed as follows:

FIGURE 1. System architecture.

• We come up with an OFDMA based MEC system
model with multi-access BS and limited resource. From
the perspective of energy saving, we study the prob-
lem of joint optimization offloading strategy, wire-
less resource allocation, and computational resource
allocation.

• In the above system, the original problem which has
three mutually constrained variables is a mixed inte-
ger non-linear programming MINLP) problem, and still
non-convex even if the continuous relaxation is adopted.
Because of themutual constraints between variables, it is
difficult to decompose this problem into sub-problems.
We transform the problem into mixed integer non-linear
convex problem by variable combination, which is rel-
atively easy to be solved. Then, the bound improving
branch-and-bound (BnB) algorithm is used to get the
global optimal solution.

• Consider the complexity and average algorithm time of
the BnB algorithm, we propose an intelligent heuristic
algorithm. Since the heuristic algorithm cannot always
find the solution to the problem, we further combine
the heuristic algorithm with BnB algorithm to get the
low-complexity suboptimal combination algorithm for
practical application.

• In the simulation process, we use different system con-
figurations to testify the validity of our proposed algo-
rithm. It is worth mentioning that the performance of the
combinational algorithm is very closely to the optimal
BnB algorithm, but the former has a better performance
in terms of time saving. In addition, the performance of
our proposed algorithm are better than that of baseline
algorithms.

Article Organization: The rest of this paper is organized as
follows. In Sect. II, we propose the systemmodel. In Sect. III,
the joint computation offloading and resource allocation
problem is formulated, and the problem transformation is
presented. In Sect. IV, we introduce our proposed algorithms.
Simulation results are showed in Sect. V. Finally, we con-
clude the article in Sect. VI.

II. SYSTEM MODEL
Consider a scenario of multi-access MEC system with mul-
tiple MDs and multiple MEC servers shown in Fig. 1.
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Given the small coverage of the base station (BS), we use
OFDMA as the uplink transmission mechanism, in which
interference among MDs could be ignored, with subcarriers
as the radio resource. In this snapshot, each BS deploys an
availableMEC server with limited computation resource, and
each BS is connected to the core network. Generally speak-
ing, MEC servers are physical server or virtual machine with
certain computation capacity. Each MD can offload the task
to a nearby BS that can be connected to for computing or per-
forms computation locally. The S MEC servers, which work
independently, sever K MDs through N available subcarriers
for uplink wireless transmission. Let S = {1, 2, . . . , S},
N = {1, 2, . . . ,N } and K = {1, 2, . . . ,K }. We assume that
the central processing units (CPUs) of the MEC servers are
unoccupied at the present time.

A. MDs LOCAL COMPUTATION
We start coping with the case in which the tasks be completed
locally. Each MD k has a computation task and it can be
described by a three-field notation 9k = (Dk ,Xk , τk ). Dk
is the task input-data size (in bits), including system set-
tings, program codes, and so on. Xk denotes the computation
workload/intensity (in CPU cycles per bit), which may differ
from different applications. τk is maximum accomplished
deadline(in seconds). So we can figure out that DkXk is the
required CPU cycles for completing the task k . Assume that
the tasks cannot be divided into subtasks. Besides, these
above parameters that are related to the nature of the appli-
cations can be estimated by applying program profilers (e.g.,
as in [16]).
F lk denotes the frequency of local CPU, i.e., the local

computation capability of MD k . T lk is the time cost for local
computation, thus the local computation time for MD k can
be given as

T lk =
DkXk
F lk

. (1)

According to [23], the energy consumption on MD k dur-
ing each CPU cycle is a super-linear function of execution
frequency and is written as

plk = k0(F lk )
2, (2)

where k0 is a constant related to the CPU of MDs, and
typically, k0 = 1× 10−24 [23].

Accordingly, the local energy computation of MD k is
expressed as

E lk = k0(F lk )
2DkXk . (3)

Since the T lk and E
l
k are determined only by F lk ,Dk and Xk ,

the computation task are known.

B. TASK UPLOADING
By offloading the task to an MEC server, the MD would
save energy on task computation. At the same time, it would
consume extra time and energy for uploading the task.

A representative remote computation process consists of
the following three parts.

1) The MD k uploads one computation task A(Dk ,Xk , τk )
to the MEC server s through uplink subcarriers.

2) The MEC server s executes the task k and allocates Fk,s
computation resource to it.

3) TheMEC server s transmits output data back to the MD.
Here, the overhead of the output data is ignored in the

last part as in [14], since the amount of it is generally much
smaller than that of the input data.

For the OFDMA mechanism, interference is ignored on
account of the exclusive subcarrier allocation. Therefore the
data rate can be written as

Rk,s(W ) = BN
∑
n∈N

wk,n,s log2(1+
gk,n,sPk
σ 2 ), (4)

where BN (Hz) is the bandwidth of each subcarrier and σ 2

is the background noise variance. W = {wk,n,s | wk,n,s ∈
{0, 1}, k ∈ K, n ∈ N , s ∈ S} denotes the subcarrier alloca-
tion matrix, identifying whether the subcarrier n is assigned
to the MD k and corresponding MEC server s. gk,n,s is the
channel gain between the MEC server s and MD k on the
subcarrier n and we let G = {gk,n,s, k ∈ K, n ∈ N , s ∈ S}
denote the channel gain matrix. Pk denotes the transmission
power, and it can be allocated by the MDs. We define the
maximum transmission power as Pm. Apparently, any power
optimization solution have a good impact on system perfor-
mance. For the sake of simplicity, Pk remains at a random
level in this paper.

C. MEC REMOTE COMPUTATION
The total remote computation completion time cost for MD
k , i.e.,T rk (W ,F), is given by

T rk (W ,F) = T tk (W )+ T ek (F), (5)

where the T tk (W ) and T ek (F) are the uplink transmission time
and remote execution time for MD k , repectively [24]. T tk (W )
can be written as

T tk (W ) =
Dk

Rk,s(W )
. (6)

The remote execution time T ek (F) can be obtained as

T ek (F) =
DkXk
fk,s

, (7)

where F = {fk,s, k ∈ K, s ∈ S} denotes computation
allocation matrix.

Because the BSs can be gird-powered, we only consider
the transmission energy consumption [14], [17]. So the total
energy consumption of the remote computation can bewritten
as

Erk (W ) = E tk (W ) = PkT tk (W ). (8)
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D. MDs QoE
Let B = {bk,s | bk,s ∈ {0, 1}, k ∈ K, s ∈ S} denote the
offloading strategy matrix, which means not only whether to
offload but also where to offload. bk,s = 1 denotes that the
MD k offloads the task to theMEC server s; otherwise, bk,s =
0.

In a MEC system, the QoE is determined mainly by task
completion time, i.e., Tk , and energy consumption, i.e.,Ek .
Specifically, Tk and Ek can be expressed as

Tk (B,W ,F)=
∑
s∈S

bk,s T rk (W ,F)︸ ︷︷ ︸
the total remote computation completion time

+ (1−
∑
s∈S

bk,s) T lk︸︷︷︸
the local computation completion time

.

(9)

Ek (B,W )=
∑
s∈S

bk,s Erk (W )︸ ︷︷ ︸
the total remote energy consumption

+ (1−
∑
s∈S

bk,s) E lk︸︷︷︸
the local energy computation

. (10)

When task k is completed locally (i.e., bk,s = 0), we set
T rk (W ,F) = 0 and Erk (W ) = 0. If bk,s = 1, there are T lk = 0
and E lk = 0.

III. FUNDAMENTAL PROBLEM
In order to satisfy the QoE of MDs, we formulated the prob-
lem as the MDs’ energy consumption minimization prob-
lem under the delay constraint, which is a MINLP problem.
Furthermore, we transform the problem into a mixed integer
non-linear convex problem which is easy to solve.

A. JOINT COMPUTATION OFFLOADING AND RESOURCE
ALLOCATION PROBLEM
Lots of existing works have detailed studied ‘‘to offload
or not’’, like [14], [15]. We simplified their researches as
follows:

bk,0 = 1 : {E lk < E0} ∩ {T lk < τk}

bk,0 = 0 : otherwise
, ∀k ∈ K.

Here, bk,0 = 1 denotes task k completed locally; other-
wise, bk,0 = 0. We set E0 as energy threshold and τk as
the delay threshold to restrict the maximal cost. In this paper,
we focus on the offloading strategy that is ‘‘offload to which
one’’.

We only consider the task offloading MDs in this section,
and the set K is updated as K′, K′ ⊂ K. Concerning with the
energy computation, we formulate the joint optimization of
computation offloading and resource allocation problem as
follows:

P : min
B,W ,F

P(B,W ,F) =
∑
k∈K′

∑
s∈S

bk,sErk (W )

s.t. C1 : bk,s ∈ {0, 1}, ∀k ∈ K′,∀s ∈ S
C2 :

∑
s∈S

bk,s = 1, ∀k ∈ K′

C3 : wk,n,s ∈ {0, 1}, ∀k ∈ K′,∀n ∈ N ,∀s ∈ S
C4 :

∑
k∈K′

∑
s∈S

wk,n,s ≤ 1, ∀n ∈ N

C5 :
∑
n∈N

wk,n,s ≤ bk,sN , ∀k ∈ K′,∀s ∈ S

C6 : 0 ≤ fk,s ≤ Fs, ∀k ∈ K′,∀s ∈ S
C7 : fk,s ≤ bk,sFs, ∀k ∈ K′,∀s ∈ S
C8 :

∑
s∈S

bk,sT rk (W ,F) ≤ τk , ∀k ∈ K′

ConstraintC1 states that bk,s is the offloading decision and
it is the binary variable. Constraint C2 shows that each MD
can only offload its task to one MEC server. According to C3
and C4, the wk,n,s is the binary variable of subcarrier alloca-
tion, and at each offloading decision, each subcarrier can be
exclusively assigned to one MD. For any BS, C5 ensures that
subcarrier assigned to any MD cannot exceed the maximum
available subcarrier. C6 and C7 are the computation resource
allocation constraints.C6 limits the range of and Fk,s, andC7
insures that the total resources assigned for one MEC server
are less than the maximum instructions per second allowed at
theMEC server s. The request of the total remote computation
time on each offloaded task cannot exceed the hard deadline,
thus we adopt constraint C8.

The above problem is a MINLP non-convex problem,
which is NP-hard in general. Due to the mutual constraints
of the three optimized variables, we can simplify the opti-
mization problem through variable fusion.

B. PROBLEM TRANSFORMATION
According to the relationships among bk,s, wk,n,s and fk,s,
we have the following constraints:bk,s = 0⇐⇒

∑
n∈N

wk,n,s = 0, ∀k ∈ K′, ∀s ∈ S.

bk,s = 0⇐⇒ fk,s = 0, ∀k ∈ K′, ∀s ∈ S.
(11)

bk,s represents the decision variable. When the task k is not
offloaded to the BS s, the BS will not be allocated computing
resource to k . Corresponding, subcarriers will also not estab-
lish a connection between this task-server pair. Hence, we can
combine the variable bk,s into wk,n,s and fk,s, and details are
as follows.∑
s∈S

bk,sErk (W )

=

∑
s∈S

bk,sPk
Dk

BN
∑
n∈N

wk,n,s log2(1+
gk,n,sPk
σ 2

)

= Pk
Dk

BN
∑
s∈S

∑
n∈N

wk,n,s log2(1+
gk,n,sPk
σ 2

)

= Erk (W )′. (12)∑
s∈S

bk,sT rk (W ,F)
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=

∑
s∈S

bk,s

 Dk

BN
∑
n∈N

wk,n,s log2(1+
gk,n,sPk
σ 2

)
+
DkXk
fk,s


=

Dk

BN
∑
s∈S

∑
n∈N

wk,n,s log2(1+
gk,n,sPk
σ 2

)
+

DkXk∑
s∈S

fk,s

= T rk (W ,F)
′
. (13)

With the Eq.(12) and Eq.(13), P can be equivalently trans-
formed into P1 as follows:

P1 : min
B,W ,F

P1(B,W ,F) =
∑
k∈K′

Erk (W )′

s.t. C1− C7

C9 : T rk (W ,F)
′
≤ τk , ∀k ∈ K′

The simplified problem P1 is a mixed integer convex
non-linear programming. Next, we present the BnB algorithm
and combinational algorithm to get the solution.

IV. PROPOSED ALGORITHM
According to the above problem transformation, we first use
BnB algorithm to get the global optimal solution ofP1. Then,
we propose a combinational algorithm to obtain the subopti-
mal solution. That is, we obtain the optimal and suboptimal
solution of the original problem.

A. OPTIMAL BRANCH-AND-BOUND ALGORITHM
First, we briefly describe the BnB algorithm used to solve the
minimization problem. In general, a typical BnB algorithm
consists of two parts: branching and bounding. All feasi-
ble solution spaces are repeatedly divided into smaller and
smaller subsets, which is called branching. A lower bound of
the target (for solving a minimum problem) is computed for
the solution set in each subset, which is called a bounding.

After each branching, some branches can be effectively
removed from the search tree by pruning. The premise of
pruning are as follows [25]:

(1)The problem after branching is infeasible.
(2)The lowest bound of the problem after branching is

larger than the best-known objective value.
In this way, many subsets may be left out of consideration.

Based on the pruning conditions, we propose two methods to
reduce the complexity of BnB algorithm.

Firstly, in order to better meet the first pruning condition,
we add two linear redundant constraints that further constrain
the problem and can be omitted without loss of generality.
So the problem P1 can be further written as:

P2 : min
B,W ,F

P2(B,W ,F) =
∑
k∈K′

Erk (W )′

s.t. C1− C7,C9

C10 : bk,s ≤
∑
n∈N

wk,n,s, ∀k ∈ K′, ∀s ∈ S

C11 :
∑
s∈S

∑
n∈N

wk,n,s ≤
∑
s∈S

fk,sN , ∀k ∈ K′

Algorithm 1 Optimal Branch-and-Bound Algorithm

1: Initialization: I = (o(0),L(0)
0 ,L

(0)
1 ), o∗ = +∞, L(0)

0 =

L(0)
1 = ∅, and L.

2: n← 0
3: while I 6= ∅ do
4: Based on ô = min(o,L0,L1)∈I o, choose (ô, L̂0, L̂1)

and update I = I \ (ô, L̂0, L̂1).
5: Choose one task-subcarrier-server node with

the highest priority, i.e., (k∗, n∗, s∗) =

argmax(k,n,s)∈L\(L0∪L1) ξ̂p(k, n, s).
6: Set n = n+ 1.
7: Update L(B1,n)

0 = L̂0 ∪ {(k∗, n∗, s∗)}, L(B1,n)
1 = L̂1,

L(B2,n)
0 = L̂0, and L(B2,n)

1 = L̂1 ∪ {(k∗, n∗, s∗)}.
8: Solve the sub-problems (o(Bi,n),L(Bi,n)

0 ,L(Bi,n)
1 )CR, i =

1, 2. If no feasible solution, set o(Bi,n) = +∞.
9: if o(Bi,n) < o∗, i = 1, 2 then
10: if L == L(Bi,n)

0 ∪ L(Bi,n)
1 then

11: Let o∗ = o(Bi,n), L∗0 = L(Bi,n)
0 , L∗1 = L(Bi,n)

1 .
12: else
13: Update I = I ∪ {(o(Bi,n),L(Bi,n)

0 ,L(Bi,n)
1 )}.

14: end if
15: end if
16: Prune the branches.
17: end while
18: return o∗,L∗0,L

∗

1

For any k and s, C10 limits that when bk,s is 0, wk,n,s is
also 0; and when bk,s is 1, wk,n,s is greater than or equal
to 1. For any k , C11 shows that the number of subcarriers
allocated to it must be less than or equal to the product of the
computing resources allocated to it by the base station and the
total number of subcarriers.

Then, carefully choosing the branch of search tree and the
direction of search can better satisfy the second pruning con-
dition, and can get the best-known value as soon as possible.
This view will be described in detail in the following.

The BnB algorithm is presented in Algorithm 1. Define
the set A = B

⋃
W , where ak,n,s ∈ {0, 1} denote all of

the binary variables instead of bk,s and wk,n,s. Specially, let
n = 0 (i.e., ∀n /∈ N ) when ak,n,s ∈ B. In this case, ak,0,s is
a two-dimensional variable with respect to task-server pairs.
We define the set of all the task-subcarrier-server pairs L =
{(k, n, s) | ∀k ∈ K′,∀n ∈ N ,∀s ∈ S} as the branch
and bound nodes set. In addition, we extend two sets L0 =

{(k, n, s) | ak,n,s = 0,∀k ∈ K′,∀n ∈ N ,∀s ∈ S} and
L1 = {(k, n, s) | ak,n,s = 1,∀k ∈ K′,∀n ∈ N ,∀s ∈ S}.
Based on the L0 and L1, the problem P2 can be equivalent
to:

P3 : min
B,W ,F

P3(B,W ,F) =
∑
k∈K′

Erk (W )′

s.t. C2,C4− C7,C9− C11

C12 : ak,n,s = 0, ∀(k, n, s) ∈ L0

C13 : ak,n,s = 1, ∀(k, n, s) ∈ L1
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C14 : ak,n,s ∈ {0, 1}, (k, n, s) ∈ L \ (L0 ∪ L1)

When L0 and L1 are fixed, the continuous relaxation of
problem P3 can be formulated as:

P4 : min
B,W ,F

P4(B,W ,F) =
∑
k∈K′

Erk (W )′

s.t. C2,C4− C7,C9− C13

C15 : ak,n,s ∈ [0, 1], (k, n, s) ∈ L \ (L0 ∪ L1)

Obviously, the optimal value of problem P4 is the lower
bound for problem P3. We represent P3 and P4 as related
parameter tuples (o,L0,L1) and (o,L0,L1)CR, respectively.
o is the optimal objective value of P4, which is the lower
bound of P3. Then, we define I as the set of brunch problem
and o∗ as the best-known objective value. The main processes
of the BnB algorithm are as follows:

1) BRANCHING
In each branching iteration, the problem that attains the
minimum lower bound, denoted as (ô, L̂0, L̂1), is chosen to
branch. Then, we select the task-subcarrier-server node with
the highest priority (k∗, n∗, s∗), and the problem is divided
into two smaller problems by setting the integer variable
ak∗,n∗,s∗ to a binary value of 0 or 1. It is apparent that the
priority function is important to reduce the complexity of
BnB algorithm, because many problems may be pruned if we
get the best-known objective value. So, the priority function
for problem (ô, L̂0, L̂1) is defined as ξ̂p(k, n, s) =

gk,n,sDk
dk,s

,
where dk,s represents the distance between MD k and server
s. In addition, when the node is a member of set B, we set
gk,n,s = 1 [26], [27].

2) BOUNDING AND PRUNING
Based on the selected branch, we count the lower
bound of sub-problems (o(B1,n),L(B1,n)

0 ,L(B1,n)
1 )CR and

(o(B2,n),L(B2,n)
0 ,L(B2,n)

1 )CR. According to [28], global con-
vergence is guaranteed by simple bound. Compare the new
solutions (o(B1,n), o(B2,n)) with the current best-known objec-
tive value, and update the o∗ with the small one. The problem
whose lower bound is smaller than o∗ will be put into I.
Otherwise, it will be pruned.

B. SUBOPTIMAL INTELLIGENT HEURISTIC ALGORITHM
Although Algorithm 1 can obtain the global optimal solu-
tion, the convergence speed is still a problem that cannot
be ignored for large networks. In order to facilitate practical
application, we propose a fast and intelligent heuristic greedy
algorithm to find the suboptimal solution of problem P .

As shown inAlgorithm 2, we break down the problem into
the minimized energy consumption problem with different
MD. Using the greedy principle, the local optimal solution
for each sub-problem is obtained. Finally, according to the
local optimal solution of each sub-problem, the final solution
of the problem is obtained by accumulating.

Task 9k with the largest input-data size in all unuploaded
tasks set is first considered. At this time, server s∗ which

Algorithm 2 Suboptimal Intelligent Heuristic Algorithm
1: Initialize: S ′ = S . Select task 9k∗ = argmaxk∈K′ Dk .
2: if Subcarriers can be equally distributed to eachMD then
3: The number of subcarriers of task 9k∗ is J = N/K ,

whereN denotes the number of current subcarriers and
K denotes the number of current MDs.

4: else
5: J = [N/K ]+ 1.
6: end if
7: Update K′ 4= K′ \ {k∗}.
8: if S ′ 6= ∅ then
9: Choose server s∗ = argmins∈S ′ dk∗,s for task 9k∗ .
10: Update S ′ = S ′ \ {s∗}.
11: if fk∗,s∗ ≤ Fs∗ then
12: for j ∈ J do
13: Subcarrier n∗j = argmaxn∈N gk∗,n,s∗ , and update

N = N \ {n∗j }.
14: end for
15: Update Fs∗ = Fs∗ − fk∗,s∗ .
16: Go to step 1.
17: else
18: Go to step 8.
19: end if
20: else
21: Suboptimal heuristic algorithm fails.
22: end if

has the nearest distance to this task has the highest priority
to serve it. When server s∗ has enough resources to support
task k∗ to be completed within the maximum accomplished
deadline τk , this server will allocate resources fk∗,s∗ to this
task according to constraint C8, i.e., fk∗,s∗ =

Dk∗Xk∗

τk∗−
Dk∗
Rk∗,s∗

.

Otherwise, task k∗ continues to look for the appropriate
server. In terms of quantity, subcarriers are allocated to each
task as equitably as possible. To make the system perform
better, the task with larger input-data size will be allocated
to more subcarriers. Under the condition of the number
mentioned above, subcarriers with large channel gain are
preferentially selected. It is worth noting that the suboptimal
heuristic algorithm cannot always find the solution to the
problem. However, it has very satisfactory performance with
sufficient resources.

C. COMBINATIONAL ALGORITHM
Since Algorithm 2 has the probability of failure, we pro-
pose the combinational algorithm as shown in Algorithm 3.
Algorithm 2 is first used to find the suboptimal solution.
If the feasible solution cannot be found, Algorithm 1 will
be adopted.

V. PERFORMANCE EVALUATIONS
In this part, we evaluate the numerical results to demonstrate
the performance of our proposed algorithms and compare
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Algorithm 3 Combinational Joint Computation Offloading
and Resource Allocation (CJCORA)
1: Algorithm 2 is first used.
2: if There is no feasible solution via Algorithm 2 then
3: Algorithm 1 is adopted.
4: else
5: Return the feasible solution of Algorithm 2.
6: end if

TABLE 1. Simulation parameters.

them to conventional schemes. MDs and MEC servers are
distributed uniformly and independently in a circle areawith a
radius of 100 meters. The uplink channel gains are generated
using a distance-dependent path loss function is expressed
as PL = 128.1 + 37.6 log10(dk,s) where d in km, and the
small scale fading adopts the Rayleigh fading model [29]
[30]. Unless otherwise stated, we consider K = 20, S = 7
and N = 128. Other parameters are in Table 1.
We compare the energy consumption performance of our

proposed algorithm against the following algorithms:
1): Local computation algorithm (LCA). It means that

there is no offloading. All tasks are performed locally.
2): Random offloading and joint resource allocation

(ROJRA). Each MD randomly selects one MEC server to
complete task, and subcarriers and computing resources are
allocated jointly.

3):Greedy offloading and average resource allocation
(GOARA).MDs greedily choose the closer server to offload,
and the servers’ computing resources are equally allocated
to the MDs connected to it. Subcarriers are distributed as
evenly as possible and the redundant ones are given to the task
with larger input-data size. The selection of each subcarrier
between MDs and servers is also from the perspective of
fairness, and the subcarriers with the same channel gain are
selected as far as possible.

A. SUBOPTIMALITY AND TIME COMPLEXITY BEHAVIOR
OF Algorithm 1 AND Algorithm 3
Firstly, in order to prove the suboptimality of our proposed
combinational algorithm, we compare its performance with
our proposed Algorithm 1, which can find the optimal
solution of the problem. Because the high complexity of
Algorithm 1, we carry out simulation in a small network
setting. Fig.2 and TABLE. 2 are obtained by using param-
eters S = 2 and N = 16 through 200 independent

FIGURE 2. Comparison of Algorithm 1 and CJCORA algorithm: Energy
consumption of MDs.

TABLE 2. Average algorithm time.

FIGURE 3. Comparison of energy consumption against different number
of MDs, evaluated on two different task input-data size Dk .

realizations. It can be seen that the energy consumption of
the proposed CJCORA algorithm is very close to that of
the optimal BnB algorithm, but the average running time of
CJCORA algorithm is far less than that of the BnB algo-
rithm. Moreover, the average running time of Algorithm 1
is greatly affected by the changes of MDs in a small range,
while the running time of Algorithm 3 is not affected. It is
shown that the CJCORA algorithm is more beneficial to the
actual deployment with a little performance loss. We can also
observe that no matter which method we proposed is adopted,
the MD will save 10000× energy consumption compared
to LCA.

B. EFFECT OF MDs AND TASKS
Next, Fig. 3 presents the performance of three different
algorithms versus the number of MDs wishing to offload
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FIGURE 4. The performance of CJCORA, ROJRA and GOARA versus the
number of servers.

their tasks. Particularly, the number of MDs per unit ranges
from 1 to 10, andwe compare them in two cases with different
task input-data sizes. Note that we set the number of servers
S = 7 and the number of subcarriers N = 128. It’s not
hard to see from Fig. 3 that our proposed CJCORA algorithm
performs better than others. This is due to the increase in the
number of MDs, and the corresponding number of tasks also
increases, resulting in a large increase in the total energy con-
sumption of MDs in the system. What’s more, it can be seen
that the size of the task input data has a positive impact on the
system energy consumption. Compared with the CJCORA
algorithm, the energy consumption of the ROJRA algorithm
is much different from that of the CJCORA algorithm, while
the GOARA algorithm has less difference. This shows that
the factor that has a greater impact on system energy con-
sumption is the offload allocation.

C. EFFECT OF SERVERS
As seen fromFig. 4, our proposed CJCORA algorithm always
maintains the best performance. Moreover, the energy con-
sumption of the GOARA algorithm and the CJCORA algo-
rithm decreases as the number of servers increases, while
the ROJRA algorithm is not greatly affected by the number
of servers. This is because the CJCORA algorithm and the
GOARA algorithm are sensitive to the offload allocation.
When the number of servers increases, the MDs can select
more servers, and they have a greater chance of selecting
servers that are more beneficial to themselves, thereby reduc-
ing system energy consumption. The ROJRA algorithm is
more sensitive to resource allocation, and the change in the
number of servers does not affect its choice of the server.

VI. CONCLUSION
In this paper, we discuss the joint computation offloading and
resources optimization in a multi-access MEC system. In the
resource-constrained system, we represent the optimization
problem as a non-convex MINLP problem with three mutu-
ally constrained variables, which is difficult to solve. Through
the combination of variables, the problem is transformed into
amixed integer non-linear convex problem. Then, we propose
the bound improving branch-and bound (BnB) algorithm

and combinational joint computation offloading and resource
allocation (CJCORA) algorithm to obtain the optimal solu-
tion and the suboptimal solution respectively. The simulation
results show that the performance of the proposed CJCORA
algorithm is very close to the optimal BnB algorithm, and
its performance is significantly improved compared to other
algorithms.

In addition, future work is to consider a more optimized
algorithm to get the optimal solution, which is a more
efficient runtime BnB algorithm. Since the problem we have
developed is a MINLP problem, the MINLP problem is
usually NP-hard and it is difficult to obtain an optimal solu-
tion. The traditional methods of solving these MINLP prob-
lems are based on mathematical optimization techniques that
only get suboptimal solutions and often have a prohibitive
complexity of real-time implementation. Nowadays, in the
direction of deep learning, wireless networks are becoming
smarter [31], [32]. There have been articles that study the
branching strategy [33] and pruning strategy [34] to effi-
ciently accelerate the most time-consuming branching pro-
cess of the BnB algorithm.Applying the BnB algorithm under
deep learning to this scenario is the focus of our next step.

REFERENCES
[1] W. Xia, T. Q. S. Quek, J. Zhang, S. Jin, and H. Zhu, ‘‘Programmable

hierarchical C-RAN: From task scheduling to resource allocation,’’ IEEE
Trans. Wireless Commun., vol. 18, no. 3, pp. 2003–2016, Mar. 2019.

[2] H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, ‘‘Unsuper-
vised learning-based fast beamforming design for downlinkMIMO,’’ IEEE
Access, vol. 7, pp. 7599–7605, Jan. 2019.

[3] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[4] X. Wei, S. Wang, A. Zhou, J. Xu, S. Su, S. Kumar, and F. Yang, ‘‘MVR:
An architecture for computation offloading in mobile edge computing,’’
in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jun. 2017, pp. 232–235.

[5] B. Dab, N. Aitsaadi, and R. Langar, ‘‘A novel joint offloading and resource
allocation scheme for mobile edge computing,’’ in Proc. 16th IEEE Annu.
Consum. Commun. Netw. Conf. (CCNC), Jan. 2019, pp. 1–2.

[6] Y. Wang, M. Liu, J. Yang, and G. Gui, ‘‘Data-driven deep learning for
automatic modulation recognition in cognitive radios,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 4074–4077, Apr. 2019.

[7] M. Deng, H. Tian, and X. Lyu, ‘‘Adaptive sequential offloading game for
multi-cell mobile edge computing,’’ in Proc. Int. Conf. Telecommun. (ICT),
May 2016, pp. 1–5.

[8] H. Guo, J. Liu, and J. Zhang, ‘‘Computation offloading for multi-access
mobile edge computing in ultra-dense networks,’’ IEEE Commun. Mag.,
vol. 56, no. 8, pp. 14–19, Aug. 2018.

[9] Y. Yu, J. Zhang, and K. B. Letaief, ‘‘Joint subcarrier and CPU time
allocation for mobile edge computing,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[10] M. Liu, T. Song, J. Hu, J. Yang, and G. Gui, ‘‘Deep learning-inspired
message passing algorithm for efficient resource allocation in cognitive
radio networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 641–653,
Jan. 2019.

[11] M. Liu, T. Song, and G. Gui, ‘‘Deep cognitive perspective: Resource
allocation for NOMA-based heterogeneous IoTwith imperfect SIC,’’ IEEE
Internet Things J., vol. 6, no. 2, pp. 2885–2894, Apr. 2019.

[12] W. Xia, J. Zhang, T. Q. S. Quek, S. Jin, and H. Zhu, ‘‘Energy-efficient task
scheduling and resource allocation in downlink C-RAN,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[13] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, ‘‘Deep learn-
ing for super-resolution channel estimation and doa estimation based
massive MIMO system,’’ IEEE Trans. Veh. Technol., vol. 67, no. 9,
pp. 8549–8560, Sep. 2018.

VOLUME 7, 2019 117061



X. Yang et al.: Energy Efficiency-Based Joint Computation Offloading and Resource Allocation

[14] X. Lyu, H. Tian, C. Sengul, and P. Zhang, ‘‘Multiuser joint task offloading
and resource optimization in proximate clouds,’’ IEEE Trans. Veh. Tech-
nol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[15] P. Zhao, H. Tian, C. Qin, and G. Nie, ‘‘Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,’’
IEEE Access, vol. 5, pp. 11255–11268, 2017.

[16] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, ‘‘Energy-efficient joint
offloading and wireless resource allocation strategy in multi-MEC server
systems,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[17] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, ‘‘Energy efficient com-
putation offloading for multi-access mec enabled small cell networks,’’ in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2018,
pp. 1–6.

[18] T. X. Tran and D. Pompili, ‘‘Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[19] C.Wang, C. Dong, J. Qin, X. Yang, andW.Wen, ‘‘Energy-efficient offload-
ing policy for resource allocation in distributed mobile edge computing,’’
in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2018, pp. 366–372.

[20] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource
allocation for mobile-edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[21] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, ‘‘Joint computation offloading
and user association in multi-task mobile edge computing,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp. 12313–12325, Dec. 2018.

[22] J. Zhang, W. Xia, F. Yan, and L. Shen, ‘‘Joint computation offloading and
resource allocation optimization in heterogeneous networks with mobile
edge computing,’’ IEEE Access, vol. 6, pp. 19324–19337, 2018.

[23] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, ‘‘Energy-
optimal mobile cloud computing under stochastic wireless channel,’’ IEEE
Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[24] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. K. Tsang, ‘‘NOMA-assisted
multi-access mobile edge computing: A joint optimization of computation
offloading and time allocation,’’ IEEE Trans. Veh. Technol., vol. 67, no. 12,
pp. 12244–12258, Dec. 2018.

[25] Z. Yu, K. Wang, H. Ji, and V. C. M. Leung, ‘‘Joint multiuser admission
control and downlink beamforming for green cloud-RANs via semidefinite
relaxation,’’ in Proc. 19th Int. Symp. Wireless Pers. Multimedia Commun.
(WPMC), Nov. 2016, pp. 244–249.

[26] T. D. Hoang, L. B. Le, and T. Le-Ngoc, ‘‘Energy-efficient resource allo-
cation for D2D communications in cellular networks,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Sep. 2015, pp. 2251–2256.

[27] W. Xia, J. Zhang, T. Q. S. Quek, S. Jin, and H. Zhu, ‘‘Power minimization-
based joint task scheduling and resource allocation in downlink C-RAN,’’
IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7268–7280, Nov. 2018.

[28] H. Tuy, F. Al-Khayyal, and P. T. Thach, ‘‘Monotonic optimization: Branch
and cut methods,’’ in Essays and Surveys in Global Optimization. Boston,
MA, USA: Springer, 2005, pp. 39–78.

[29] X. Chu, D. López-Pérez, Y. Yang, and F. Gunnarsson, Heterogeneous
Cellular Networks: Theory, Simulation andDeployment. Cambridge, U.K.:
Cambridge Univ. Press, 2013.

[30] P.-F. Cui, W.-J. Lu, Y. Yu, B. Xue, and H.-B. Zhu, ‘‘Off-body spatial
diversity reception using circular and linear polarization:Measurement and
modeling,’’ IEEE Commun. Lett., vol. 22, no. 1, pp. 209–212, Jan. 2018.

[31] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, ‘‘Wireless net-
work intelligence at the edge,’’ CoRR, Dec. 2018. [Online]. Available:
http://arxiv.org/abs/1812.02858

[32] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, ‘‘Deep-learning-based
millimeter-wave massive MIMO for hybrid precoding,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 3, pp. 3027–3032, Mar. 2019.

[33] M. Lee, G. Yu, and G. Y. Li, ‘‘Learning to branch: Accelerating resource
allocation in wireless networks,’’ CoRR, Mar. 2019. [Online]. Available:
http://arxiv.org/abs/1903.01819

[34] H. He, H. Daume, III, and J. Eisner, ‘‘Learning to search in branch
and bound algorithms,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3293–3301.

XIAOTONG YANG received the B.S. degree in
communication engineering from Shandong Nor-
mal University (SDNU), in 2017. She is currently
pursuing themaster’s degreewith theNanjingUni-
versity of Posts and Telecommunications (NUPT),
where she involved in mobile edge computing.

XUEYONG YU was born in Jiangxi, China,
in 1979. He received the Ph.D. degree in elec-
tromagnetic field and microwave technology from
the Nanjing University of Posts and Telecom-
munications, Nanjing, China, in 2016, where he
is currently an Associate Professor. His current
research interests include the Internet of Thing
(IoT), mobile edge computing, and radio resource
management on heterogeneous wireless networks.

HAO HUANG (S’18) received the B.S. degree in
photoelectric information science and engineering
from the NanjingUniversity of Posts and Telecom-
munications (NUPT), Nanjing, China, in 2017,
where he is currently pursuing the Ph.D. degree.
His research interest includes deep learning and its
application in wireless communications.

HONGBO ZHU received the B.S. degree in com-
munications engineering from the Nanjing Univer-
sity of Posts and Telecommunications, Nanjing,
China, in 1982, and the Ph.D. degree in infor-
mation and communications engineering from the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 1996. He is currently a
Professor with the Nanjing University of Posts
and Telecommunications, Nanjing. He is also the
Head of the Coordination Innovative Center of IoT

Technology and Application, which is the first governmental authorized
Coordination Innovative Center of IoT in China. He also serves as a referee or
an expert in multiple national organizations and committees. He has authored
or coauthored over 200 technical papers published in various journals and
conferences. He is currently leading a big group and multiple funds on
the IoT and wireless communications with current focus on architecture
and enabling technologies for the Internet of Things. His research interests
include mobile communications, wireless communication theory, and elec-
tromagnetic compatibility.

117062 VOLUME 7, 2019


	INTRODUCTION
	SYSTEM MODEL
	MDs LOCAL COMPUTATION
	TASK UPLOADING
	MEC REMOTE COMPUTATION
	MDs QoE

	FUNDAMENTAL PROBLEM
	JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION PROBLEM
	PROBLEM TRANSFORMATION

	PROPOSED ALGORITHM
	OPTIMAL BRANCH-AND-BOUND ALGORITHM
	BRANCHING
	BOUNDING AND PRUNING

	SUBOPTIMAL INTELLIGENT HEURISTIC ALGORITHM
	COMBINATIONAL ALGORITHM

	PERFORMANCE EVALUATIONS
	SUBOPTIMALITY AND TIME COMPLEXITY BEHAVIOR OF Algorithm 1 AND Algorithm 3
	EFFECT OF MDs AND TASKS
	EFFECT OF SERVERS

	CONCLUSION
	REFERENCES
	Biographies
	XIAOTONG YANG
	XUEYONG YU
	HAO HUANG
	HONGBO ZHU


