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ABSTRACT In order to effectively predict the performance of ground source heat pump system, a perfor-
mance prediction method is proposed in this paper. Based on the basic model of forward neural network,
the algorithm predicts the performance data of ground source heat pump system by inputting the time series
of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground
parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the
strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of
the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed
algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm
fully considers various influencing factors and has good versatility, which can be used as a reference for the
design of ground source heat pump system.

INDEX TERMS Ground source heat pump system, data mining, covariance matrix adaptation evolution
strategy, multi-task learning, prediction model.

I. INTRODUCTION
The ground source heat pump system is an energy-efficient
and environmentally-friendly air-conditioning system that
utilizes geothermal resources in shallow underground to pro-
vide both heating and cooling. It can transfer energy from
a low-temperature heat source to a high-temperature heat
source by inputting a small amount of high-grade energy
(electric energy). In winter, the heat in the soil is ‘‘taken out’’
and then used to raise the temperature by the heat pump tech-
nology to supply indoor heating. In summer, the heat indoor
is ‘‘taken out’’ and then released into the soil, which can
balance the underground temperature throughout the year [1].
The ground source heat pump system is driven by only a
small amount of electric energy, which is energy-saving, envi-
ronmentally friendly, and is in line to the sustainable devel-
opment strategy. What’s more, compared with conventional
air-source heat pump systems, it has higher performance
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coefficient and economic efficiency [2]. At present, with
the increasingly serious energy and environmental problems,
the ground source heat pump system has been getting more
and more attention [3]. Due to the large investment cost,
some applications that are poorly designedwill not onlywaste
funds, but would also cause public doubts about the ground
source heat pump system and hinder its development and
promotion [4]. Therefore, establishing an accurate system
performance prediction model is one of the key technolo-
gies to promote the development and application process of
ground source heat pump systems.

At present, most of the research on the performance pre-
diction of ground source heat pump system is mainly carried
out through physical analysis and modeling methods. Due to
many complex variables involved in the physical analysis,
establishment of the prediction model is very difficult and
the prediction error is large. In addition, specific physical
models are generally only applicable to specific systems, not
commonly used [5]. Therefore, it is imperative to replace the
physical analysis of the system by data analysis.
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In the performance prediction of ground source heat pump
systems, the traditional physical analysis methods pay more
attention to the actual physical system combination and
energy flow process. For example, physical analysis meth-
ods usually perform energy analysis or enthalpy analysis
on geothermal heat exchangers to obtain data of the energy
exchange process between geothermal heat exchangers and
shallow soils [6]. However, the heat transfer process occurs
between the fluid in the tube and the surrounding surface,
involving large spatial scales, long time spans, and complex
influencing factors. Therefore, many methods often simplify
or even neglect some factors, which makes it impossible
for the model to accurately simulate the condition of the
system. In recent years, with the development of machine
learning and big data technology, data mining technology has
begun to be applied to the performance prediction of ground
source heat pump systems. Esen et al. used adaptive neuro-
fuzzy inference system and artificial neural network to predict
the performance of ground source heat pump system, which
proved that adaptive neuro-fuzzy system has good applica-
bility in quantitative modeling of ground source heat pump
system [7]. Ceci et al. used machine learning algorithms and
big data technology to predict the output power of renewable
energy production systems, and realized one-day forecast for
photovoltaic energy systems [8]. Zhuang et al. adopted a data-
mining based method to accurately predict the heat transfer
performance of ground heat exchangers in ground-source
heat pump coupling systems with support vector machine and
M5model tree technology [9]. Yan et al. used DM technology
to process real-time monitoring data and established a data-
driven model using BP neural network algorithm, which was
then used to predict the performance of a ground source heat
pump system in Shaoxing, China [10]. Xia et al. predicted the
performance of the ground source heat pump system through
an artificial neural network model, in which the genetic evo-
lution algorithm was adopted as the optimization technology,
both data generation and ANN model training were carried
out through the simulation system made by TRNSYS [11].
Data mining method relies more on data than physical analy-
sis, so it canmake up for the shortcomings of traditionalmeth-
ods [9]. At present, the research on performance prediction of
ground source heat pump system based on datamining is rela-
tively rare and imperfect. How to use data mining technology
to obtain better prediction for the ground source heat pump
system performance is an urgent problem to solve. In this
paper, based on the existing time series prediction model,
themulti-task learningmethod is used to establish the forward
neural network as the prediction model, which is trained by
CMA-ES algorithm. It takes into account the parameters of
different systems and can effectively predict performance
data without complex physical modeling and analysis. The
multi-task learning strategy makes the method very versatile
and scalable. Experiments show that this method has higher
prediction accuracy than the time series prediction model.

The rest of the paper is organized as follows. Firstly,
the performance data of the ground source heat pump system

TABLE 1. Parameters of ground source heat pump system.

concerned in this paper are shown in section II. The proposed
prediction method for ground source heat pump system is
illustrated in section III, and the experimental results are
presented and discussed in section IV. Finally, conclusions
are drawn in section V.

II. DATA
The performance data of the ground source heat pump system
concerned in this paper includes the power consumption and
energy efficiency ratio of the heat pump unit and the system.
A total of 5000 sets of data are used, each of which includes
the unit power consumption (Y1), system power consumption
(Y2), unit energy efficiency ratio (Y3), and system energy effi-
ciency ratio (Y4) of the corresponding system of each month
in 30 years. Parameters associated with system performance
are also considered, including drilling, U-shaped tube, and
the surface of the circulating fluid parameters, as is shown in
table 1.

A. BOREHOLE PARAMETERS
X1 − X7 are borehole parameters, denoting geometry, radius,
depth, quantity, row spacing, column spacing, and thermal
conductivity of the filled material respectively. X4 represents
the number of boreholes, and can be expressed asD = A×B,
where D is the total number of drilled holes, and A and B are
the number of rows and columns of the drilled hole distri-
bution. X7 is the thermal conductivity of the filler material,
which is tested in the field based on the used material. There
is a large difference in thermal conductivity between different
filler material combinations, which in turn has a large impact
on the performance of the system.

B. U-TUBE PARAMETERS
X8 − X9 are U-tube parameters, representing the nominal
external diameter and spacing of U-tube. The material of
U-tube is high-density polyethylene (PE3408), of which
the thermal conductivity is 0.42 W/mK. The four types of
U-shaped tube spacing represented by X9 correspond to min-
imum spacing, small spacing, large spacing and maximum
spacing. At minimum spacing, the center distance between
two pipes is equal to the pipe diameter (2rp). At small spacing,
the center distance between two pipes is equal to the sum of
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TABLE 2. Ground thermal conductivity.

TABLE 3. Circulating liquid parameter.

the pipe diameter and 0.3 times the drilling clearance (2rp +
0.3(2rb−4rp)). At large spacing, the center distance between
two pipes is equal to the drilling radius (rb). At maximum
spacing, the center distance between two pipes is equal to
the difference between the diameter of the borehole and the
diameter of the pipe (2rb − 2rp).

C. GROUND PARAMETERS
X10 − X11 are ground parameters, representing the ground
thermal conductivity and distal ground temperature respec-
tively. X11 refers to the ground temperature without jamming
GHEs, being equivalent to the local annual average outdoor
temperature. Table 2 provides the detailed thermal conductiv-
ity X10 of different grounds in this study.

D. CIRCULATING LIQUID PARAMETERS
Eleven kinds of circulating liquid parameter X12 are given
in Table 3. The total flow of all types of the circulating liquid
is set to 46 m3/h, the initial temperature is set to 15 ◦C at the
beginning of the simulation, and then varies with time.

III. METHODOLOGIES
A. MODELING AND SUBTASKING
In this paper, the basic structure of the prediction model is a
forward neural network. The input is the performance data of
the ground source heat pump system at the first 25 years and
12 system parameters (X1−X12). The output layer is the per-
formance data predicted for the last five years. The working
state of the ground source heat pump systemfluctuates largely
in different months of each year. So, the prediction model is
established for a fixed month considering the training time.
Therefore, the forward neural network is designed to input
100 system performance data and 12 system parameters, then

output 20 performance data. The key task of this method
is to determine the weight coefficients between the layers.
In this paper, the methods of multi-task learning and dynamic
programming are combined to train the network.

Multi-task learning enhances the generalization perfor-
mance of the model by sharing presentation information
between related tasks. It has been applied in many opti-
mization problems and has shown good results [12]–[14].
In this method, the training task is divided into three subtasks,
which are respectively recorded as Task1, Task2, and Task3.
Each subtask has been assigned the number of input layer
neurons and hidden layer neurons, that is, each subtask cor-
responds to a neural network structure. The goal of Task1 is
to obtain the relationship between future system performance
and the system performance of the last 15 years. Therefore,
in addition to the bias term, the input layer should include
the performance data Y1 − Y4 in 15 years. Task2 is used
to search the relationship between the performance data in
the previous 10 years and the performance data in the last
5 years. Therefore, based on Task1, the input layer of the
neural network corresponding to Task2 adds 40 performance
data of the first 10 years, that is, there are 101 input neurons
in total. Task3 is used to research the influence of 12 system
parameters on the system performance data. It adds X1−X12
to the input on the basis of the corresponding network in
Task2, that is, 133 input layer neurons in total. The number
of hidden layer neurons in the neural network corresponding
to the three tasks is set to 62, 102, and 114 respectively. The
output layer contains Y1 − Y4 of the future 5 years, which
has 20 neurons in total. For convenience, in the i-th subtask,
note the number of input layer neurons as In(i), the number
of hidden layer neurons as Hid(i) and the number of output
layer neurons asOut , note the number of weights to be trained
as Num(i), the solution obtained by the training as Sol(i), and
the solution of the weight coefficient of the neural network
corresponding to the i-th task as Net(i), then:

Net(i) =

{
Net(i− 1)+ Sol(i), i = 2, 3
Sol(1), i = 1

(1)

In this process, knowledge transfer has been reflected.
Task1 is used as an initial task to solve problems shared in
each subtask, and the results of the training are transferred
and applied to subsequent tasks. For subsequent tasks, they
can obtain the results of the previous task through training
and apply them directly to the training process as known
information, and then transfer their own training results to
the next subtask, until the last subtask’s training process is
complete. The weight coefficient solution Net of the final
prediction model is:

Net = Net(N ) =
n∑
i=1

Sol(i) (2)

One of the advantages of this method is that when the
number of input variables associated with the performance
prediction of the system increases, the coefficients that have
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been trained can be transferred to the new task by adding or
changing subtasks without redesigning and training thewhole
network. Once the numbers of input layer neurons and hidden
layer neurons for each subtask are determined, the number of
weight coefficients that need to be trained can be determined
by the following formula:

Num(i) =


In(1)× Hid(1)+ Hid(1)× Out, i = 1
[Hid(i)− Hid(i− 1)]× [In(i− 1)+ Out]
+[In(i)− In(i− 1)]× Hid(i), i > 1

(3)

When theweight coefficient is updated using the collabora-
tive evolution algorithm, the individual number of each popu-
lation can be determined according to (3) and the individuals
can be sorted in a certain way.

B. SUBTASK EVOLUTIONARY ALGORITHM
The CMA-ES (Covariance Matrix Adaptation Evolution
Strategy) algorithm is applied to each subtask to update the
weight coefficients. The CMA-ES, first proposed by Hansen,
has good global search optimization capabilities and has
been applied and improved in many researches [15]–[20].
As an evolutionary algorithm, it draws on the strategy of
biological genetic evolution. Each point in the search space
can be regarded as an individual, and multiple individuals
make up a population. The superior individuals in the previ-
ous generation of populations produce the offspring through
certain steps. Every individual has a corresponding fitness
level, which is used to measure the degree of the individual’s
fitness to meet the task requirements, and then a selection
process like the ‘‘survival of the fittest’’ rule in nature is
carried out. Specifically, the CMA-ES algorithm adopts a
random black box optimization strategy, that is, sampling is
performed according to the distribution parameters to obtain
the children, then the children are evaluated, and the distri-
bution parameters are updated, and then the process is con-
tinued until the termination condition is satisfied. It mainly
consists of three steps: sampling, evaluating, and updating the
distribution parameters. The search space of the population
should be set before applying the CMA-ES algorithm to each
task. In this method, the dimension of the search space is the
number of weight coefficients that the task needs to train,
which can be obtained by (3) as described in the previous
section. The setting of the search space range is not unique.
For convenience, the search range of each weight coefficient
can be uniformly set after the data is normalized.

The CMA-ES algorithm uses multi-dimensional normal
distribution N (M , σ 2C) for random sampling. Its isodensity
surface is a super-ellipsoid, and the probability density is the
largest at the distribution center M . Individuals obtained by
sampling will be evaluated for fitness level and then they will
be sorted. Fitness level is used to measure whether an indi-
vidual can meet the requirements. The higher an individual’s
fitness level, the more it meets the requirements. In this paper,
the fitness level is defined as the amount of error between
the prediction result obtained by the network and the actual
data after theweight coefficient is placed in the corresponding

forward neural network. The smaller the error, the better the
set of weight coefficients. Therefore, the root mean square
error can be used to measure the fitness level:

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
(4)

where ŷ is the predicted data and y is the actual data. When-
ever the CMA-ES algorithm produces a new generation of
individuals, these individuals representing a set of weight
coefficients will be applied to the forward neural network of
the corresponding task, and then the data is input into the
network to obtain the predicted values. By calculating the
predicted value and the actual value by (4), the error size
of the individual can be obtained, thereby quantifying the
degree of the individual. This also requires a certain order
to be followed when transforming the weight coefficients
between the topology of the forward neural network and the
individuals in the CMA-ES algorithm. Each individual in
CMAES corresponds to a weight coefficient on the neural
network. As is shown in Fig. 1, the individuals of Task1 are
derived from the weight coefficients of the neural network
corresponding to Task1. The individuals of Task2 are the
weight coefficients that Task2 contains and that Task1 does
not contain. The coefficient of the neural network is updated
as an individual in the CMA-ES algorithm, which makes the
neural network updated, and the prediction error of this neural
network can be applied to the individual evaluation in the
CMA-ES algorithm.

The distribution parameters are then updated. The distri-
bution parameters of CMA-ES include distribution centerM ,
population covariance matrix C and step size σ . M deter-
mines the center of the distribution, which is updated accord-
ing to the individuals with higher fitness in the offspring. The
update formula is:

M =
µ∑
i=1

wiXi:λ (5)

where wi is the weight, satisfying wn > wn+1 and∑µ
i=1 wi = 1. The λ individuals obtained by sampling are

ranked according to the fitness level from high to low, and
Xi:λ is the position of the i-th individual. The updated M
will be closer to the individuals with high fitness level in
the offspring, representing that the next generation of the
populations will shift in the direction of the best individuals
in this generation.

The covariance matrix of the population determines the
shape of the isodensity surface. Its update combines two
strategies: the Rank-µ-update strategy which updates by the
deviation of the new generation from the distribution center
M and the Rank-1-update strategy which updates by the
evolutionary path. The update formula is:

C (g+1)
= (1− ccov)C (g)

+
ccov
µcov

Pc(g+1)Pc(g+1)
T

+ ccov(1−
1
µcov

)×
µ∑
i=1

wiyi:λ(g+1)yi:λ(g+1)
T

(6)
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FIGURE 1. Transformation of weight coefficient between network structure and individuals in CMA-ES
algorithm.

where Pc is the evolution path of the population covariance
matrix. It shows the evolution direction of each generation
since the beginning of the evolutionary process. In the calcu-
lation process, exponential smoothing is adopted to gradually
dilute the influence of the direction information of a certain
evolution on the future evolution process. The specific for-
mula is:

Pc(g+1) = (1− cc)Pc(g) +
√
cc(2− cc)µeff

M (g+1)
−M (g)

σ (g)

(7)

By updating the population covariance matrix C , the sam-
pling process has a higher probability to obtain individuals
with higher fitness, which guides the evolution direction of
the whole population and greatly reduces the evolutionary
stagnation caused by randomness. Moreover, by combining
the two update strategies, only a small number of indi-
viduals need to be generated during the sampling process.
However, the update of the covariance matrix C does
not effectively control the evolution step size. Therefore,
the CMA-ES algorithm also includes a control strategy for
the step size, which is:

σ = σ × exp
cσ
dσ

(
‖Pσ‖

E ‖N (0, I )‖
)− 1 (8)

where Pσ is defined as the evolution path of the step size with
an initial value of zero. The update method is as follows:

P(g+1)σ = (1− cσ )P(g)σ +
√
cσ (2− cσ )µeff C−

1
2

µ∑
i=1

wiyi:λ

(9)

Equations (8) and (9) complete the step size update by
comparing it with the ideal step size. Ideally, there will be no
positive or negative correlations in successive evolutionary

directions due to too short or too long steps. In other words,
the ideal step size should make the evolutionary directions
irrelevant. The randomness of small number samples can
prevent the evolution process from ending prematurely at the
local optimum.

In each round of the training process, the CMA-ES algo-
rithm is sequentially adopted in Task1 − Task3. All subtasks,
except for Task1, are not only required to convert the individ-
ual into a weight coefficient applied to the network topology,
but are also required to gain weight coefficient from the
previous task. In other words, all subtasks except the last one
should select an individual for the evolution in the subsequent
tasks of this round. Different strategies can be used in this
process [21]. For example, the previous task can provide the
best individual in the latest generation, that is, the best group
of weight coefficient combinations generated in the current
round of evolution. It can also provide the best individual of
all the progeny, that is, the optimal weight coefficient combi-
nation found since the CMA-ES algorithm started searching.
Or randomly select from the individuals. This method adopts
the second scheme, that is, all tasks except the last task
provide the best individuals to the subsequent tasks.

Above is the main flow of the sub-task evolution. Although
the formula of CMA-ES algorithm contains many parame-
ters, most of the parameters are self-contained [15]. When
the parameter setting and initialization are completed, the
CMA-ES algorithm can cycle through the process of sam-
pling, evaluating, and updating the distributed parameters to
perform a global optimal solution search until the termination
condition is met.

C. OVERALL PROCESS
The main process of this method is shown in Algorithm 1.
In the evolutionary phase, each round of evolutionary process
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Algorithm 1 Training Performance Prediction Model
Input: The performance data of ground source heat pumb system in 30 years Y . Parameters associated with system

performance X1 − X12.
Output: The weight coefficient solution of the prediction model Net .
for each subtask do

-Set the structure of the neural network corresponding to each subtask, the number of weight coefficients each subtask
needs to search, and the conversion rules of the weight coefficients between the network structure and the individual.
-Set the initial parameters, including the search range, the number of generations in the evolution of each round, and
the number of reservations of each generation.
-Generate initial individuals for subtasks.

end
while the termination condition is not met do

for each round do
for each subtask Taski do

-Obtain offspring individuals by random sampling in multi-dimensional normal distribution N (M , σ 2C).
if current subtask is not Task1 then

-Convert the best individuals provided by the previous task in this round into weight coefficients of the
neural network Net(i).

end
for each offspring individuals do

-Obtain the prediction data using the forward neural network Net(i).
-Calculate the root mean square error is calculated according to (4).

end
-Sort the progeny according to the size of the root mean square error, only the first few individuals are retained.
-Update the distribution centerM , the population adaptive covariance matrix C , and the evolution step size σ .
if the best individuals obtained from this evolution has lower RMSE then the best individuals before then

-The best individuals obtained from this evolution become the new best individuals.
end

end
end

end

is repeated until the termination condition is met. One of the
termination conditions is that the error of the entire prediction
model is lower than the threshold, which means that the pre-
diction model satisfies our requirements has been obtained,
so the search can be stopped. In addition, an upper limit
should be set on the number of calculations of individual fit-
ness level. Once the number of fitness calculations in the evo-
lutionary stage exceeds the upper limit, the evolution process
can be terminated to avoid an unlimited evolution process due
to the low expected error setting. However, it should be noted
that if the upper limit is set too low, it may lead to premature
termination of the evolution process, resulting in a large error
in the resulting prediction model.

IV. EXPERIMENTS
A. EXPERIMENTS SETTINGS
This experiments use MATLAB software to obtain the per-
formance prediction model of the ground source heat pump
system using the method described above. The model can
predict the performance data of the future 5 years based on
the system parameters and the performance data of the past
25 years. The experiment used 5000 sets of ground source
heat pump system data. The first 4000 sets of data were used

to train the neural network model, and the last 1000 sets of
data were used for the prediction error test of the final model.
The number of generations in the continuous evolution of
each subtask is set to 10 in each round, and each dimension
range of the search space is set to [−5,5].

When predicting the performance of a ground source heat
pump system, each variable has a different range of variation,
which has a detrimental effect on the following data mining
process. For example, when applying the population evolu-
tion algorithm, directly using these raw data will make it dif-
ficult to determine the evolutionary region of the population.
Therefore, these variables are normalized to dimensionless
data, the specific method is:

x̃i =
xi − xmin
xmax − xmin

(10)

where xmin and xmax are the maximum and minimum value
of the variable x in the statistics respectively, and x̃i is the
normalized result of the original data xi. After processing,
the statistics of all variables will change in the range of [0,1].

B. EXPERIMENTS RESULT
In the experiment, the search was terminated after 300,000
sub-generational evaluations. In several experiments, the
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FIGURE 2. RMSE after 300000 individuals evaluation.

FIGURE 3. Evolution process in 30 rounds of training.

prediction model obtained by the method after 300,000 eval-
uations has an error of 0.1047-0.1851 and has the potential
for further optimization, as shown in Fig. 2, which verifies
the effectiveness of the method.

In several experiments, the prediction model obtained
by the method after 300,000 evaluations has an error of
0.1047-0.1851 and has the potential for further optimization.

In order to observe the impact of system parameters on the
prediction process, two time series predictionmodels are used
for training comparison. The Task1 model uses time series of
the 10-25 years for prediction. The Task2 model extends the
time series used for prediction to 1-25 years based on Task1.
Task3 adds 12 system parameters based on the time series.
The three models are used as the three subtasks of the same
training task, and 30 rounds of training are performed. The
training process is shown in Fig. 3. After 30 rounds of train-
ing, the model with both system parameters and performance
data as inputs has higher prediction accuracy than the model
without considering system parameters, which shows that it
is effective to take system parameters into account. The error
between this model and the time series prediction model after
30 rounds of training is shown in Fig. 4.

FIGURE 4. Errors of two models after 30 rounds of training.

TABLE 4. Comparative experimental results.

The comparison shows that the prediction model, which
takes time series prediction and system performance data into
account, has less error than the model that only uses time
series to predict the system parameters after a short time’s
search. It shows that this model has a faster convergence
speed than that of the time series prediction model.

In order to further highlight the effectiveness of the pro-
posed method, in addition to the above experiments, the com-
parison experiments between the proposed method and other
four classical time series analysis methods were carried out.
The comparison experimental results are shown in Table 4.

According to Table 4, compared with exponential smooth-
ing (ES), autoregressive model (AR), auto-regressive moving
average model (ARMA) and auto-regressive comprehensive
moving average model (ARIMA) methods, the root mean
square error of this method is significantly smaller. And the
model can be further optimized by adjusting the training
parameters.

In practical engineering applications, the four energy
conversion efficiencies representing the heat transfer per-
formance of the system do exhibit different performance
under different operating parameters. Therefore, ignoring the
prediction of these parameters, the results are all general.
The proposed method uses the neural network as the basic
model, and the training of the forward neural network is
carried out by integrating the ideas of multi-task learning
and dynamic programming. The model established by this
method considers not only the seasonal characteristics of the
system performance data, but also the impact of the historical
performance data and the system operating parameters on the
future performance of the system, which is lacking in tradi-
tional time series analysis methods. The experimental results
show that the proposed prediction method can effectively
improve the accuracy of ground source heat pump system
performance prediction.
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V. CONCLUSION
1) This method can be used to predict long-term contin-

uous performance of ground source heat pump sys-
tems. Compared with traditional methods, this data
mining-based method does not require complex phys-
ical system modeling and energy analysis. In addition,
it considers more factors affecting the performance of
ground source heat pump systems. Experiments show
that this data mining-based method can be successfully
used for performance prediction of ground source heat
pump systems and has great potential for improvement.

2) The multi-task learning strategy is conducive to knowl-
edge transfer and network structure adjustment, which
can improve the versatility and scalability of the ground
source heat pump system prediction model.

3) When predicting the performance of the ground source
heat pump system, the model considering the sys-
tem parameters has lower error than the time series
prediction model.

In the future research, the sub-task division method needs
to be optimized. The sub-task division method affects the
efficiency of the training process and the prediction error of
the resulting model. In addition, the used CMA-ES algorithm
should be adjusted and improved according to the character-
istics of the ground source heat pump system performance
prediction task. At present, the CMA-ES algorithm still has
problems such as low evolution speed in the training pro-
cess. If these problems can be solved, it is believed that the
efficiency and prediction accuracy of this method will be
greatly improved. Moreover, we may refer to metric learning
[22]–[24] and multi-task graph classification [25]–[27] to
predict the performance of ground source heat pump system.
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