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ABSTRACT Travel modes are generally derived from Global Positioning System (GPS) data on the basis
of either a rule-based or machine learning classification method. The rule-based classification approach is
generally easy to understand, whereas the machine learning classification method has better generalization.
However, studies that jointly explore both methods are limited. The present research proposes a two-stage
method that aims to impute travel modes from GPS trajectory data. In the first stage, rules are employed to
detect subwaymodes. In the second stage, a Gaussian process classifier based on sequential forward selection
methods is utilized to derive the remaining travelmodes. On the basis of the four selected features constituting
the feature set (i.e., average speed, average acceleration, heading change, and low-speed point rate), over
97% of the samples with subway modes are correctly identified and 93.04% of segments in the walk-based
balanced test subset are accurately detected. Over 92% of the car and bus samples are correctly detected
for the training and test datasets. Results provide a new perspective in selecting classification methods for
the detection of travel modes and other travel characteristics from GPS trajectory data. Furthermore, high
differentiation is achieved between the bus and car modes without the bus transit geographic information
system sources of bus networks. Therefore, reasonable extracted features contribute to the detection of travel
modes, particularly between bus and car modes.

INDEX TERMS Gaussian processes, classification algorithms, global positioning system.

I. INTRODUCTION
In the past few decades, dedicated Global Positioning Sys-
tem (GPS) devices and smartphones have been increasingly
applied to gather location-based data in GPS-based travel
surveys, which are widely considered promising alternatives
to conventional travel surveys. This type of travel survey
method is advantageous because of its minimal burden on
respondents [1], high reliability of GPS data, and valuable
information obtained from such data [2]–[4]. Nevertheless,
some key travel characteristics, including trip rates, trip
purposes, and travel modes, may not be directly derived
from GPS data. Thus, studying the travel behavior using
GPS data is difficult. Researchers generally use rules to flag
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trip ends and employ geographic information system (GIS)
data to detect trip purposes [5]–[9]. By contrast, transporta-
tion modes are detected with either rule-based [10]–[12] or
machine learning classification methods [13]–[16]. Several
studies on the detection of travel modes exploit GIS data [17],
whereas others utilize GPS data alone [18] or an application
programming interface (API) [19]. No consensus has been
reached with regard to the type of detectionmethod preferred.

The majority of the existing rule-based algorithms that
detect travel modes use speed-related features, includ-
ing percentile speed, acceleration, and average speed.
Stopher et al. [20] adopted three steps to flag a single-mode
segment as walk, bicycle, car, or bus modes. First, a segment
with average and maximum speeds of below 6 km/h and
under 10 km/h, respectively, was flagged as a walk mode.
Second, a segment that matched bus networks, exhibited
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periodical stops, and had an average speed of 10-40 km/h,
was detected as a bus mode. Third, a segment was imputed as
a bicycle mode if its average speed was below 40 km/h; other-
wise, it was flagged as a car mode. According to these rules,
they properly imputed approximately 95% of the segments.
Therefore, rule-based algorithms are easily understandable
and highly effective in certain situations.

Machine learning classification methods, including fuzzy
logic regression [6], [21], decision tables [22], random for-
est [23], [24], deep learning [25], and other machine learning
approaches [26]–[28], are also frequently used in deriving
travel modes. Byon et al. [29] extracted several features,
such as the average accuracy of the horizontal dilution of
precision, the average number of satellites in view, speed, and
acceleration, and differentiated four travel modes with neural
networks. To alleviate the interference of GPS positioning
errors on travel mode detection, Joseph et al. [30] adopted
the 95th percentile acceleration, median speed, and 95th per-
centile speed instead of the maximum speed. In addition, they
used a multinomial logit (MNL) model to distinguish the four
travel modes, and achieved a preferable accuracy of 87.5%.
Feng and Timmermans [31] recently compared the rule-based
and machine learning classification methods and found that
the latter had higher flexibility and robustness than the former
in classifying travel modes.

Another aspect is to determine the necessity of GIS data in
the detection of travelmodes. Joseph et al. [30] imputed travel
modes with two different inputs, namely, GPS data alone and
GPS data combined with bus networks. They found that the
classification accuracy increased from 87.5% to 89.6% after
including bus networks. Zheng et al. [32] constructed several
representative features in the case of the non-availability of
GIS data, including speed change rate, stop rate, and heading
change rate, because non-motorized modes change headings
more frequently thanmotorizedmodes and busmodes display
periodic stops. Furthermore, they employed decision trees
to distinguish five travel modes and achieved a promising
classification result. Given that no GIS data were involved,
they developed an online application with more convenience.
Similarly, Schuessler andAxhausen [6] developed algorithms
to impute travel modes from GPS data alone, and achieved a
preferable classification performance. Zhu and Gonder [19]
used the Google Maps Direction API as basis to (a) propose
a novel mode detection method to obtain a best-matched
API route for each actual route (segment), (b) calculate the
similarity scores for each pair of routes, and (c) feed them
into a logistic regression model to differentiate the car and
non-car modes from each other. Consequently, they achieved
an overall detection accuracy of approximately 89%, which
was better than that of the logistic regression model based on
the raw GPS data.

In summary, a rule-based classificationmethod provides an
intuitive explanation for travel mode imputation, but such a
classification method may result in relatively high confusion
among ‘‘similar’’ travel modes. For example, a bicycle mode
with low speed may be mistakenly flagged as a walk mode

if the average speed is a key feature to distinguish travel
modes. By contrast, machine learning classification methods
provide an opportunity to deal with this issue. For example,
kernel-based classifiers are widely considered powerful when
used to deal with classification issues [33]. Support Vector
Machine (SVM) is one of the most prevalent kernel-based
classifiers and constructed on the basis of the margin maxi-
mization principle, which contributes to their favorable gen-
eralization. The Gaussian process classifier (GPC), which is
derived from GP, is another kernel-based classifier.

GP is a promising statistical model because it allows for a
complete Bayesian treatment of classification and regression
problems. GP applies a probabilistic and practical approach
to learning in kernel machines, resulting in advantages over
its competitors in the interpretation of model architecture and
the integrated treatment of learning and model selection.

In contrast to other commonly used classifiers, GPC
has three main advantages. First, GPC can handle
high-dimensional and nonlinear issues, which are encoun-
tered in travel mode detection. Second, GPC offers proba-
bilistic outputs instead of determinant classification results,
thereby accounting for the model uncertainty inherent in
travel mode detection. Third, GPC belongs to a nonparam-
eterized model and can tune hyperparameters directly on the
basis of the training data. GPC can also use evidence to
implement a model selection process in a fully automatic
manner [34]. GPC has been successfully employed in the
transportation domain [34], [35]. The main disadvantage
of GPC lies in the relatively high computation cost owing
to numerous trials. However, the current study does not
require real-time travel mode detection, but focuses on the
improvement of the classification accuracy. Therefore, GPC
is applied in this research.

However, the possibility of jointly using rule-based
approaches and machine learning classification methods to
derive travel modes has rarely been explored. Therefore,
the present study proposes a two-stage method to impute
travel modes. A rule-based approach is suited for inferring
a travel mode that is highly different from other modes in
terms of one or multiple features. In addition, GPS signal is
frequently blocked in subway segments, thereby resulting in
difficulty to compute the features fed in classifiers. Hence,
we identify subway modes with a rule-based algorithm in
the first stage because subway modes generally match the
metro network. Moreover, the majority of subway trips are
characterized by severe signal loss. In the second stage,
we employ GPC to detect the remaining modes. Instead of
bus transit GIS data, several targeted features are extracted
to increase the classification accuracy. Thus, the two basic
objectives of this study are as follows: (a) to decide whether
the two-stage method is superior to other frequently used
classifiers in terms of classification accuracy and (b) to decide
whether bus transit GIS data are indispensable in imputing
travel modes. The preliminary results have been described
by TRB 2015 [36] and consist of two aspects. On the one
hand, a rule-based approach is preferable to detect subway
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FIGURE 1. Flowchart of the current study.

modes, because the characteristic of positioning data for
subway trips is evidently different from other modes. On the
other hand, feature selection is important for detecting travel
modes because a reasonable feature combination contributes
to promising classification results.

The flowchart of this study is shown in Fig. 1. The remain-
der of this paper is organized as follows. Section 2 describes
the data profile. Section 3 elaborates the theoretical and
methodological backgrounds of the two-stage method.
Section 4 presents the results of the travel mode detection.
Lastly, Section 5 provides the main conclusions and future
research directions.

II. DATA DESCRIPTION
The GPS data were acquired in a smartphone-based travel
survey administered in three waves in Shanghai from mid-
October 2013 to mid-July 2014. This survey should han-
dle privacy issues reasonably owing to the collection of
real-time positioning data. On the one hand, the respondents
may examine the authorities achieved by the application and
check whether the application collected unnecessary infor-
mation. On the other hand, the respondents may receive a
commitment letter explaining that the collected data is con-
fined to scientific research by our group alone and that the
data collected would be kept anonymous and confidential.
In the survey, the travel mode of each single-mode segment
(hereafter referred to as ‘‘segment’’) was recorded instead
of the main mode of a trip. The validated travel modes
were taken as the ‘‘ground truth’’ for the evaluation of the
classification result. A total of 1,512 person-day GPS data
from 203 respondents were acquired. After the data cleaning
based on integrity and logicality check, 1,248 person-day
data were reserved for travel mode inference. The data may

FIGURE 2. The number of segments with six reported travel modes.

have periodic characteristics because multi-day data were
collected for each respondent.

The walk, bicycle, e-bicycle, car, bus, and subway modes
were distinguished in the travel survey. The trajectory data
were divided into segments in accordance with the validated
travel modes. Exactly 5,898 segments were collected from
the GPS data (see Fig. 2). Walk accounted for the largest
proportion because walk modes often connect two other
modes during a trip. In Shanghai, subways have increasingly
gained popularity since Line 1 began operation in 1993. As of
February 2019, 17 lines (including the Shanghai Maglev
Train and Shanghai Metro Pujiang Line) with 330 stations
are operating, with the line length reaching 705 km.

III. METHODOLOGY
Travel mode detection consists of two steps, namely, the iden-
tification of subway segments with a rule-based classifica-
tion system and detection of segments with the remaining
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transportation modes using GPC. When GPC is employed,
we utilize several feature selection methods to achieve the
optimal feature set from the six extracted features.

A. DETECTING SUBWAY SEGMENTS
Subway segments can be detected using an appropriate
rule-based classification system. In the majority of cases,
the Shanghai subway network does not overlap with high-
ways. Furthermore, the quality of GPS signals for subway
modes is worse than that for other modes. The number of
GPS points in subway segments is also relatively few owing
to signal blockage. These unique characteristics improve the
distinction between the subway and other modes. Two possi-
ble scenarios, namely, segments with incomplete GPS signal
and those without GPS signal, are considered for the subway
mode detection. As shown in Fig. 3, two trips sequentially
consist of a walk segment, a subway segment, and another
walk segment.

Subway segments without GPS signal are relatively com-
mon. Accordingly, receiving sufficient satellite signals (in
most cases, four satellites are sufficient) for positioning is
difficult when smartphones are in a subway train. Moreover,
a smartphone may not record any point when it is in a subway
train operating underground. Therefore, most trips involving
subway modes are displayed (see Fig. 3 (a)), in which no
GPS points are collected for a subway segment. A partially
enlarged subway segment shown in Fig. 3 (c) indicates that
the GPS signal recovers after the traveler walks out of Exit 1.
Another issue is the detection of a subway segment with
incomplete GPS signal. Fig. 3 (b) demonstrates that the GPS
signal does not vanish immediately when the subway train
starts to run. All GPS points collected for the subway segment
are along both sides of the line, and the distance between the
line and these points differs because of the positioning error
(see Fig. 3 (d)).

The grid search algorithm is appropriate for establishing
the rules for data mining because it tests all given parameter
combinations and outputs the optimal parameter combination
according to a predefined evaluation criterion. Grid search
aims to perform parameter optimization, which finds the best
parameter combinations with an exhaustive search through a
manually specified subset of the parameter space [37], [38].
In addition, this method involves low computation cost when
the number of parameters is low. To establish rules for detect-
ing subway segments, the critical values of relevant param-
eters should be determined. These parameters consist of the
critical duration, maximum speed of GPS points, and distance
between GPS points and subway stations or lines [21]. The
candidate critical values of the parameters are determined
according to the statistical analysis of the smartphone-based
travel survey (see Table 1). We randomly choose 75% of the
full sample as the training dataset to establish the rules [31].

B. FEATURE DESCRIPTION
Existing studies have indicated that traveled distance, average
speed, average acceleration, and 95th percentile speed are

TABLE 1. Parameters and candidate critical values for detecting subway
segments.

chosen to derive travel modes except subway in this study.
Nevertheless, distinguishing car modes from bus modes
will be difficult if only these speed-related features are
used [20], [39]. In general, the introduction of a bus net-
work may significantly decrease the confusion between car
modes and bus modes [30]. However, bus transit GIS data
are difficult to obtain. In addition, bus networks are updated
monthly or even daily in megacities, including Shanghai.
Thus, a timely update must be carried out to effectively infer
bus segments. In this case, maintaining the latest version of
the bus transit GIS layer becomes costly. Such a situation
motivates us to extract a novel feature called ‘‘low-speed
point rate,’’ i.e., the rate of GPS points with a speed of below
1 m/s, which represents the periodic stops of buses [40]. Four
different critical speeds, namely, 0.5, 1.0, 1.5, and 2.0 m/s,
are investigated for constructing the feature. Consequently,
1 m/s is employed because it can best distinguish bus seg-
ments from car segments. Another obstacle that potentially
increases the confusion among travel modes results from the
high uncertainty of speed-related features [41]. For example,
a bus or car segment with a relatively low speed may be mis-
takenly flagged as an e-bicycle segment. Notably, amotorized
vehicle may only drive on motorways and along a specific
direction in most cases. By contrast, a bicycle traveler may
stop or overtake others casually. Therefore, we construct of
the ‘‘heading change rate’’ feature, which is the average
heading change between two consecutive points. In summary,
two additional features are used to further distinguish car
segments from the bus segments and motorized segments
from non-motorized segments.

C. DETECTING TRAVEL MODES EXCEPT SUBWAY
It is a classification problem to detect travel modes except
subway based on the previously mentioned features. In par-
ticular, the input of GPC for each segment comprises six
features (i.e., traveled distance, average speed, average accel-
eration, 95th percentile speed, low-speed point rate, and head-
ing change rate) and the output is one of five travel modes
(i.e., walk, bicycle, e-bicycle, car, and bus). GPC is applied
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FIGURE 3. Subway segments with incomplete GPS signal and without GPS signal.

to detect travel modes because of two main advantages.
On the one hand, each segment is assigned to a travel mode
with the maximum probability, thereby accommodating the
model uncertainty. Such an uncertainty is frequently seen
in travel mode detection, particularly between bus and car
modes. On the other hand, GPC is a nonparameterized model,
in which the values of hyperparameters are not predefined by

researchers, but automatically determined by the model itself
according to the training data. In addition, existing studies
have found that GPC competes with other commonly used
classifiers [42], [43]. GPC is described in detail in the next
section.

Data balance should be addressed before the travel mode
detection. The walk takes a much higher percentage than
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TABLE 2. The number of samples in the training and datasets.

other modes and walk segments are five times as many as
e-bicycle segments. This imbalanced scenario may result
in a low detection precision for the e-bicycle mode. Thus,
resampling is used to rebalance the training and test dataset
to alleviate the effect of the skewed class distribution on the
learning process. Compared with other the two other com-
monly used rebalancing methods (i.e., cost-sensitive learning
and ensemble learning), the resampling technique is more
versatile because it is independent of the selected classi-
fier [44]. To acquire the expected number of segments for
each mode, the resampling technique is applied by randomly
eliminating majority mode segments (under-sampling) and
creating synthetic minority mode segments (over-sampling)
with SMOTE [45]. Compared with the over-sampling based
on replacement, SMOTE has the potential to significantly
improve the precision of minority modes. To evaluate the
effect of the expected number on the detection accuracy,
we take the number of segments of walk, bus, and e-bicycle
modes as three expected numbers of each mode. The unbal-
anced test dataset consists of 25% of the samples that are left
after a random draw of the unbalanced training dataset. The
number of samples in training and test datasets are denoted
in Table 2.

D. APPLICATION OF GPC TO TRAVEL MODE DETECTION
To detect travel modes in this study, GPC works as follows:

(1) Define the prior of latent variables for travel modes
Given a training set D = (X, y) with n segments, in which

X = (x1, x2, ..., xn)T and y = (y1, y2, ..., yn)T. For each
vector xi ∈ <d (i = 1, 2, ..., n), a certain travel mode c ∈
{1, 2, 3, 4, 5} is matched, with each number corresponding to
a travel mode. Each yi with travel mode c has a length of five,
with an entry of 1 for the cth element and 0 for others. Thus,
y is defined as follows:

y = (y11, ..., y
1
n, y

2
1, ..., y

2
n, ..., y

5
1, ..., y

5
n)

T. (1)

The vector for the latent function values of all n training
segments is defined as follows:

f = (f 11 , ..., f
1
n , f

2
1 , ..., f

2
n , ..., f

5
1 , ..., f

5
n )

T. (2)

The prior of f is assumed to be normally distributed with
f|X ∼ N (0,K) and the five latent processes are assumed to

be uncorrelated. The covariance matrix K is block-diagonal
with five identical block matrices. We employ a well-known
kernel form called the Gaussian radial basis function, which
can be written as follows:

k(xi, xj) = θ0 exp(−
|xi − xj|2

2l2
), (3)

where θ0 is the process variance and l denotes the length scale,
both of which constitute the hyperparameter set θ . All five
classes share the same hyperparameter values in the current
study.

(2) Define the likelihood function of the travel modes
Let πci be the probability of detecting training segment i as

travel mode c. In this case, πci is the sigmoid function of the
corresponding latent variables of travel modes as follows:

πci =
exp(f ci )∑
c′ exp(f

c′
i )
. (4)

Consequently, the likelihood function is defined as follows:

p(y|f) =
n∏
i=1

5∏
c=1

yciπ
c
i =

n∏
i=1

5∏
c=1

yci
exp(f ci )∑
c′ exp(f

c′
i )
. (5)

(3) Compute the posterior of the latent variable for travel
modes

According to Bayes’ rule, the posterior of the latent vari-
able p(f|X, y) = p(y|f)p(f|X)/p(y|X), where p(y|X) is inde-
pendent of f. Given that p(f|X, y) is not Gaussian, Laplace
approximation is used to approximate it with the Gaussian
q(f|X, y). With a second-order Taylor expansion, the follow-
ing Gaussian approximation is obtained:

q(f|X, y) = N (f|̂f,A−1)

∝ exp(−
1
2
(f− f̂)TA(f− f̂)), (6)

where f̂ = argmaxf p(f|X, y) is the maximum of the posterior
and A = −∇∇ log p(f|X, y)|f=f̂ denotes the Hessian of the
negative log posterior.

(4) Determine the travel modes of the test samples
According to the balanced training set D, the travel mode

of a test segment x∗ is predicted by computing the travel mode
posterior distribution p(y∗|D, x∗). To derive this distribution,
the vector of the latent function values is evaluated for all n
training segments and five classes.
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Thereafter, π consists of each element πci and denotes a
vector with the same size as f. The distribution of a latent vari-
able corresponding to a test segment is denoted as follows:

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f|X, y)df, (7)

where p(f|X, y) denotes the posterior distribution of the latent
variables and f(x∗) , f∗ = (f 1∗ , ..., f

C
∗ )

T .

To predict the latent function value of a given test segment
x∗, we calculate the posterior distribution q(f∗|X, y, x∗) as
follows:

q(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)q(f|X, y)df. (8)

Given that p(f∗|X, x∗, f) and q(f|X, y) are Gaussian,
q(f∗|X, y, x∗) is also Gaussian. Therefore, its mean is as
follows:

Eq[f(x∗|X, y, x∗)] = QT
∗K
−1 f̂ = QT

∗ (y− π ), (9)

where

Q∗ =


k1(x∗) 0 · · · 0

0 k2(x∗) · · · 0
...

...
. . .

...

0 0 · · · k5(x∗)

 , (10)

where kc(x∗) denotes the covariance matrix between the test
segment and each training segment pertaining to travel mode
c. The covariance matrix is as follows:

covq(f∗|X, y, x∗)

=

∑
+QT
∗K
−1(K−1 +W)−1K−1Q∗, (11)

where
∑

is a five-order diagonal matrix with 6 =

kc(x∗, x∗)−kTc (x∗)K
−1
c kc(x∗). Thereafter, we take trials from

p(f∗|X, x∗, f), softmax them according to equation (4), and
average them to derive the travel mode for each test segment
[46]. The number of trials is determined for each test seg-
ment by taking trials repeatedly until the observed probability
fluctuation of travel modes has ‘‘stabilized’’. The marginal
likelihood log p(y|X, θ) may be represented as follows by
using Laplace approximation:

log p(y|X, θ) ≈ log q(y|X, θ)

= −
1
2
f̂TK−1 f̂−

n∑
i=1

log(
5∑
c=1

exp f̂ ci )

−
1
2
log |I5n +W

1
2KW

1
2 |. (12)

The marginal likelihood is maximized to tune the hyperpa-
rameters in the covariance function (see equation (3)).

IV. RESULTS AND DISCUSSIONS
The classification performance of the two-stage method is
first evaluated with a confusion matrix. A local parameter
sensitivity analysis (SA) is employed thereafter, followed by
the comparison of the two-stage method with other com-
monly used classifiers. Lastly, spatial and temporal transfer-
ability is assessed with two metrics.

TABLE 3. Rules used in the subway mode detection.

A. CLASSIFICATION RESULTS
The results are obtained according to the following steps.
First, rules trained from the training dataset are applied to
identify the subway segments from the test dataset. Second,
the three rebalanced training subsets are used to train GPC
and the GPC that performs best is derived. Third, the derived
GPC is utilized to detect the travel modes from the corre-
sponding balanced test subset.

Rules that achieve the highest average of recall and pre-
cision are different for subway segments with incomplete
GPS signal and those without GPS signal (see Table 3).
The critical value of max_dur is associated with Shanghai
subway network, which is so extensive that one might spend
150 min to take a subway segment. In addition, the maximum
speed of Shanghai subway trains is the same as the critical
value of max_spe. Tsui and Shalaby [21] set 630 m as the
critical distance from both the starting point and ending point
to the nearest entrance/exit. We collected the coordinates
of all the entrances/exits for all stations and kept updating
the data in time. Therefore, the critical distance from the
starting/ending point of a segment to the nearest entrance/exit
significantly decreases, but an excellent classification perfor-
mance is maintained.

The evaluation criterion of GPC is the overall accuracy
represented as the number of correctly detected segments
in the balanced training and test subsets. The walk-based
rebalanced training and test subsets are used for subsequent
analysis because it achieves the highest overall accuracy.
Average speed is first included in the feature set and the travel
modes of over half of the segments are correctly detected
with this feature alone (see Table 4). This prominent result
demonstrates the irreplaceability of average speed in travel
mode detection. The second feature included in the feature
set is average acceleration, which increases the classification
accuracy by over 30%. The heading change rate is the next
feature included in the feature set. Unfortunately, the overall
accuracy decreases after the inclusion of traveled distance.
Therefore, the SFS procedure terminates with four features
constituting the optimal feature set and the overall accuracy
reaching 93.43%.

It facilitates a comprehensive evaluation for the two-stage
method to analyze the confusion matrix of the training and
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TABLE 4. The process of sequential forward selection.

test datasets (see Table 5 and Table 6). On the one hand,
subway segments are imputed with the highest precision of
over 97% for the training and the test datasets. The detection
precision of the subway segments of the training dataset is
analogous to that of the test dataset. On the other hand,
the precision of all travel modes exceeds 89%. In addition,
the travel mode imputation of the test subset is nearly as accu-
rate as the training dataset. These prominent results demon-
strate the preferable classification ability and generalization
of the proposed method.

Further analysis of the detection precision of the travel
modes (except subway mode), contributes to an understand-
ing of the advantages of the two-stage method and ways
to improve classification accuracy in future studies. Over
94% of the bicycle segments are correctly flagged possi-
bly because of the inclusion of heading change rate, which
can effectively distinguish non-motorized and motorized seg-
ments. The detection recall for car and bus modes is above
92%. Meanwhile, the majority of the falsely detected bus
segments are flagged as e-bicycle modes rather than car
modes, and vice versa. The low confusion between car and

bus segments may be associated with the introduction of the
low-speed point rate.

B. SA
SA is generally used to analyze the quantitative and quali-
tative effects of uncertainty in the inputs on the uncertainty
in the output. In the present research, a local SA is applied
to evaluate the contribution of the parameters to the subway
classification performance, because the values of hyperpa-
rameters in GPC are optimized by maximizing the marginal
likelihood in equation (3). That is, only one parameter varies,
while the others maintained constant at each time. A local
SA requires minimal computation compared with a global
SA. We use a normalized sensitivity index to explore the
relative change in the model output caused by the change in
the parameter value. The effect of a certain change in a given
parameter is defined as follows [47]:

S(p)(i) =
(V(p) − Vs)/Vs
(p(i)− ps)/ps

, (13)

where all the variables with a subscript S indicate reference
values and those with a subscript P are calculated under
alternative parameter values. ps indicates the reference value
of the target parameter, Vp is the output value under the
alternative case. p(i) denotes the ith element of the vector
p = {0.8ps, 0.9ps, 1.1ps, 1.2ps}.
The sensitivity index determines the degree of model sen-

sitivity toward any given parameter and is defined as follows:

S(p) =
I∑
i=0

|S(p)(i)|/I , (14)

where I is 4 and |•| denotes the absolute value. A parameter is
defined as not sensitive when |S| ≤ 0.1, sensitive when 0.1 <
|S| ≤ 1, highly sensitive when 1 < |S| ≤ 10, and extremely
sensitive when |S| > 10. The output value is the detection
accuracy of the subway segments, while the input consists

TABLE 5. Detection results of the training dataset.

TABLE 6. Detection results of the test dataset.
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TABLE 7. Results of SA.

TABLE 8. Comparison of detection accuracy (without subway).

of six parameters. The sensitivity index of each parameter is
shown in Table 7.

The model output is sensitive toward the change in all
parameters. When a parameter is the maximum critical value,
the effect of a negative perturbation (−10% or −20%) is
generally stronger than that of a positive one (+10% or
+20%). This finding may be explained by the asymmetrical
impact of a perturbation along different directions. However,
when the maximum critical value is increased, the number
of segments falsely detected as a subway mode does not
increase substantially. This result is associated with the idea
that a segment is flagged as a subway mode only when all
requirements are met. Moreover, the sensitivity index of any
parameter is not classified as ‘‘not sensitive’’ or ‘‘extremely
sensitive,’’ thereby indicating that the parameter selection is
reasonable.

C. COMPARISON BETWEEN CLASSIFIERS
We choose four popular methods to compare the classifi-
cation accuracy of GPC with that of other frequently used
classifiers. These classifiers are used to differentiate five
travel modes (subway excluded) to evaluate the relative per-
formance of GPC based on the walk-based balanced training
and test subsets. The results are shown in Table 8.

The four classifiers are SVM, MNL, Bayesian network
(BN), and artificial neural network (ANN). The SVM
classifier is trained and tested with a Gaussian kernel
and one-versus-rest mode in the multiclass problem. The
MNL model is employed, and all features are regarded
as alternative-specific attributes. To train the BN classifier,
the structure is constructed with a K2 algorithm, and the
conditional probability tables are calculated with maximum
likelihood methods. The ANN is constructed on the basis of
a three-layer neural network, in which 1 to 20 neurons are
tested in the hidden layer and the highest detection accuracy
is achieved with 15 neurons.

Table 8 shows that GPC achieves the highest accuracy,
which may be partially explained as follows. Although
SVM possesses considerable distinction ability by mapping a
low-dimensional space to a high-dimensional space, it gener-
ates non-probabilistic output of class determination, thereby
implying an inability to deal with the ambiguity involved in
travel mode imputation. MNL is widely used travel behavior
analysis, but it does not necessarily apply to this issue because
the requirement of the independence of irrelevant alternatives
may not be met. ANN can implicitly represent complex
nonlinear relationships between dependent and independent
variables, but it is prone to overfitting. Although the BN clas-
sifier overcomes the aforementioned disadvantages, it cannot
employ different methods to detect subway segments and seg-
ments with other modes, which have different characteristics
in terms of their features. This issue is also encountered by
the three other classifiers.

D. MODEL TRANSFERABILITY
Transferability is generally evaluated in the space and time
aspects. One of the most important motivations for study-
ing mode transferability is the opportunity to substantially
reduce the amount of data required to estimate a model in
a different area or time. Two contexts are used to assess
the transferability of the two-stage method in the spatial and
temporal dimensions. The context from which a model is
transferred is the base context, whereas the context to which
themodel is transferred is the local context. Root mean square
error (RMSE) and relative aggregate transfer error (RATE) are
used to evaluate transferability. The formula of RMSE is as
follows:

RMSE =

(∑
k

Pk ×
(
Pk − Ok
Ok

)2
)1/2

, (15)

where Pk and Ok are the aggregate predicted and
observed/reported shares, respectively, for travel mode k . The
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formula of RATE is as follows:

RATE =
RMSEb(l)
RMSEl(l)

, (16)

where RMSEb(l) is the RMSE of a model applied in the
local context but developed in the base context, and RMSEl(l)
denotes RMSE of the locally estimated model.

The dataset used to assess spatial transferability was col-
lected in Changchun City, Jilin Province from November to
December 2013. A total of 254 segments are derived from
the GPS data of 13 respondents in a travel survey adminis-
tered via smartphones. According to Fig. 4, the RMSEb(l)
and RATE values are 0.1648 and 1.2482, respectively. These
values are substantially less than those of activity-based travel
forecasting models for inter-state transfer between California
and Florida [48]. This comparison reveals that the two-stage
method has the acceptable spatial transferability.

FIGURE 4. Spatial transferability analysis.

Temporal transferability is evaluated with another dataset,
which consists of 953 segments extracted from the GPS data
collected by 43 respondents with dedicated GPS devices
in Shanghai City from October 2012 to December 2012.
The format of the GPS data recorded by the dedicated
GPS devices is similar to those obtained with smartphones.
According to Fig. 5, RMSEb(l) and RATE values are
0.0643 and 1.1202, respectively. These values are substan-
tially less than those for the spatial dimension. Thus, the tem-
poral transferability of the two-stage method is better than
its spatial transferability. This result may be explained by the
considerable similarity in the socio-demographic character-
istics, built environment, land use, and mode preferences of
individuals in different periods of a city compared with those
in different cities.

V. SUMMARY AND CONCLUSIONS
The contribution of this study is twofold. From amethodolog-
ical perspective, we proposed a novel two-stage method to

FIGURE 5. Temporal transferability analysis.

impute travel modes from GPS data. In the first stage, a rule-
based classification system is employed to detect subway
segments. In the second stage, GPC with SFS procedures
is used to flag the remaining modes. The two-stage method
maximizes the high understandability and interpretability of
the rule-based approach and the preferable flexibility and
robustness of machine learning classification methods. GPC
was chosen on the basis of its apple-to-apple comparison
with commonly used classifiers. In addition, the spatial and
temporal transferability of the proposed method was proven
to be acceptable. From an empirical perspective, reasonably
extracted features may evidently improve the accuracy of the
two-stage method. The reason is that this method achieved
a high distinction between bus and car modes when no road
and bus networks were included. That is, extracted features
contribute to the differentiation between the bus and car
modes, which depends on the bus transit GIS sources in
existing studies. Note that the importance of the extracted
features is emphasized on the basis of the improved classifi-
cation accuracy, rather than their relative advantages over GIS
data. These favorable results motivate researchers to develop
additional features to represent bus transit GIS sources.

The two-stage method has rarely been included in exist-
ing studies. Nevertheless, this method helps to handle travel
mode detection and other related issues in GPS travel sur-
veys, including trip purpose detection. Compared with other
methods, the two-stage method acquires the highest clas-
sification accuracy and presents a favorable generalization.
From the perspective of empirical studies, the two-stage
method also gains an advantage over those in related studies.
Zheng et al. [32] applied decision trees to distinguish the
walk, bicycle, car, and bus modes from one another and
achieved an accuracy of 75.6%. Tsui and Shalaby [21] used
the fuzzy logic method to detect these four travel modes and
achieved a high accuracy of 91%. Zong et al. [49] used SVM
combined with a genetic algorithm to recognize the walk,
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bicycle, subway, bus, and car modes and correctly detected
92.2% of their samples.

The proposed method is highly suited for imputing travel
modes in a GPS travel survey conducted in a city where
subway segments account for a relatively high percentage.
Given that large-scale subway networks are gradually con-
structed and operated inmany countries, the proposedmethod
is expected to be applied extensively in the coming years. For
cities without subway lines, travel modes for all segments
should be detected with GPC because no significant ambi-
guity exists between segments with travel modes other than
subway modes. In a future study, features that achieve high
distinctiveness between e-bicycle segments and segments
with other travel modes should be extracted because of the
relatively low precision in detecting e-bicycle segments.
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