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ABSTRACT In this paper, we propose a novel sliding-mode control for Takagi-Sugeno (T-S) fuzzy singular
system with time-delay and mismatched uncertainties and disturbances. In the majority of T-S fuzzy sliding-
mode control ways, a restrictive assumption is required, that is every subsystem’s input matrix is identical.
In order to eliminate the restrictive assumption, we put forward a dynamic sliding-mode control method
for T-S fuzzy singular time-delay systems. Additionally, the dynamic sliding-mode control law is designed
to guarantee the reachability of the sliding surface in finite time interval. Stability of sliding motion is
analyzed and the dynamic sliding-mode controller is parameterized in terms of the solutions of a set of
linear matrix inequalities which facilitates design. In the end, three examples are shown to verify the merit
and effectiveness of the proposed approaches are provided.

INDEX TERMS T-S fuzzy singular models, LMIs, Dynamic sliding-mode control, time-delay, H∞ control.

I. INTRODUCTION
Since the 1980s, T-S fuzzy models have attracted great
interest from the control community, because of their
effectiveness in approximating the complex nonlinear sys-
tems [1]. A lot of efficient results have been proposed,
such as observer-based output feedback control [2], non-
quadratic membership-dependent Lyapunov functions [3],
delay-dependent guaranteed cost control [4], robust H∞
filtering [5], mismatched membership functions [6] and
references therein.

Recently, singular systems have been drawn attention to
more and more researchers, because singular systems are
more effective to represent physical systems than the regular
systems [7], [8]. It should be pointed out that singular systems
need to be stable, regular and impulse free, it is different from
the regular systems. For example, in [9], the authors pointed
out that the paper [10] did not consider fully the impulse
behavior, which is a vital feature of singular systems. A lot of
good results have been addressed. For example, the admis-
sibility, the paper [11] was the first to give the sufficient
conditions for the T-S fuzzy singular systems. A fuzzy sin-
gular observer approach was proposed to solve the problem
of fault estimation and fault-tolerant in [12]. The resilient
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estimation problem was researched in [13]. Uncertain T-S
singular system was investigated in [14]. H∞ fuzzy control
was addressed in [15]. Generally, time-delays often occur
in practical systems and in engineering problems involving
rolling mills, transportation of signals, networked control
systems, neural networks, and synchroniza tion between two
chaotic systems [16]. Therefore, the issue of asymptotic sta-
bility and stabilization of singular time-delay system has been
one of the hot topics in control research [13], [15].

As a popular method of robust control technique in the con-
trol community, the sliding-mode control (SMC) has a great
deal of attractivemerits, such as fast response, tracking ability
and strong robustness. During the past decades, many results
for different complex systems have been proposed, such
as stochastic systems [17], markovian jump systems [18],
networked control systems [19]. Based on SMC technique,
a generalized regular form was first to introduce for singular
systems in [20]. Researchers are desirable to establish the
SMC approach to nonlinear systems, therefore, the SMC was
extended to fuzzy systems in [21]. In the past two decades,
a lot of great results have been achieved in T-S fuzzy mode
with SMC techniques [22]–[27]. It was the first to discuss the
fuzzy SMC in [22]. Uncertain fuzzy time-delay systems [23],
[25]. T-S fuzzy singular systems with time-delay [24], [26].
The super-twisting algorithm was studied in [27].
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However, what worth mentioning is that almost all
T-S fuzzy systems with SMC need to satisfy a restric-
tive assumption that every subsystem’s input matrix is
identical [23]–[27]. It is noted that many real models, such
as the well-known inverted pendulum on a cart [28], do not
satisfy this assumption. The constraint condition restricts
those SMC techniques in [23]–[27] to be applied. However,
so far, to the authors’ best knowledge, in the current literature,
few effective results on removing the constraint assumption
for the T-S fuzzy singular systems with SMC [28]. In this
paper, our proposed method can eliminate the restrictive
assumption. That is the first motivation to study. On the other
hand, most of the papers study T-S fuzzy systems via SMC
with matched uncertainties and disturbances [24], [26]–[28].
However, our systems have the mismatched uncertainties and
disturbances, so, the investigated case is much more general
than those in [24], [26]–[28]. Especially, in the sense that the
local input matrices are allowed to have unmatched uncer-
tainties. In fact, the approaches in [24], [26]–[28] cannot be
easily applied in this case. Our second motivation is to solve
this problem.

Motivated by the fact, this paper researches a dynamic
sliding-mode control (DSMC) strategy for a class of
T-S fuzzy singular time-delay systems subject to mismatched
norm-bounded uncertainties and disturbances. A remarkable
characteristic of the DSMC strategy is that the singular
derivative-term matrix and the system state and the state of
controller are taken in to account in the sliding surface func-
tion. Owing to mismatched disturbances cannot be removed,
the H∞ control technique can decrease the influence of the
mismatched disturbance. The dynamic sliding-mode control
for T-S fuzzy singular time-delay systems with the mis-
matched disturbances is shown in Fig.1. The design param-
eter matrices defining the sliding variable are obtained by
solving LMIs. In finite time, the desired system states can
asymptotically converge to equilibrium point via the user-
defined DSMC technique. The contributions of this paper are
as follows

1. A novel dynamic sliding-mode controller is designed
to stabilize the T-S fuzzy singular time-delay systems.

2. Eliminate the restrictive assumption that the input
matrix B for all the subsystems is the same.

3. Solve the problem that is the systems with mis-
matched uncertainties and disturbances, especially,
the local input matrices are allowed to have unmatched
uncertainties.

The remainder of this paper is organized as follows. Section 2
formulates the T-S fuzzy singular time-delay systems and pre-
liminaries. Section 3 focuses on the DSMC strategy design,
analysis of sliding motion and H∞ control. In section 4, to
verify the effectiveness of proposed DSMC technique, three
simulation results are shown. Finally, Section 5 summarizes
the paper.
Notations: Throughout this paper, the n-dimensional

Euclidean space is represented by Rn, the set of all m × n
matrices is denoted by Rm×n. In and 0m×n denote the

FIGURE 1. The block diagram of dynamic sliding-mode control strategy.

n × n identity matrix and m × n zero matrix, respectively.
The superscript ‘‘T ’’ and ‘‘−1’’ denote matrix transposition
and inverse, respectively. ‖·‖ represents the Euclidean norm
and the induced norm for vectors and matrices, respectively.
X̃ > 0 (X̃ < 0) means that X̃ is a positive (negative)
definite matrix. The star ? is used as a term that is induced
by symmetric position and sym(X̃ ) is defined as X̃ + X̃T .
The notation L2[0,T ] denotes the space of square-integrable
vector functions, i.e., ω(t) : [0,T ] → RP ∈ L2[0, T ], if∫ T
0 ωT (t)ω(t) <∞.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
In this paper, we consider a T-S fuzzy singular time-delay
systems with r plant rules that can be represented by the
following.
Plant Rule i: IF ϑ1 is υi1 and ϑ2 is υi2 and . . . ϑg is υig,

THEN

Eẋ (t) = [Ai +1Ai] x(t)+ [Aτ i +1Aτ i] x(t − τ (t))

+ [Bi +1Bi] u(t)+ [Hi +1Hi]ω(t)

z(t) = Cix(t)+ Dix(t − τ (t))+ Cidu(t)

x(t) = φ(t), t ∈ [−τM , 0], i = 1, 2, · · · , r . (1)

where i denotes that the ith fuzzy inference rule, υij is the
fuzzy set, r is the number of IF-THEN rules, and ϑg (t) is the
premise variables; x (t) ∈ Rn is the state vector, z (t) ∈ Rk is
the controlled output vector, u (t) ∈ Rm is the control input
vector, ω (t) ∈ Rp is the external disturbance which belongs
to L2 [0, T ). E ∈ Rn×n, Ai ∈ Rn×n, Aτ i ∈ Rn×n, Bi ∈ Rn×m,
Ci ∈ Rk×n, Cid ∈ Rk×m, Di ∈ Rk×n and Hi ∈ Rn×p are
known real constant matrices, and rank (E) = q ≤ n, τ (t) is
a time varying delay and satisfies

0 ≤ τ (t) ≤ τM <∞, τ̇ (t) ≤ τd < 1 (2)

and φ (t) is an initial function on [−τM , 0].
There is an assumption as follows, which will be used in

this paper:
Assumption 1: The parameter uncertainties 1Ai, 1Aτ i,

1Bi and 1Hi are norm-bounded, which satisfy

‖[1Ai,1Bi]‖ ≤ εai, ‖1Aτ i‖ ≤ εbi,1Hi1HT
i ≤ ε

2
hIn (3)

where εai, εbi, and εh are known real positive constants,
i = 1, 2, · · · , r .
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Based on the center-average defuzzifier, product inference
and the singleton fuzzifier, the overall T-S fuzzy singular
systems can be inferred as

Eẋ(t) =
r∑
i=1

ψi (ϑ (t)) {[Ai +1Ai] x(t)+ [Bi +1Bi] u(t)

+ [Aτ i +1Aτ i] x(t − τ (t))+ [Hi +1Hi]ω(t)}

z(t) =
r∑
i=1

ψi (ϑ (t)) {Cix(t)+ Dix(t − τ (t))+ Cidu(t)}

x(t) = φ(t), t ∈ [−τM , 0]. (4)

where

ψi (ϑ (t)) =
θi (ϑ (t))∑r
i=1 θi (ϑ (t))

, θi (ϑ (t)) =
g∏
j=1

υij (ϑ (t))

with υij (ϑ (t)) represents the degree of membership function
of ϑj (t) in υij. Note that:

ψi (ϑ (t)) ≥ 0,
r∑
i=1

ψi (ϑ (t)) = 1, i = 1, 2, · · · , r

By adding a term 0 × u(t − τ (t)), t ∈ [−τM , 0] in (4),
we can obtain the equivalent system as follows:

Eẋ(t) =
r∑
î=1

ψi (ϑ (t)) {[Ai +1Ai] x(t)+ [Bi +1Bi] u(t)

+ [Aτ i +1Aτ i] x(t − τ (t))+ H̄iω(t)
}

z(t) =
r∑
i=1

ψi (ϑ (t))
{
C̄i
[
xT (t), uT (t)

]T
+ D̄i

[
xT (t − τ (t)), uT (t − τ (t))

]T}
x(t) = φ(t), t ∈ [−τM , 0] (5)

where C̄i = [Ci,Cid ], D̄i = [Di, 0k×m], and H̄i =
[Hi +1Hi].

In the following, to simplify the calculation, the variables
ψi, x, u, z, xτ (t), uτ (t), ω and φ are used to denote the
ψi (ϑ (t)), x(t), u(t), z(t), x(t−τ (t)), u(t−τ (t)),ω(t) and φ(t),
respectively.

Next, a definition and two lemmas will be employed
throughout this paper.
Definition 1 [9], [24]:
1) The system (5) is said to be regular if det(sE −

r∑
i=1
ψiAi) 6≡ 0.

2) The system (5) is said to be impulse-free if

deg(det(sE −
r∑
i=1
ψiA)) = rank(E).

3) The system (5) is said to be stable if exists a scalar
9(ε) > 0 such that, for any compatible initial condi-
tions φ satisfying sup−τM≤t≤0 ‖φ‖ < 9(ε), ‖x‖ < ε

(∀ε > 0 and ∀t ≥ 0). Furthermore, x → 0, t →∞.
4) The system (5) is said to be admissible if it is regular,

impulse-free and stable.

Lemma 1 [17]: Let X̃ , Ỹ , 1̃ are matrices of appropriate
dimensions with 1̃T 1̃ ≤ In then

X̃1̃Ỹ + Ỹ T 1̃T X̃T ≤ εX̃ X̃T + ε−1Ỹ T Ỹ (6)

Lemma 2 [29]: Consider a singular system as follows

Eẋ = Ax + Bu (7)

where x ∈ Rn is the state vector, u ∈ Rm is the input vec-
tor, E,A,B are constant matrices of appropriate dimensions,
rank(E) = r < n. we assume the system (7) is regular and
impulse-free. If the system (7) is stable, the following are
equivalent.
1. there exists a matrix P ∈ Rn×n which satisfies

PET = EPT , PAT + APT < 0 (8)

2. there exists a positive definite matrix Z ∈ Rn×n and a
matrix S ∈ R(n−r)×(n−r) which satisfy

(ZET + VSUT )TAT + A(ZET + VSUT ) < 0 (9)

where matrices V ,U ∈ Rn×(n−r) are full column rank
and EV = 0, ETU = 0.

III. DESIGN OF DYNAMIC SLIDING-MODE CONTROL
In this section, we focus on the DSMC design and the admis-
sibility of the sliding motion. Hence, the section will be
divided into two parts. In the first part, the sliding surface
and dynamic sliding-mode controller (DSM controller) are
designed. In the second part, after the system turns into slid-
ing motion, the admissibility of the systems will be analyzed.

A. DESIGN OF SLIDING SURFACE AND SLIDING-MODE
CONTROLLER
To obtain DSMC, we give a novel sliding surface for the
system (5) defined as:

s (t) = GxEx + Guη = ḠĒ x̄ = G̃x̄ = 0 (10)

where η ∈ Rm is the state of the controller, Gx ∈ Rm×n, Gu ∈
Rm×m, Ḡ = [Gx ,Gu], G̃ = [GxE,Gu], Ē = diag [E, Im],
Ē ∈ R(n+m)×(n+m),
rank

(
Ē
)
= q + m ≤ n + m, G̃ = ḠĒ , and x̄ =

[
xT , ηT

]T .
Gu is designed to be nonsingular.
Remark 1: Two equivalent sliding surface functions are

given in (10), s(t) = ḠĒ x̄ and s(t) = G̃x̄, respectively. In the
proof of Theorem 1, we choose the first form. In the proof of
Theorem 2, the second form is considered.

Since so, we can design a DSM controller for the
system (5),

η̇ = −

r∑
i=1

ψi
{
G
[
Aix + Aτ ixτ (t) + Biu

]
+ (α + ξ (t))G−1u sgn (s (t))

}
u = η (11)

where

ξ (t) = εai ‖x̄‖ + εbi
∥∥x̄τ (t)∥∥+ (‖Hi‖ + ε2h) ρ(t)
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G = G−1u Gx , εai, εbi and εh are defined in (3), α is a known
positive constant, ρ (t) is the known uniform upper bound
of ω.
Remark 2: It is noted that the sliding surface defined

in (10) is dependent on both the system state vector and the
state of the controller [30], and the sliding-mode controller
is in the form fuzzy dynamic-state feedback control. These
features are similar to dynamic controller. This is also the
reason why it is called the DSMC approach.
Denote: s(t) = s, L1 =

[
In,0n×m

]T , L2 = [0m×n, Im]T ,
Āi = [Ai,Bi], Āτ i = [Aτ i, 0n×m], 1Āi = [1Ai,1Bi] and
1Āτ i = [1Aτ i, 0n×m]. Then, substitute (11) into (5), we can
obtain the closed-loop system to be represented by a compact
form as follows:

Ē ˙̄x =
r∑
i=1

ψi
{[
(L1 − L2G)Āi + L11Āi

]
x̄

+
[
(L1 − L2G)Āτ i + L11Āτ i

]
x̄τ (t)

+ L1H̄iω − L2(α + ξ (t))G−1u sgn(s)
}

z =
r∑
i=1

ψi
{
C̄ix̄ + D̄ix̄τ (t)

}
x̄ =

[
φT , 0

]T
, t ∈ [−τM , 0] (12)

Theorem 1: For the system (12), in finite time, the sys-
tem states can reach onto the sliding surface (10) by the
DSM controller (11).

Proof: Choose the Lyapunov function candidate as
Vs (t) = sT s, one has

V̇s (t) = 2sT ḠĒ ˙̄x

= 2
r∑
i=1

ψisT Ḡ
{[
(L1 − L2G) Āi + L11Āi

]
x̄

+
[
(L1 − L2G) Āτ i + L11Āτ i

]
x̄τ (t)

+L1H̄iω − L2 (α + ξ (t))G−1u sgn (s)
}

(13)

In the fact that Ḡ (L1 − L2G) = 0, we obtain

V̇s (t) = 2
r∑
i=1

ψisT Ḡ
{
L11Āix̄ + L11Āτ ix̄τ (t)

+L1H̄iω − L2 (α + ξ (t))G−1u sgn (s)
}

= 2
r∑
i=1

ψisTGx
[
1Āix̄ +1Āτ ix̄τ (t)

+ H̄iω − 2ξ (t) ‖s‖
]
− 2α ‖s‖

≤ 2
r∑
i=1

ψi
{(
‖Gx‖

[
εai ‖x̄‖ + εbi

∥∥x̄τ (t)∥∥
+

(
‖Hi‖ + ε2h

)
ρ (t)

]
− ξ (t)

)
‖s‖
}
− 2α ‖s‖

= −2α ‖s‖

= −2α
√
Vs (t) (14)

Hence, in finite time, the system states can arrive at the
sliding surface (10). So, the proof is end.

B. ANALYSIS OF THE SLIDING MOTION
We have already proved that the DSM controller guaran-
tees the reachability of the system states in finite time
in Theorem 1. In this subsection, after the system turns into
sliding motion, we will analyze the admissibility of the slid-
ing motion.

In finite time, since the system states can reach onto the
sliding surface (10), the system (12) becomes

Ē ˙̄x =
r∑
i=1

ψi
{[
(L1 − L2G)Āi + L11Āi

]
x̄ + [(L1

−L2G)Āτ i + L11Āτ i
]
x̄τ (t) +L1H̄ω

}
z =

r∑
i=1

ψi
{
C̄ix̄ + D̄ix̄τ (t)

}
x̄ =

[
φT , 0

]T
, t ∈ [−τM , 0] (15)

In the following, we will give a sufficient condition
such that the system (15) is robustly admissible with
norm-bounded parameters uncertainties and mismatched
disturbances.
Theorem 2: Given a positive scalar γ, τd . The system (15)

is robustly admissible, if there exist nonsingular matrices X ,
Q > 0 and two sets of matrices W1i,W2i(i = 1, 2, · · · , r)
with appropriate dimensions, a set of positive scalars
εi(i = 1, 2, · · · , r) such that the following LMIs are satisfied:

XT ĒT = ĒX ≥ 0 (16)

�i=


�11i �12i XT C̄T

i εaiXT 0
? �22i XT D̄Ti 0 εbiXT

? ? −Ik 0 0
? ? ? −εiIn+m 0
? ? ? ? −εiIn+m


< 0 (17)

where

�11i = sym
(
L1ĀiX + L2W1i

)
+ εiL1LT1

+
2
γ 2 L1

(
HiHT

i + ε
2
hIn
)
LT1 + Q

�12i = L1Āτ iX + L2W2i

�22i = −(1− τd )Q (18)

In addition, we can obtain the sliding surface matrix
G̃ = LT2 X

−1.
Proof: The proof of this theorem is divided into two

steps. Firstly, we prove that the system is regular and impulse-
free.

From the condition (17), we can obtain

sym
(
L1ĀiX + L2W1i

)
< 0 (19)
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Then, we multiply (17) by X−T and X−1 on the left and right,
respectively. We have

sym
(
X−TL1Āi + X−TL2W1iX−1

)
< 0 (20)

On the sliding surface, it is can be obtained that

s = G̃x̄ = LT2 X
−1x̄ = 0 (21)

then one has

x̄T (X−TL1Āi + ĀTi L
T
1 X
−1)x̄ < 0 (22)

so, we have

X−TL1Āi + ĀTi L
T
1 X
−1 < 0 (23)

Denote X = P−1, the (16) and (23) are equivalent to the
following forms

ĒTP = PT Ē ≥ 0 (24)

PTL1Āi + ĀTi L
T
1 P < 0 (25)

Due to rank(Ē) = rank(E) + m = q + m, there always
exist two nonsingular matrices M ∈ R(n+m)×(n+m), N ∈
R(n+m)×(n+m) such that

E =MĒN =
[
Iq+m 0
0 0

]
(26)

Denote

P = M−TPN =
[
P1 P2
P3 P4

]
M
(
L1Āi

)
N =

[
J1 J2
J3 J4

]
(27)

In the fact thatP is also nonsingular, we can deduce from (24),
(26)and (27) that P1 > 0, P2 = 0 and P4 is also nonsingular.
Then, pre-multiplying and post-multiplying (25) by NT

and N, respectively, we have(
∗ ∗

∗ PT4 J4 + J
T
4 P4

)
< 0 (28)

where ∗ represents the elements in matrix which are not
related to next discussions.

Thus, we can imply that J4 is nonsingular. Hence, accord-
ing to Definition 1 and [24], we can deduce that the system
(15) is regular and impulse-free.

Secondly, we will deduce that the system (15) is asymp-
totically stable. Select the Lyapunov function candidate as
follows:

V (t) = x̄T ĒTPx̄ +
∫ t

t−τ (t)
x̄T (s)Y x̄ (s) ds (29)

Thus, the derivative of (29) is given by

V̇ (t) = 2x̄TPT Ē ˙̄x + x̄TY x̄ − (1− τ̇ (t))x̄Tτ (t)Y x̄τ (t)

≤ 2
r∑
i=1

ψix̄TPT
{
L1
(
Āi +1Āi

)
x̄

+L1
(
Āτ i +1Āτ i

)
x̄τ (t) + L1H̄iω

}
+ x̄TY x̄

− 2
r∑
i=1

ψix̄TPTL2
{
GĀix̄ + GĀτ ix̄τ (t)

}
− (1− τd )x̄Tτ (t)Y x̄τ (t)

= 2
r∑
i=1

ψix̄TPT
{
L1
(
Āi +1Āi

)
x̄

+L1
(
Āτ i +1Āτ i

)
x̄τ (t) + L1H̄iω

}
+ x̄TY x̄

+ 2
r∑
i=1

ψix̄TPTL2
{
K1ix̄ + K2ix̄τ (t)

}
− (1− τd )x̄Tτ (t)Y x̄τ (t) (30)

where K1i = −GĀi, K2i = −GĀτ i, K1i,K2i ∈ Rm×(n+m) are
matrices to be determined. By using the Lemma 1, we can
obtain

2x̄TPTL1
(
1Āix̄ +1Āτ ix̄τ (t)

)
≤ x̄T

(
εiPTL1 LT1 P+ ε

−1
i ε2aiIn+m

)
x̄

+ ε−1i ε2bix̄
T
τ (t)x̄τ (t) (31)

and then, for any given εi > 0, we have

V̇ (t) ≤ ζ T

0i PT
(
L1Āτ i + L2 K2i

)
PTL1H̄i

? ε−1i ε2biIn+m − (1− τd )Y 0
? ? 0

 ζ
(32)

where

ζ =
[
x̄T x̄Tτ (t) ωT

]T
0i = sym

(
PT
(
L1Āi + L2 K1i

))
+ εiPTL1 LT1 P

+ ε−1i ε2aiIn+m + Y (33)

In the following, we will imply that system (15), with for
all nonzero ω ∈ L2[0,∞) under the zero initial conditions
x (0) = 0, is asymptotically stable.∫

∞

0
‖z‖2dt < γ 2

∫
∞

0
‖ω‖2dt (34)

Next, based on (32), we can infer the derivative of V (t) in (29)
holds

V̇ (t)+ zT z− γ 2ωTω

≤

r∑
i=i

ψiζ
T


0i PT

(
L1Āτ i + L2 K2i

)
0

? ε−1i ε2biIn+m − (1− τd )Y 0
? ? 0



+

 C̄
T
i C̄i C̄T

i D̄i PTL1H̄i
? D̄Ti D̄i 0

? ? −γ 2In+m


 ζ (35)
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And then, one has that V̇ (t)+ zT z− γ 2ωTω < 0 if0i PT
(
L1Āτ i + L2 K2i

)
0

? ε−1i ε2biIn+m − (1− τd )Y 0
? ? 0


+

 C̄T
i C̄i C̄T

i D̄i PTL1H̄i
? D̄Ti D̄i 0
? ? −γ 2In+m

 < 0 (36)

Then, we multiply (36) by diag
(
P−T ,P−T ,P−T

)
and

diag
(
P−1,P−1,P−1

)
on the left and right, respectively.

We have2i
(
L1Āτ i + L2K2i

)
P−1 0

? ε−1i ε2biP
−TP−1 − (1− τd )P−TYP−1 0

? ? 0


+

P−T C̄T
i C̄iP

−1 P−T C̄T
i D̄iP

−1 L1H̄iP−1

? P−T D̄Ti D̄iP
−1 0

? ? −γ 2P−TP−1


< 0 (37)

where

2i = sym
((
L1Āi + L2K1i

)
P−1

)
+ εiL1LT1

+ ε−1i ε2aiP
−TP−1 + P−TYP−1 (38)

Denote Y = PTQP. By using Schur’s complement, we can
obtain9i +

2
γ 2
L1
(
HiHT

i + ε
2
hIn
)
LT1 912i X̄T C̄T

i

? 922i XT D̄Ti
? ? −Ik

 < 0

(39)

where

9i = sym
(
L1ĀiX + L2W1i

)
+ εiL1LT1

+ εiε
2
aiX

TX + Q

912i =
(
L1Āτ i + L2K2i

)
X

922i = ε
−1
i ε2biX

TX − (1− τd )Q (40)

It is worth mentioning that H̄iH̄T
i ≤ 2

(
HiHT

i + ε
2
hIn
)
.

In the fact that W1i = K1iX , W2i = K2iX , using Schur’s
complement, we can easily deduce that (39) is equivalent
to (17).

Hence, if the LMIs (16) and (17) are satisfied, we have

V̇ (t) ≤ −zT z+ γ 2ωTω (41)

For any nonzeroω ∈ L2 [0,∞) , t > 0, integrate both sides
of (41) from 0 to T > 0 results in

0 < V (T ) =
∫ T

0
V̇ (t) dt ≤ −

∫ T

0
zT zdt

+ γ 2
∫ T

0
ωTωdt (42)

It is noted that
∫ T
0 zT zdt ≤ γ 2

∫ T
0 ωTωdt . Thus, the sys-

tem (15) is admissible in the sense of Definition1. So,
the proof is end. �

Remark 3: Take the advantage that LT2 Px̄ = 0 is on the
sliding surface, the slack matrices W1i,W2i(i = 1, 2, · · · , r)
are introduced in (17). Hence, the feasibility of the LMIs
conditions can be improved.
Remark 4: In the fact, the equality constraints may have a

little theoretical problem, but we find that it probably lead to
a big trouble in simulations. Thus, the equality constraints are
fragile and usually cannot be perfectly satisfied [31]. In order
to solve this trouble, we can obtain the following theorem.
Theorem 3: Given a positive scalar γ, τd . The system (15)

is robustly admissible, if there exist matrices S, Q > 0,
Z > 0, and two sets of matrices W1i,W2i(i = 1, 2, · · · , r)
with appropriate dimensions, a set of positive scalars
εi(i = 1, 2, · · · , r) such that the following LMIs are satisfied:

zi z12i z13i z14i 0
? z22i z23i 0 z25i
? ? −Ik 0 0
? ? ? −εiIn+m 0
? ? ? ? −εiIn+m

 < 0 (43)

where, matrices V and U are full column rank and ĒV = 0,
ĒTU = 0,

z11i = sym
(
L1Āi

(
ZĒT + VSUT

)
+ L2W1i

)
+ εiL1LT1 +

2
γ 2 L1

(
HiHT

i + ε
2
hIn
)
LT1 + Q

z12i = L1Āτ i
(
ZĒT + VSUT

)T
+ L2W2i

z13i =

(
ZĒT + VSUT

)T
C̄T
i

z14i = εai

(
ZĒT + VSUT

)T
z22i = −(1− τd )Q

z23i =

(
ZĒT + VSUT

)T
D̄Ti

z25i = εbi

(
ZĒT + VSUT

)T
(44)

In addition, the sliding surface matrix is G̃ = LT2 (ZĒ
T
+

VSUT )−1.
Proof: Based on Lemma 2, by replacing X = ZĒT +

VSUT in the Theorem 2 that we can obtain inequality (43),
it is easy to see that

ĒX = Ē(ZĒT + VSUT ) = ĒZ ĒT

= (ĒZ + USTV T )ĒT = XT Ē (45)

Since so, we remove the equality constraint.
Remark 5: When E = In, the T-S fuzzy singular systems

turn into the T-S fuzzy systems, our results are also efficient.
Remark 6: One popular solution to eliminate chattering is

to approximate discontinuous function sgn(s) = s
‖s‖ by some

continuous and smooth functions. For example, it could be
replaced by s

‖s‖+o , where o is a small positive scalar value. So,
the chattering will be reduced [32]. In the simulations, we can
observe that the proposed method has smaller chattering than
the method in [28], [33]. In order to show the merit of
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our method, we have not used smooth functions to reduce
chattering.
Remark 7: When we apply the method proposed in

this paper to realtime applications, we can use the Euler
method [34], [35], which has been widely used in sliding-
mode control implementation. Moreover, the sampling time
has to be very small in order to ensure that the discretized
system approximates the continuous time system as closely
as possible [36].

IV. SIMULATION EXAMPLES
In this section, we present two numerical examples and an
inverted pendulummodel to verify themerit and effectiveness
of the approaches that are proposed in the previous sections,
respectively.
Example 1: In this numerical example, a continuous T-S

fuzzy singular systems is given by,

Eẋ =
2∑
i=1

ψi (x1) {[Ai +1Ai] x + [Bi +1Bi] u

+ [Aτ i +1Aτ i] xτ (t) + [Hi +1Hi]ω
}

z =
2∑
i=1

ψi (x1)
[
Cix + Cidu+ Dixτ (t)

]
x = φ, t ∈ [−τM , 0] (46)

The system matrices are given as follows:

E =
[
1 0
0 0

]
, A1=

[
0.1 0.2
0.2 0.7

]
, A2=

[
0.1 0.1
0 0.9

]
Aτ1=

[
−0.1 0
0.1 0.1

]
, Aτ2=

[
0 0
0.1 0.1

]
B1=

[
1.5 1.2
1.6 1

]
, B2=

[
1.6 1
1.2 0.9

]
, H1=

[
0.125
0

]
H2=

[
0.1227

0

]
, C1 = C2 =

[
0 0.1
0.1 0

]
C1d =C2d =

[
0 0.1
0.1 0

]
, D1 = D2=

[
0 0.1
0.1 0

]
Choose membership functions for rules: ψ1 (x1) = 1 −

1
1+e−2x1

, ψ2 (x1) = 1
1+e−2x1

.
When we assume that ‖[1A1,1B1]‖ ≤ 0.0352, ‖[1A2,

1B2]‖ ≤ 0.2447, ‖1Aτ1‖ = ‖1Aτ2‖ ≤ 0.0224,
1Hi1HiT ≤ 0.052I2(i = 1, 2).
Let γ = 0.9, τ (t) = 0.4 + 0.3sin(t), and then τM = 0.7,

τd = 0.3, and solve the LMIs in Theorem 3, the correspond-
ing matrices are given by

G̃ =
[
0.2992 0 0.7755 −0.0109
0.2846 0 −0.0109 0.7089

]
Gu =

[
0.7755 −0.0109
−0.0109 0.7089

]
Gx =

[
0.2992 0
0.2846 0

]
, G =

[
0.3825 0
0.4073 0

]

FIGURE 2. States trajectories of the system (46).

FIGURE 3. Sliding-mode controller of the system (46).

The sliding surface is given by

s =
[
s1
s2

]
=

[
0.2992 0
0.2846 0

] [
x1
x2

]
+

[
0.7755 −0.0109
−0.0109 0.7089

] [
η1
η2

]
(47)

We can obtain the DSM controller as follows:

u = η

η̇ = −

2∑
i=1

ψi (x1)
{
G
[
Aix (t)+ Aτ ixτ (t)

+Biu]− G−1u (1+ ξ (t)) sgn (s)
}

ξ (t) = ‖Gx‖
[
εai ‖x̄‖ + εbi

∥∥x̄τ (t)∥∥
+ 0.1

(
‖Hi‖ + 0.052

)]
(48)

To demonstrate the effectiveness of designmethod, assume
the initial conditions x(0) =

[
3 − 0.0016

]T , the external
disturbance ω = 0.1cos(0.5t)e−0.01t .
Fig.2 shows the state response curve of the closed loop

system, Fig.3 displays the dynamics of the dynamic sliding
mode controller, and Fig.4 depicts the dynamics of sliding
surface function. It can be observed that by using the dynamic
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FIGURE 4. Sliding surface of the system (46).

FIGURE 5. The model of Inverted pendulum on a cart.

sliding mode controller, the closed loop system is regular,
impulse free and stable.

In this example, we can observe that the T-S fuzzy singular
systems do not need every subsystem’s input matrix is identi-
cal. So, the SMC design methods proposed in [24], [26], [27]
cannot be applied.
Example 2: Take into account the inverted pendulum sys-

tem in Fig.5. The continuous time model of the inverted
pendulum plant is given by [28]

ẋ1 = x2

ẋ2 =
(µmlx4cos(x1)+ (M + m)mgx5)
(M + m)(J + ml2)− m2l2cos2(x1)

−
(mlcos(x1)(u+ mx22x5))

(M + m)(J + ml2)− m2l2cos2(x1)
ẋ3 = x4

ẋ4 =
(−µ(J + ml2)x4 − m2lgx5cos(x1))
(M + m)(J + ml2)− m2l2cos2(x1)

+
((J + ml2)(u+ mx22x5))

(M + m)(J + ml2)− m2l2cos2(x1)
0 = lsin(x1)− x5 (49)

where
• x1 is the angle of the pendulum,
• x3 is the displacement of the pivot,
• x5 is the horizontal position of the pendulum center
relative to the pivot,

• M = 8 kg is the mass of the cart,
• m = 2 kg is the mass of the pendulum,
• 2l = 1 m is the length of the pendulum,
• g = 9.8 m/s2 is the gravity constant
Define x = col(x1, x2, x3, x4, x5)) and a compact set

1 = {x : |xi| ≤ φi, i = 1, 2, · · · , 5}, where φ1 = 5π
18 and

φ2, φ3, φ4, φ5 are appropriate positive constants. Consider
the external disturbances ω, we can obtain the following
T-S fuzzy singular model:

Eẋ =
8∑
i=1

ψi (x1)
{
Aix + Bi(u+ 2x22x5)+ Hiω

}
z =

8∑
i=1

ψi (x1) {Cix + Cidu} (50)

where, the premise variables are ϑ1(t) = cos(x1), ϑ2(t) =
1/(2 − 0.3cos2(x1)), and ϑ3(t) = sin(x1). The membership
functions are ψi (x1) = θk (x1)ηl(x1)νj(x1), i = j+ 2(l − 1)+
4(k − 1), j, l, k = 1, 2 with θ1(x1 = (ϑ1(t) − a2)/(a1 − a2),
θ2(x1) = 1 − θ1(x1), η1(x1) = (ϑ2(t) − b2)/(b1 − b2),
η2(x1) = 1−η1(x1), ν1(x1) = (ϑ3(t)−c2arcsin(ϑ3(t)))/((c1−
c2)arcsin(ϑ3(t))), ν2(x1(t)) = 1 − ν1(x1), a1 = 1, a2 =
cos(φ1), b1 = 1

1.7 , b2 = 1/(2 − 0.3cos2(φ1)), c1 = 1, and
c2 = (sin(φ1)/φ1). The system matrices are given as follows:

E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

, Bi =


0

−0.3akbl
0

0.2bl
0



Ai =


0 1 0 0 0
0 0 0 0.15akbl 58.8bl
0 0 0 1 0
0 0 0 −0.1bl −5.88akbl

0.5cj 0 0 0 −1


Ci =

[
2 0.1 0.1 0.1 1

]
, Cid = 0.2, Hi = Bi

where i = j+ 2(l − 1)+ 4(k − 1) and j, l, k = 1, 2.
A. DSMC Technique: Choose γ = 1, and solve the

LMIs in Theorem 3, the corresponding matrices are given
by:

G̃ =
[
−4.2778 −1.0429 −0.0156− 0.0517 0 0.0012

]
Gx =

[
−4.2778 −1.0429 −0.0156 −0.0517 0

]
Gu = 0.0012, G−1u = 818.9213, G = G−1u Gx

The sliding surface can be written as

s=−4.2778x1−1.0429x2−0.0156x3−0.0517x4+0.0012v

(51)
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FIGURE 6. Time response of the open-loop system (50).

We can obtain the DSM controller as follows:

u = −2x22x5 + v

v = η

η̇ = −

8∑
i=1

ψi (x1) {G [Aix + Biv]}

− 818.9213×

(
α +

8∑
i=1

ψi (x1) ‖Hi‖

)
sgn(s) (52)

B. Classical Integral SMC Technique [28]: The corre-
sponding matrices are given by

S =
[
0 −4.3638 0 3.5418 0

]
K1 =

[
399.6547 139.9611 2.3698 42.3405 346.7144

]
The sliding surface can be obtained as follows:

s = −4.3638x2 + 3.5418x4

−

∫ t

0

8∑
i=1

ψi (x1(τ ))S(Ai + BiK1)x(τ )dτ (53)

We can obtain the classical integral sliding-mode controller
as follows:

u = −2x22x5 + K1x − 2

(
8∑
i=1

ψi (x1)SBi

)−1
s

−

(
8∑
i=1
ψi (x1)SBi

)T
s∥∥∥∥∥∥

(
8∑
i=1
ψi (x1)SBi

)T
s

∥∥∥∥∥∥
(54)

To illustrate the merits of our results, some simula-
tions have been presented. Under the initial condition
x(0) =

[
π/6 0 0 0 0.25

]
and external disturbances

ω = cos(0.5t)e−0.01t , Fig.6 shows the time of responses
of the open loop system (50), Fig.7 and Fig.8 show the
time responses of the closed-loop system (50) by the DSM

FIGURE 7. Time response of the closed-loop system (50) by this paper.

FIGURE 8. Time response of the closed-loop system (50) by [28].

FIGURE 9. Time response of the control inputs.

controller (52) in this paper and the classical integral sliding-
mode controller (54) [28], respectively, from Fig.8 and
Fig.9, both controllers in this paper and [28] are effi-
cient. Fig.9 shows the time responses of sliding-mode con-
troller, we can observe that the DSM controller (52) has
smaller amplitude of chattering than the classical integral
sliding-mode controller (54), so, the chattering of SMC can
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FIGURE 10. Time response of the sliding surface.

be alleviated better compared with the method from [28].
Fig.10 shows the time responses of sliding surface. First,
it shows that the sliding surface (51) can be reached more
quickly than the sliding surface (53). In other words, this
means that the DSMC technique proposed in this paper can
make the system to turn into sliding motion earlier than the
classical integral SMC technique in [28]. Second, the sliding
surface (51) also has smaller amplitude of chattering than the
sliding surface (53).
Example 3: Consider a T-S fuzzy uncertain systems with

time-delay in the following form:

ẋ =
2∑
i=1

ψi (x2) {[Ai +1Ai] x + [Bi +1Bi] u

+ [Aτ i +1Aτ i] xτ (t) + Hiω
}

z =
2∑
i=1

ψi (x2)Cix

x = φ, t ∈ [−τM , 0] (55)

The model parameters are given as A1 =
[
0.1 0
0 − 2

]
, A2 =[

−0.3 0
1 − 3

]
, Aτ1 =

[
0.1 0.1
0 0.1

]
, Aτ2 =

[
0.1 0
0 0.2

]
,

B1 = B2 =
[
1
1

]
, H1 =

[
2
0

]
, H2 =

[
1
0

]
, C1 =

C2 =

[
2 0
0 1.5

]
. The uncertainties are set to be 1A1 =[

0 0.08sint
0 0.06sint

]
,

1A2 =
[
0.06sint 0
0.02sint 0.06sint

]
, 1Aτ1 =

[
0 0.06sint
0 0.06sint

]
,

1Aτ2 =
[
0.01sint 0

0 0.06sint

]
, 1B1 = 1B2 =

[
0.1sint
0.1sint

]
.

So, we can obtain εa1 = 0.1728, εa2 = 0.1528, εb1 =
0.0849, εb1 = 0.06.

Choose membership functions for rules: ψ1 (x2) =

sin2(x2), ψ2 (x2) = cos2(x2), and the time-varying delay
τ (t) = 0.2+ 0.2sint .

TABLE 1. Performance indexes of IAE and ITAE.

A. DSMC Technique: The corresponding matrices can be
obtain

Ḡ =
[
0.1319 −0.0107 0.0061

]
Gx =

[
0.1319 −0.0107

]
Gu = 0.0061, G =

[
21.7189 −1.7571

]
The sliding surface is given by

s = 0.1319x1 − 0.0107x2 + 0.0061η (56)

We can obtain the DSM controller as follows

u = η

η̇ = −

2∑
i=1

ψi (x2)
{
G
[
Aix + Aτ ixτ (t)

+Biu]− 164.6590 (1+ ξ (t)) sgn (s)}

ξ (t) = ‖Gx‖
[
εai ‖x̄‖ + εbi

∥∥x̄τ (t)∥∥+ ‖Hi‖] (57)

B. Sliding-mode Technique in [33]: The corresponding
matrices can be obtain

G =
[
6.3117 10.4480

]
The sliding surface is given by

s = 6.3117x1 + 10.4480x2 (58)

We can obtain the DSM controller as follows

u(t) = −1.7x1 − 5.7x2 + ur (t)

ur (t) = −
2∑
i=1

ψi (x2)G
[
Aix + Aτ ixτ (t)

]
−

2∑
i=1

ψi (x2)ρi(x, t)sgn(s)

ρ1(x, t) ≥ 2.0202
(
30.4837 ‖x‖ + 6.7609

∥∥xτ (t)∥∥
+ 12.6235 ‖s‖ ‖ω‖ + 1)

ρ2(x, t) ≥ 2.0202
(
43.1401 ‖x‖ + 4.4110

∥∥xτ (t)∥∥
+ 0.3766 ‖s‖ ‖ω‖ + 1) (59)

Utilize the DSMC technique (56) and (57) in this paper and
sliding-mode control scheme (58) and (59) in [33], under the
initial condition x(0) =

[
3 − 3

]T , the time responses of
the closed loop system, sliding-mode controller and sliding
surface are shown in Figs.15-18. From Fig.15 and Fig.16,
both controllers in this paper and [33] are efficient. First,
we can obviously observe that the DSMC technique has
smaller amplitude of chattering than the sliding-mode control
scheme in [33]. Second, compared with the controller (59),
the slidingmode controller (57) presents better control perfor-
mance. It has less oscillation and the control force is smaller
than [33].
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FIGURE 11. Time response of the closed-loop system (55).

FIGURE 12. Time response of the closed-loop system (55).

FIGURE 13. Time response of the control inputs.

Furthermore, the performance indexes of integral of the
absolute value of error (IAE)

∑2
i=1

∫ t
0 |0− xi(s)| ds and

integral of time multiplied by the absolute value of error
(ITAE)

∑2
i=1

∫ t
0 t |0− xi(s)| ds with different SMC technique

are shown in Table 1. It shows that the IAE and ITAE values
using the sliding-mode controller (57) is less than (59). It is

FIGURE 14. Time response of the sliding surface.

obvious that the DSMC technique proposed in this paper is
more efficient and feasible than existing method [33].

V. CONCLUSION
ADSMC technique has been proposed for a class of nonlinear
singular time-delay systems in the form of T-S fuzzy model
with robust H∞ control in this paper. The DSMC strategy
remove the restrictive assumption that every subsystem’s
input matrix is identical. A novel sliding surface function and
a new DSM controller are developed. A set of LMIs are fea-
sible to guarantee that the system state trajectories reach onto
the predefined sliding surfaces in finite time, and the sliding
motion is admissible with H∞ performance. In the end, three
examples are used to verify the merit and effectiveness of the
proposed DSMC technique. In the future, we will extend the
results to hybrid electric vehicle [37], [38]
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