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ABSTRACT Deep auto-encoder (DAE) models have been successfully used in object tracking due to its
strong capability of feature representation. However, single deep auto-encoder model would not be robust
enough to represent the appearance model of outdoor vehicle for its harsh working environment, such as
illumination variation, occlusion, cluttered background and so on. In this paper, a novel multiple-DAE-based
tracking approach, that is, classifier adaptive fusion for robust outdoor vehicle visual tracking approach
is proposed under particle filter framework. Firstly, two deep auto-encoders are offline trained by gray-
scale image and gradient image of the raw training images, respectively to obtain the stronger feature
representation of gray-scale image and gradient image. Secondly, two classifiers are constructed using the
encoder of the two well-trained deep auto-encoders and the output of the each classifier is used to compute
the confidence of the corresponding particles. Finally, the confidence output of the two classifiers is fused
and applied in online tracking, where, the fusion weight of the each classifier is computed according to
the distribution of particles represented by different classifier. Extensive tracking experiments conducted on
visual tracking benchmark (VTB) show that the proposed tracking algorithm outperforms 9 popular tracking
algorithms in the challenge scenes of outdoor vehicle tracking such as illumination variation, occlusion,
cluttered background and scale variation.

INDEX TERMS Classifier adaptive fusion (CAF), multiple deep auto-encoder, outdoor vehicle visual

tracking, particle filter.

I. INTRODUCTION

Video object tracking is an important research issue in com-
puter vision. It has been widely used in intelligent transporta-
tion system (ITS) for obtaining the state information of the
outdoor vehicle. However, outdoor vehicle tracking is facing
severe challenges due to the complex and changeable out-
door environments, such as illumination variation, occlusion,
cluttered background and so on [1], [2]. These challenges
are attributed to dramatic changes of object appearance. The
quality of the object appearance model heavily depends on
the performance of feature extraction. Feature extraction can
effectively encode the appearance of the object and map
it from the original image space to a feature space, which
provides the basis for the representation of the object appear-
ance model. Generally, the features of video object tracking
algorithm are divided into two categories which are artificial
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features and learning features, respectively [3].Artificial fea-
ture is a kind of simple and intuitive feature representation,
but it needs to be redesigned according to different tasks, and
it heavily relies on the knowledge and skills of the design-
ers. Deep learning model is a powerful automatic feature
extraction method, which learns high-level abstract features
which are high-dimensional and distinguishable from the
underlying features such as color and edge through multiple
nonlinear transformations.

At present, deep learning model has been successfully
applied to video object tracking. Wang and Yeung et al. [4]
firstly proposed a deep learning tracker (DLT) in 2013.
It learned general image feature representation offline by
stacked denoising auto-encoder (SDAE), and applied the
learned feature representation to online tracking by transfer
learning. Deep-learning-based tracking algorithms often use
grayscale image of raw image to train deep neural networks,
which can obtain deeper feature representation of grayscale
image. Generally speaking, features extracted by grayscale
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image are more robustness to object rotation, non-rigid defor-
mation and occlusion, yet sensitive to illumination variation.
In the outdoor vehicle tracking process, strong illumination
variation often leads to huge changes in object appearance
model, which reduces the performance of the tracking algo-
rithm. Complementing the deep feature information enables
the deep learning model to express the object appearance
model more effectively, thereby achieving more robust track-
ing in many complex environments.

In recent years, researchers have proposed a variety of
fusion strategies to complement the deep feature information,
which shows better performance in various computer vision
tasks. Huang and Yeung [5] designed a densely connected
structure to implement shallow feature reuse of convolutional
neural networks. Direct connections are adopted between
any two layers in a dense convolutional neural network. The
feature map learned in the current layer will be directly
transmitted to all subsequent layers as input, so it can more
effectively fuse and utilize the features of each layer in the
deep network. Subsequently, Wang ef al. [6] used densely
concatenated convolutional neural networks for human pose
estimation, and achieved high accuracy on the human pose
estimation data sets MPII and LSP. Li and Zhou [7] designed
a feature fusion module to fuse features from different layers
of convolutional neural network, which effectively improved
the accuracy of single object detection. In this fusion method,
the features learned by different layers in deep neural network
are fused directly and effectively to achieve the complemen-
tation of deep feature information. In addition, another way
of complementing the multi-deep information is to utilize
multiple deep neural network models to learn the deep fea-
tures and then fuse their learning results. Dan et al. [8] fused
the classification results predicted by multiple convolutional
neural network models in average manner for traffic identi-
fication, and improves the recognition accuracy to 99.46%.
Stolar et al. [9] and Zhang et al. [10] respectively used
fixed weight fusion and average fusion of multi-convolutional
neural networks for emotion recognition and face alignment.
Subsequently, Yu et al. [11] used fusion strategies of average,
maximum, majority and median to fuse multi-convolution
neural networks for classification of medical images. Com-
pared with a single deep neural network, the manner of multi-
deep neural network fusion improves the accuracy of image
classification to a certain extent. In the video classification
task, in order to effectively utilize both temporal and spatial
information of video frames, Peng et al. [12] decomposes the
input video into frame images and optical flow images, and
then learns the static and dynamic features of the input video
using two spatial-temporal attention models composed of
convolutional neural networks. Finally, the prediction scores
of the frame images network and the optical flow images
network are fused by the static-motion collaborative model.
This fusion method makes use of frame images and optical
flow images to complement the static and dynamic informa-
tion of video, which greatly improves the accuracy of video
classification.
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The above two fusion methods can realize complementar-
ity of the deep feature information and improve the perfor-
mance of various computer vision tasks. For object tracking
tasks, it is more suitable for the second multi-deep learn-
ing model fusion method. Because the second method can
utilize other models to maintain the stability of algorithm
when one model of them fails due to a great changes of the
object appearance, it can improve the robustness of tracking
in complex environments. The existing multiple deep learn-
ing models fusion methods mostly adopt strategy with fixed
weight fusion or average fusion. This fusion strategy can’t
adaptively adjust the fusion weight between the models in
time when a model changes significantly, so that the fusion
result becomes unreliable and even causes the algorithm to
fail. In order to solve the problem, Agostinelli et al. [13]
proposed an adaptive fusion strategy, which first uses the
quadratic program to predict the weight of each deep learning
model and then learns how to predict the fusion weight by
using the radial basis function (RBF), and finally use the
multiple deep neural network with adaptive weight fusion
for image denoising. This method solves the shortcomings
of multiple model fusion with the fixed weight, but it needs a
lot of computing time so that it is not suitable for the object
tracking problem with strong real-time requirements. How-
ever, compared with other fixed weights fusion or average
fusion strategies of multi-deep neural network, this adaptive
fusion strategy of multi-deep learning model provides a new
idea to solve the challenges in outdoor vehicle tracking.

In order to solve the problem that dramatic changes of
object appearance caused by challenging environment factors
in the outdoor vehicle tracking process, an outdoor vehicle
tracking algorithm based on multi-deep learning model adap-
tive fusion is proposed in this paper. The main contributions
of the proposed algorithm are as follows:

« A new multi-deep learning model fusion method is pro-
posed, which fuses the results of the classifier trained
with gray image and the classifier trained with gradi-
ent image to achieve multiple model information com-
plementation for solving the outdoor vehicle tracking
problem under the challenging environmental such
as illumination variation, occlusion, rotation, and fast
motion.

o Under the particle filter framework, a new classifier
adaptive fusion tracking algorithm is proposed. That is,
the fusion weight of the classifier is adaptively calcu-
lated according to the distribution of the particles charac-
terized by the classifier, so that the fusion weight of each
model can be adjusted in time to improve the robustness
of the tracking algorithm when the object appearance
greatly changes.

o Opverall performance and attribute-based quantitative
experimental results conducted on the all 50 video
sequences with most of the outdoor challenging factors
(such as IV, SV, OCC, etc.) on the OTB50 data set of the
object tracking evaluation benchmark VTB2013 and the
qualitative experimental results on the 4 representative
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challenging outdoor vehicle sequences show that the
proposed algorithm exhibits good tracking performance
compared to the other 9 state-of-the-art trackers.

The remainder of this paper is organized as follows.
In Section 2, we review the related works about exist-
ing deep-learning-model-based video object tracking algo-
rithms. In Section 3, we give a brief introduction on system
overview of the proposed multi-deep-auto-encoder-adaptive-
fusion-based tracking approach, and a detailed introduction
on the principle of the 3 main part of the system, including the
generic feature representation, classifier adaptive fusion, and
online tracking. The experimental results and performance
analysis are provided in Section 4, where the algorithm per-
formance is verified based on quantitative evaluation, qualita-
tive evaluation, and fusion weight variation analysis. Finally,
summary and future works are given in Section 5.

Il. RELATED WORKS

Recently, researches have successfully applied the deep
learning model to the video object tracking field and proposed
many deep-learning-model-based object tracking methods.
These methods mainly follow two ideas [3]: (1) Track-
ing combined offline training with online fine tuning, first
train the deep neural networks by offline manners on video
sequence data sets or large-scale natural image data sets, and
then use online data to fine-tune deep neural network in online
tracking; (2) Purely online tracking, the network structure is
simplified so that the video sequence can be directly tracked
online without relying on offline training.

A. TRACKING COMBINED OFFLINE TRAINING

WITH ONLINE FINE TUNING

It is well know that deep network often needs a large amount
of training data for effective learning, but only the bounding-
box of the first frame is provided as training data in the video
object tracking, which is very difficult for the training of deep
learning model. At present, there are two main ways to solve
this problem. One is to use tracking data sets for offline train-
ing of deep learning network, and then fine-tune the network
in online tracking to track specific objects adaptively. The
other is to use non-tracking data sets such as classification
and detection to train the network offline, and then use the
idea of transfer learning to apply the results of offline training
to tracking tasks and fine-tune the network to adapt to object
appearance changes.

In the way of using tracking data sets to train deep net-
work offline, Kuen et al. [14] emphasizes temporal corre-
lation learning, using labeled video sequences train deep
auto-encoder to learn invariant features. Nam and Han [15]
proposes a multi-domain network (MDNet), which offline
trains and tests convolutional neural networks alternately
using OTB100 data sets and VOT data sets that do not coin-
cide with each other. The MDNet mainly includes shared
layers and domain-specific layers. The shared layers are used
to learn the general feature representations of the object in
the tracking sequence, and the domain-specific layer solves
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the inconsistent problem of classification objects in different
training sequences. The CNN pretrained by multi-domain
is fine-tuned in the new sequence to adaptively track spe-
cific objects. MDNet achieved high tracking accuracy, but
its speed is too slow to meet the real-time requirements of
tracking tasks. Subsequently, Tao et al. [16] used the tracking
video sequence data sets ALOV300 to train the siamese
network offline to learn a matching function, that is, after
obtaining object information in the first frame, all subsequent
frames are sampled and matched with the first frame object
information, and the highest score sample is the tracking
result of current frame. The network does not need to fine
tune the parameters during the online tracking, thus greatly
improving the speed of online tracking. However, this method
may cause mismatching when the object is occluded or
similar background appears.

The above method of using the tracking data sets offline
training deep learning model for visual tracking has solved
the problem of lack of initial training data in the object
tracking to some extent, but the number of existing tracking
data sets is still far from enough compared with the massive
training data required for deep learning. In order to make up
for this shortcoming, some researchers try to use other non-
tracking datasets to conduct offline training of deep learning
models. Then, according to the idea of transfer learning, the
general image features learned offline are applied to online
tracking to achieve object tracking tasks. Wang and Yeung [4]
proposed the deep learning tracker (DLT), which firstly
performs unsupervised offline pre-training on the stacked
denoising auto-encoder by using a large-scale natural image
data sets to obtain general feature representation capability,
and then uses the offline training result for online tracking.
In online tracking, a small number of positive and negative
samples are collected to fine-tune network parameters. DLT
achieves a good tracking effect on OTB50 data sets, but
the tracking effect will be greatly affected when the object
appearance changes greatly. In order to further improve the
tracking accuracy, in our previous work, considering that the
response of each neuron in the neural network for visual
information is sparse, we proposed a robust outdoor vehicle
tracking method based on k-sparse stacked denoising auto-
encoder in reference [17]. In this method, k-sparse restriction
is introduced into the classification neural network to learn
the invariant features of the input image, thereby to enhance
the ability of the network to represent the object appearance
model. This method improves the accuracy of DLT tracker to
a certain extent, but it uses single deep network offline trained
by gray image, and tracking drift still occurs in complex
environment. Zhou et al. [18] incorporated a deep denoising
auto-encoder (SDAE) with an online AdaBoost framework
for object tracking. This method fuses multiple networks to
compensate a single network susceptible to noise interference
for the problem of tracking failure, but it increased compu-
tational complexity. Dai et al. [19] used deep auto-encoder
for real-time tracking by simplifying network structure and
designing model update strategies. The speed of tracking is
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improved, but it uses a simpler strategy to update the object
appearance model during the online fine-tuning phase, the
tracking result is not ideal when the object occurs strong
illumination variation. In order to make the tracking results
more reliable, in the online fine-tuning stage, Wang et al. [20]
update network parameters by combining the two CNN of
long-term CNNp, and short-term CNNg. CNNg update fre-
quently, it can respond to changes of object appearance in
time. CNNy, update less, it can be more robustness for error
tracking results. It take the most confident results as output
by combining CNNg and CNNy. Different from the above,
Hua et al. [21] optimizes the network parameters through
genetic algorithm in the online tracking phase. The use of
genetic algorithm in network parameter adjustment helps
to avoid the shortcomings of traditional BP algorithm and
further enhances the robust performance of the network.

All of the above are object tracking strategies using ““track-
ing combined offline training with online fine tuning”’, that is,
firstly the deep neural network model is trained offline, and
then the different update strategies are used to fine tune the
parameters of the network in actual tracking to achieve more
robust tracking. In addition, many scholars have attempted to
extend the object state information of the initial frame in the
visual tracking or to simplify the deep network structure to
achieve purely online tracking.

B. PURELY ONLINE TRACKING

Purely online tracking directly use the tracking video
sequence to train the deep neural network. It can learn the
effective feature representation of the object in an online
manner, and then fine tune the network parameters dur-
ing subsequent frame tracking. Li et al. [22]-[24] proposed
an online convolutional neural network for object tracking
under the particle filter framework, which does not rely
on offline training. It preprocesses the original image into
the regularized images and a gradient images with dif-
ferent parameters to obtain more online training samples.
In order to further solve the problem of insufficient label
training samples in purely online tracking, Zhou et al. [25]
constructed adaptive appearance model based on convolu-
tional neural network to generate training samples changed
over time, and combined convolutional neural network with
Metropolis-Hastings re-sampling for online tracking under
the particle filter framework. Unlike reference [22]-[25],
Zhang et al. [26] proposed a convolution neural network
model tracking framework (CNT) with two convolution lay-
ers by simplifying the structure of convolutional neural net-
works. The model is simple in structure, and the k-means
method and soft shrinkage method are used to directly extract
the robust representation of the object appearance model from
many normalized image patches of the object area. The track-
ing effect is better when the object is occluded or deformed,
but the tracking performance decreases when the object
appearance model changes greatly due to the object moves
fast or blurs. Wang et al. [27] trained convolutional neural
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networks through online video images rather than offline
images to learn complex motion features for object tracking.
The network pays attention to learn the invariant features
of object motion, which effectively improves the problem
of tracking drift caused by the large changes in appearance
during the object motion. In addition, Hu et al. [28] proposed
a deep metric learning (DML) method under the particle filter
framework to further solve the problem that the object appear-
ance emerge the great changes in complex environments.
The DML tracker uses a feed-forward deep neural network
to learn a nonlinear distance metric, thereby projecting the
object appearance template and particles into the same feature
space to better classify the object area and background area.
The DML tracker adapts a normalized random initialization
strategy to initialize weights and biases of networks, so it
doesn’t need to train the network offline and the initialized
network parameters are updated online directly using the
tracked video sequence to adapt to the change of the object
appearance. Generally speaking, the online training of the
network in the purely online tracking only depends on the
position information of the object in the previous frame,
and the information may emerge random noise to cause the
model to be over-fitting. In order to solve this problem,
Li et al. [29] combines multi-task convolution neural network
with bagging for purely online object tracking. The algorithm
can effectively deal with the over-fitting problem caused by
the sample noise and the uncertainty of the random strategy
training in the purely online tracking, thus further improving
the tracking robustness.

Although researchers have taken various approaches to
achieve purely online tracking, it needs to train deep learn-
ing model directly online, so it is difficult to achieve a
good balance between tracking accuracy and tracking speed.
At present, most fast trackers still need to rely on offline
training. However, the key to the success of visual tracking
method based on offline training is how to use the powerful
feature extraction ability of deep learning model to express
the tracking object appearance model more robustly.

Considering that the features extracted from gray image are
robust to rotation, non-rigid transformation and occlusion of
the object, but sensitive to illumination variation. The features
extracted from gradient image are not sensitive to back-
ground and illumination variation, but are sensitive to motion.
Therefore, a multi-deep-auto-encoder-adaptive-fusion-based
outdoor vehicle visual tracking algorithm is proposed in this
paper. Firstly, the two deep auto-encoder models are unsuper-
vised trained by the gray-scale image and the gradient image
of the raw training data, respectively. Then, the two classi-
fiers are constructed and adaptively fused according to the
training results. Finally, the fusion result is used in the object
tracking under the particle filter framework. Extensive track-
ing experimental results show that the proposed multi-deep-
auto-encoder-adaptive-fusion-based outdoor vehicle visual
tracking algorithm can realize the robust tracking of outdoor
vehicles in complex environments.
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FIGURE 1. Overview of the proposed multi-deep-auto-encoder-adaptive-fusion-based outdoor vehicle visual

tracking algorithm.

Ill. OUR TRACKER

The overview of the proposed multi-deep-auto-encoder-
adaptive-fusion-based outdoor vehicle visual tracking algo-
rithm is shown in Fig. 1. We firstly train the two deep
auto-encoders using the gray-scale image and gradient image
of the raw training images in an unsupervised and offline
way and construct the two classifiers according to the corre-
sponding training results, and then compute adaptive fusion
weight on the basis of particle distribution represented by
corresponding classifier. Finally, we apply the fusion result
to the online tracking.

The whole algorithm is consisted of three parts which
are generic feature representation, classifier adaptive fusion,
online tracking, respectively.

The detailed description of the function and implementa-
tion of each part are as following:

A. GENERIC FEATURE REPRESENTATION

The main purposes of the generic feature representation part
is to learn the object general feature representation by train-
ing samples, namely, mapping the image space to a feature
space by deep neural network, and converting the image to
the expression that is conducive to demand. In this paper,
we train the two deep auto-encoders using the gray-scale
image and the gradient image of the raw training images,
which can obtain more essential feature representation of
gray-scale image and gradient image. The architecture of the
deep auto-encoder is shown in Fig. 2.

We select 0.3 million images from Tiny Images data set
randomly for the offline training of deep auto-encoder. The
data set contains 80 million images, each of them has a size
of 32 x 32, 32 x 32 and most of them exist in real scene.
We adopt two ways for data pre-processing: (1) Obtaining
gray-scale images from original images, then vectoring and
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normalizing the gray-scale images; (2) Calculating gradient
on the foundation of gray-scale images, and vectoring and
normalizing the gradient magnitude. In this paper, we use the
above two processed images for the unsupervised training of
two deep auto-encoders, respectively.

B. CLASSIFIER ADAPTIVE FUSION
In this section, we will continue to introduce the proposed
multi-classifier adaptive fusion strategy. Each classifier is
constructed by connecting the encoder of the well-trained
deep auto-encoder with a classifier layer, and it needs to be
fine-tuned using the positive and negative training samples in
the first frame to adapt to the change of object appearance in
tracking process. The framework of the proposed classifier
adaptive fusion is shown in Fig. 3.

The weight of each classifier represents its importance
in tracking. Under the particle filtering framework, the
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reliability of each classifier for object state estimation is
mainly reflected in the distribution of particle represented
by classifier. The more concentrated particles are in space,
the smaller space variance of particles is, the closer particle
mean is to object position, and the more particles can reflect
the real situation, the greater weight of the classifier has.
So the fusion weight can be determined by the distribution
of particles represented by different classifiers.

We sort the confidence according to NN particles for each
classifier j, and select several particles with maximum con-
fidence as optimal particles. For each classifier j, we chose
the first 10% particles with maximum confidence as the opti-
mum particles {s%}?zl ,n= 10%xN. The state mean and state
variance of the optimum particles are calculated according to
Eq. (1) and Eq. (2).

e i/
I (1
n 4
i=1
1 Ly T /s
Fe Y ew) (o) o

Uj

=

where, u; is the state mean of optimum particles represented
by classifier j, o; is the state variance of optimum particles
represented by classifier j, and j=1,2,3...,M, we select
M=2.

The overall mean u of the optimum particles can be
calculated by the following Eq. (3).

2
> 3)
j=1

The weight a; of each classifier can be calculated and
normalized by following Eq. (4) and Eq. (5), respectively.

u =

N =

1
b= —— 4
J }uj—u| .sz ( )
&
aj = 2, )

Z =1 Aj

The confidence cﬁ’l and ci’z are calculated by propagating
particles through two classifiers, and the fusion weight of the
each classifier a; are online obtained according to the Eq. (5),
which will be further applied to the online tracking.

C. ONLINE TRACKING

This part mainly completes outdoor vehicle tracking under
particle filter framework. The particle-filter-based tracking
problem can be regarded as a problem that predicting state
at time # when given observation y1.;,—1 = {y1,y2, - , Yi—1}
at time ¢ — 1.It can be calculated according to Eq. (6).

5y = argmax/[)(sthtfl)[?(stfl|y1:t71)d5t71 (6)

where, s; and y; represent state value and observation value
at time t. p (s¢|s;—1) is state transition probability between
sequential frames, and p (s;|s;—1) is modeled by a zero-mean
Gaussian distribution. The state variable is represented as six
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affine transformation parameters: translation, scale, aspect,
ratio, rotation, and skewness. The particle set s; = {s;}fl:]
is sampled from importance distribution q (s|s1:/—1, Y1:t)-

When a new observation y; is available, the posterior dis-
tribution of state variable is updated by following Eq. (7).

P (silyra) = P Oelse) - p (selyii—1) )
p Orlyre—1)

The posterior probability distribution p (s/|y1) can be
approximated by the true state of N particles. In particle-
filter-based tracking, the predicted value and current state
of the system are corrected by observation y;. In this paper,
a new observation probability is computed by the classifiers.

Firstly, particles s, = {sj},_, are sampled near the
object position in the previous frame, then these parti-
cles s; = {sé}flzl are propagated in two classification neural
networks to calculate the confidence of particles in each
network. Next, the output particles confidence of each clas-
sification neural networks are adaptively fused according to
the Eq. (8).

2
c;' = Zajd 8)
Jj=1

If max (cé) less than the pre-defined threshold t, 10 positive
samples and 100 negative samples are selected from the
previous frames and the two classifiers are fine-tuned using
the batch gradient descent method, otherwise the observation
probability is calculated by the fusion confidence according
to the Eq. (9).

i _min(cl N ol —min(cl
p(wilsf) = a(’)/ze’ A )
i=1

where, o is the standard deviation of observe likelihood
function.

The particle weight W, = {wi }iv=1 is updated by observa-
tion probability by Eq. (10).

p (rlsi) p (sils_y)
q (sels1:0—15 Y1:0)
where, q(s¢|s1:1—1, Y1) represents the importance distribution
of particles. It is assumed to follow a first-order Markov

process.
So the weight in Eq. (10) is updated by following Eq. (11).

W) =wi_y -p (yils]) (an

The proposed algorithm is described as following
algorithm 1.

i 0
Wy =Wy

(10)

IV. EXPERIMENTAL TESTING

In this section, a comprehensive experimental analysis is
stated in detail. We conduct the performance comparison
between our tracking algorithm (CAF) and other 9 state-of-
the-art tracking algorithms (DLT [4], TLD [30], LIAPG [31],
IVT [32], MIL [33], OAB [34], Frag [35], MTT [36],
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Algorithm 1 The CAF Tracker
Input: Training data; Deep auto-encoder structure; Train-
ing parameter.
Extract gray-scale images and gradient images from train-
ing images.
Offline training two deep auto-encoders by the above two
image, respectively.
Construct classifier.
Fort =1,2, ..., frame number
Generate particles s; {sﬁ}fvz , according to
importance sampling.

Output confidence ¢, = {c;”

}N by putting forward
particles through two classifieirg.1
Compute adaptive fusion weight according to
Eq. (1-5).

Fuse confidence of two classifiers according to

Eq. (8) to generate fusion confidence.

Compare fusion confidence with pre-defined
threshold t to decide whether updating parameter of
two classifiers.

Calculate observation probability p (y|s!) according
to Eq. (9).

Calculate the weight wf according to Eq. (11).
Estimate the optimal state sfl with maximum weight.
t=t+1

End

Output:The predicted tracking position.

CSK [37]) on OTBS50 data set of the standard object tracking
evaluation benchmark VTB [38]. The effectiveness of our
tracking algorithm is demonstrated by quantitative evaluation
and qualitative evaluation. At the end of this part, the variation
curve of each model fusion weight of our tracking algorithm
in the tracking process is further given.

A. PARAMETER SETTING
The proposed tracking algorithm was implemented by
MATLAB R2012b, and used NVIDIA GeForce, GTX 980Ti

TABLE 1. The performance on precision of 10 tracking algorithms.

for GPU acceleration in the offline training and the online
tracking. We used stochastic gradient descent for parameters
training. The iteration times was set to 20 in the offline
training. The mini-batch size was set to 100. The learning rate
was set to 1. The penalty term coefficient was set to 1e-4. The
iteration times was set to 5 for the fine-tuning classification
neural network in online tracking. The positive and negative
samples were set to 10 and 100, respectively. The sampling
particle number was set to 1000. The confidence threshold
was set to 0.8. The standard deviation of the conservation
likelihood o was set to 0.001.

B. QUANTITATIVE EVALUATION
VTB2013 designed a unified evaluation benchmark for
the different tracking algorithms, which contains 50 fully
annotated video sequences and 3 different evaluation cri-
teria. The 50 sequences were labeled by 11 attributes,
namely illumination variation (IV), scale variation (SV),
occlusion (OCC), deformation (DEF), motion blur (MB),
fast motion (FM), in-plane rotation (IPR), out-of-plane rota-
tion (OPR), out-of-view (OV), background clutters (BC),
low resolution (LR). 3 evaluation criteria include one-pass
evaluation (OPE), temporal robustness evaluation (TRE), and
spatial robustness evaluation (SRE). In this paper, precision
and success rate on OPE were used for quantitative evaluation
of tracking algorithms. The precision shows the percentage of
frames whose estimated location is within the given threshold
distance of the ground truth. The success rate counts the
number of successful frames whose overlap is larger than
the given threshold. The threshold of precision and success
rate adopted pre-defined threshold 20 pixel and area under
curve (AUC) for ranking tracking algorithms, respectively.
The performances on precision and success rate of 10 track-
ing algorithms are shown in Table 1 and Table 2, respectively,
and the best result is shown in bold, and the ranking is shown
after ‘/’. The overall and 11 attribute-based performances
on precision and success rate of 10 tracking algorithms are
shown in Fig. 4 and Fig. 5, respectively.

In overall performance, the precision and success rate
of CAF rank first by 0.637 and 0.536, respectively.

CAF(Ours) DLT TLD MIL Frag IVT LIAPG OAB MTT CSK
Overall 0.637/1 0.550/3 0.608/2 0.475/8 0.471/10 0.499/6 0.485/7 0.504/5 0.475/8 0.545/4
v 0.543/1 0.514/3 0.537/2 0.349/8 0.326/10 0.418/5 0.341/9 0.388/6 0.351/7 0.481/4
OPR 0.618/1 0.527/4 0.596/2 0.466/8 0.444/10 0.464/9 0.478/6 0.503/5 0.473/7 0.540/3
SV 0.665/1 0.602/3 0.606/2 0.471/8 0.407/10 0.494/6 0.472/7 0.541/4 0.461/9 0.503/5
ocC 0.598/1 0.532/3 0.563/2 0.427/9 0.475/6 0.455/8 0.461/7 0.483/5 0.426/10 0.500/4
DEF 0.520/1 0.433/7 0.512/2 0.455/6 0.468/5 0.409/8 0.383/9 0.470/4 0.332/10 0.476/3
MB 0.380/2 0.328/7 0.518/1 0.357/5 0.288/9 0.222/10 0.375/3 0.360/4 0.308/8 0.342/6
M 0.462/2 0.417/3 0.551/1 0.396/6 0.364/9 0.220/10 0.365/8 0.416/4 0.401/5 0.381/7
IPR 0.594/1 0.502/6 0.584/2 0.453/9 0.401/10 0.457/8 0.518/5 0.471/7 0.522/4 0.547/3
ov 0.518/3 0.536/2 0.576/1 0.393/5 0.355/8 0.307/10 0.329/9 0.454/4 0.374/7 0.379/6
BC 0.605/1 0.455/4 0.428/6 0.456/3 0.421/10 0.421/9 0.425/7 0.446/5 0.424/8 0.585/2
LR 0.449/3 0.309/7 0.349/6 0.171/9 0.163/10 0.278/8 0.460/2 0.376/5 0.510/1 0.411/4
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TABLE 2. The performance on success rate of 10 tracking algorithms.

CAF(Ours) DLT TLD MIL Frag VT L1APG OAB MTT CSK
Overall 0.536/1 0.499/3 0.521/2 0.373/10 0.399/9 0.424/8 0.440/6 0.427/7 0.445/4 0.443/5
v 0.469/2 0.472/1 0.460/3 0.292/10 0.298/9 0.351/5 0.300/8 0.326/7 0.337/6 0.388/4
OPR 0.509/1 0.464/3 0.497/2 0.357/10 0.376/9 0.381/8 0.416/6 0.406/7 0.423/5 0.439/4
SV 0.577/1 0.547/2 0.494/3 0.335/9 0.313/10 0.388/7 0.407/5 0.412/4 0.398/6 0.352/8
OCC 0.510/1 0.502/2 0.468/3 0.361/10 0.423/5 0.391/9 0.425/4 0.414/7 0.422/6 0.404/8
DEF 0.370/7 0.389/5 0.456/1 0.407/3 0.413/2 0.314/9 0.384/6 0.401/4 0.334/10 0.370/8
MB 0.363/2 0.321/6 0.482/1 0.247/9 0.283/8 0.213/10 0.362/4 0.363/2 0.288/7 0.336/5
M 0.455/2 0.418/4 0.473/1 0.338/8 0.319/9 0.225/10 0.359/7 0.420/3 0.385/5 0.380/6
IPR 0.51011 0.439/6 0.476/2 0.331/9 0.330/10 0.389/8 0.442/5 0.391/7 0.463/3 0.457/4
ov 0.523/2 0.552/1 0.516/3 0.416/5 0.373/8 0.319/10 0.341/9 0.492/4 0.392/7 0.410/6
BC 0.444/2 0.398/7 0.388/8 0.414/3 0.370/9 0.344/10 0.404/6 0.410/5 0.411/4 0.491/1
LR 0.430/3 0.297/7 0.327/6 0.157/10 0.170/9 0.287/8 0.458/2 0.366/5 0.506/1 0.397/4
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FIGURE 4. The overall and 11 attribute-based performances on precision of 10 tracking algorithms.

In attribute-based performance, CAF also achieves superior
tracking results. In precision plots, the IV, OPR, SV, OCC,
DEEF, IPR and BC of CAF rank first; MB and FM rank second,
just below the first TLD 0.089 and 0.138, respectively; OV
and LR rank third, but CAF is better than the first MTT
when location error threshold of OV and LR are lower than
10 and 7, respectively. In the success plots, OPR, SV, OCC
and IPR of CAF rank first; IV, MB, FM, OV and BC of CAF
rank second, only less than the first DLT 0.003, TLD 0.119,
TLD 0.018, DLT 0.029, and CSK 0.047 respectively; LR of
CAF ranks third, but when the overlap threshold is less
than 0.1, CAF is superior to MTT; DEF of CAF rank seventh,
but when the overlap threshold is less than 0.25, CAF is better
than that of the first TLD.

Our algorithm uses gray-scale image and gradient image
for training deep learning model to implement multiple model
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information complementary. The features extracted by gray-
scale image are robust to rotation, deformation and occlu-
sion, but they are sensitive to illumination variation. The
features extracted by gradient image can capture the shape
information of object and sensitive to motion. In addition,
the proposed classifier in this paper is a discriminative model,
which can distinguish object from background effectively.
Therefore, the algorithm is superior to existing algorithms in-
plane rotation, out-of-plane rotation, deformation, occlusion,
illumination variation, and background clutters. Taking train-
ing time of deep learning models into account, our algorithm
uses low resolution training images, so it is biased under low
resolution.

So, it can be seen that our CAF tracker is comparable to the
9 state-of-art tracking algorithm in both overall and attribute-
based performance under most challenging factors.
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FIGURE 5. The overall and 11 attribute-based performances on success rate of 10 tracking algorithms.

MTT

FIGURE 6. Sampled tracking results of 10 tracking algorithms on 4 sequences.

C. QUALITATIVE EVALUATION

We employ the benchmark tracking data sets with 50 fully
annotated sequences for quantitative evaluation, and we
use 4 vehicle sequences in it for qualitative evaluation,
including Car4, CarDark, CarScale, Suv. The four repre-
sentative sequences include outdoor vehicle tracking mul-
tiple challenge scenarios, covering most of the challenging
attributes of outdoor vehicle tracking such as illumination
various (IV), occlusion (OCC), background clutter (BC),
scale various (SV) and so on. The partial tracking results of 10
tracking algorithms on 4 sequences are sampled as shown
in Fig. 6.

In #187, #229 of Car4 and #90, #2006, #260, #291, #348,
#368 of CarDark, the illumination changes obviously, only
DLT and CAF can track object accurately. In #258, #338,
#490, #618 of Car4 and #190, #240 of CarScale, scale varies
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significantly, comparing with other tracking algorithm, CAF
still has a superior tracking performance though all track-
ing algorithms can not track the object accurately. In #90,
#2006, #260, #291, #348, #368 of CarDark and #609 of Suv,
background clutter, only DLT, OAB, CSK, and CAF are
able to track the object. In #142, #162, #174 of CarScale,
occlusion is not serious, only DLT, OAB and CAF can track
object accurately. In #517, #681 of Suv, occlusion serious,
only DLT, CSK and CAF can accurately track the object.
In #109, #142, #162, #174, #190, #240 of CarScale and
#942 of Suv, object moved fastly, DLT, OAB and CAF can
still track object steady. In #43, #58 of Suv, object out of
view, only DLT, L1APG, MTT, CSK, and CAF can keep track
object.

Therefore, the proposed tracking algorithm can realize
robust tracking of outdoor vehicle in complex environment.
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FIGURE 7. Changing weight of each deep learning model for CarDark and
Car2 sequences.

D. FUSION WEIGHT VARIATION ANALYSIS

OF THE CAF TRACKER

In order to further verify the validity of the CAF tracker pro-
posed in this paper. Taking the CarDark and Car2 sequences
as an example, the variation curve of the two models fusion
weights in the tracking as shown in Fig. 7. The black line
represents the weight change of the model trained by the
grayscale image, and the blue line represents the weight
change of the model trained by the gradient image. Fig. 7 (a)
represents the variation curve of two models fusion weights
in the CarDark sequence. Fig. 7 (b) shows the variation curve
of the two models fusion weights in the Car2 sequence.

In the CarDark sequence, the illumination changes are
obvious and persist throughout the sequence, while the fea-
tures extracted by grayscale image are sensitive to illumina-
tion changes. As can be seen from Fig. 7 (a), compared with
grayscale image, the weight of deep learning model trained
by gradient image has been large in the CarDark sequence,
which can make up for the shortcomings that features of
grayscale images are sensitive to illumination changes. In the
Car2 sequence, there is a significant illumination change
during the movement between #380 and #442. As can be seen
from Fig. 7 (b), the fusion weight of the deep learning model
by the gradient image training becomes larger; Near the #500,
the object suddenly appears fast motion, while the features
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of grayscale images is robust to non-rigid changes. It can be
seen from Fig. 7 (b) that the fusion weight of the deep learning
model by the grayscale images training becomes larger at this
time, which can make up for the lack that features of gradient
images are sensitive to the motion.

In summary, it can be seen from Fig. 7 that the proposed
algorithm CAF can adaptively adjust the fusion weight of two
deep learning models in the presence of outdoor challenging
factors, so that it can be used in a complex and varying
outdoor environment to achieve more robust tracking.

V. CONCLUSION

In this paper, a novel object tracking algorithm based on
multi-deep learning model adaptive fusion under the particle
filter framework for outdoor vehicle tracking is proposed.
Among them, the fusion weight of each deep learning model
can be automatically calculated according to the distribution
of the particles represented by themselves. Several compara-
tive tracking experiments are conducted on the VTB platform
to evaluate quantitatively and qualitatively the tracking per-
formance. The experimental results show that the proposed
tracking algorithm can achieve superior tracking results in the
most challenging factors of outdoor compared with 9 state-
of-the-art tracking algorithms. At the same time, the analysis
of the fusion weight curve shows that the proposed algorithm
can adjust the fusion weight of each deep learning model in
time according to the change of the object appearance model
to achieve more robustness tracking.

In the future, we will further improve the tracking perfor-
mance of our tracking algorithm by improving the feature
representation capability. Some possible directions include:
employing the advanced deep learning structure, using the
large scale tracking data set for model training and utilizing
the other powerful feature representation method.
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