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ABSTRACT Parkinson’s Disease (PD) is a progressive neurodegenerative disease with multiple motor
and non-motor characteristics. PD patients commonly face vocal impairments during the early stages of
the disease. So, diagnosis systems based on vocal disorders are at the forefront on recent PD detection
studies. Our study proposes two frameworks based on Convolutional Neural Networks to classify Parkinson’s
Disease (PD) using sets of vocal (speech) features. Although, both frameworks are employed for the
combination of various feature sets, they have difference in terms of combining feature sets. While the first
framework combines different feature sets before given to 9-layered CNN as inputs, whereas the second
framework passes feature sets to the parallel input layers which are directly connected to convolution layers.
Thus, deep features from each parallel branch are extracted simultaneously before combining in the merge
layer. Proposed models are trained with dataset taken from UCI Machine Learning repository and their
performances are validated with Leave-One-Person-Out Cross Validation (LOPO CV). Due to imbalanced
class distribution in our data, F-Measure and Matthews Correlation Coefficient metrics are used for the
assessment along with accuracy. Experimental results show that the second framework seems to be very
promising, since it is able to learn deep features from each feature set via parallel convolution layers.
Extracted deep features are not only successful at distinguishing PD patients from healthy individuals but
also effective in boosting up the discriminative power of the classifiers.

INDEX TERMS Convolutional neural networks, deep learning, health informatics, Parkinson’s disease

classification, vocal features.

I. INTRODUCTION

Health informatics systems have been widely used in the
detection and monitoring of important diseases in recent
years. Information systems based on artificial learning are
utilized in the monitoring of Parkinson’s Disease (PD), which
is frequently seen in people over 60 years of age [1]. PD is
a progressive neurodegenerative disease with multiple motor
and non-motor characteristics [2]. Due to the prolonged life
of the patients with an early diagnosis, high accuracy and
reliable health informatics systems are needed for the detec-
tion of the PD patients. These systems also aim to reduce the
workload of clinicians [3]-[7].

PD detection systems are focused on recognizing the sever-
ity of symptoms using several types of instruments. One
of the most common symptoms is the vocal problem, and
most patients faces vocal defections in the early stages of
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the disease. Therefore, health systems based on vocal dis-
orders have leading position on recent PD detection studies
[3]-[7]. In these studies, several speech signal processing
techniques were used to obtain clinically relevant features,
and extracted features were fed into various artificial learning
methods to obtain reliable decisions in PD classification.
While Artificial Neural Networks (ANN) and Support Vector
Machines (SVM) [8], [9] are the common algorithms in
PD classification, Random Forest (RF) [10], and K-Nearest
Neighbors (KNN) [11] are also properly used due to their
simplicity and also ease of understanding. The success of
mentioned algorithms is directly related to the quality of
the features selected from the data. Although it is difficult
to manually select the relevant features that represent the
intrinsic properties of the speech (audio) data, the latent
properties of the data can be learned automatically via deep
learning approach. Hierarchical layers in Deep Neural Net-
works (DNN) can create deep abstract representations that
are used as input features in many machine learning tasks.
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Deep learning shows the state-of-the-art performances in
areas such as speech recognition, image classification, drug
discovery and genetic science [12]. Proven performances
in these tasks encourages researchers to use DNN in PD
classification [13]-[15]. Since DNN has a potential to model
complex and non-linear relationships from data, it is also a
suitable classifier for PD classification. To this end, we pro-
pose deep learning based classification frameworks on PD
classification in our study.

In the first framework, named as feature-level combina-
tion, we make use of Convolutional Neural Networks (CNN)
to extract feature representations directly from the concate-
nation of different feature sets. To do this, we design a
DNN with several convolution layers (with different kernel
sizes). After hierarchical abstract feature representations are
obtained at each layer via convolution and pooling operations,
they are finally fed into fully connected layers to carry out
classification task. The second framework, called as model-
level combination, differs from the first framework in terms of
the combination of feature sets. This network consists number
of parallel convolution layers, each of which are belonged to
different types of features. During the network training, con-
volution operations are performed simultaneously on parallel
layers and the representations obtained from these layers are
concatenated. As in the first framework, the combination of
feature representations are passed to the consecutive convo-
lution and fully connected layers to complete classification
process. Instead of individually analyzing the effects of each
feature type on PD classification, both frameworks are aimed
to grasp the contributions of each feature type in with feature-
level and model-level fashions.

As stated in [16] study, the presence of more than one
voice recordings per individual in available datasets and
the use of the same individual’s recordings in both training
and testing steps in Cross-Validation (CV) may yield biased
results in performance evaluation. Since our data include in
multiple voice recordings per healthy individuals and PD
patients, we utilize from Leave-One-Person-Out Cross Vali-
dation (LOPO CV) procedure for the performance evaluation
of the proposed frameworks. In each iteration of the LOPO
CV, instances belonging to one individual are left out as a test
set while remaining instances of the others are used a training
set.

Like in many medical studies, dataset we use in this study
has unbalanced class distribution which means the number of
instances in one class (majority class(es)) may be many times
bigger than the number of other class instances (minority
class(es)). Class imbalance directly affects the classification
performance negatively, because most machine learning algo-
rithms assuming a balanced class distribution in the dataset.
In order to measure and compare the classifiers’ ability of pre-
diction in case of class imbalance, we need to choose suitable
evaluation metrics. Accuracy is one of the commonly used
evaluation metrics in machine learning studies. However, for
an imbalanced dataset, accuracy may be misleading measure
when simply the majority label is assigned as the prediction

VOLUME 7, 2019

for any given instance. Along with accuracy, we need to select
different measures that can measure how well a classifier can
distinguish among different classes, even when the classes are
imbalance. Considering these cases, class-based evaluation
such as F-Measure and Matthews Correlation Coefficient are
selected along with accuracy in the performance evaluations
of the proposed frameworks.

The main contributions of our study can be summarized as
follows: First of all, we use different number of parallel 1-
D convolution layers in CNN classification that allows us to
identify the correlations between features on different types
of feature sets. To the best of our knowledge, this is the
first PD classification study that employs CNN in a parallel
way to extract feature representations from different types of
feature groups. Although previously PD classification studies
have used single type feature sets such as EEG data [13],
sensor activity data [15] for the PD classification with CNN,
to the best of our knowledge, CNN with different parallel
layers have not yet been used for classification. Experimental
results obtained on public available dataset show that the
proposed CNN design that uses parallel convolution branches
outperforms single-layered CNN classifiers. Our second con-
tribution is the use of deep learning in PD classification
with different types of vocal features. To the best of our
knowledge, it is the first study that proposes CNN frame-
works to combine multiple types of vocal features at feature-
level and model-level to distinguish PD patients from healthy
individuals.

The remainder of the paper is organized as follows: In the
next section, we give an overview of the PD classification
studies. In Section 3, we describe the dataset used in this
study. Section 4 provides information about the classifica-
tion methods and evaluation measures used. Section 5 gives
details of the experimental results. Section 6 concludes the

paper.

Il. RELATED WORK

In this section, we summarize some recent studies on PD clas-
sification that use machine learning algorithms and we also
cover the recent deep learning methods in PD classification.

A. MACHINE LEARNING FOR PD CLASSIFICATION

The success of the PD classification studies is directly related
to the selection of relevant feature extraction and artificial
learning methods. In literature, many studies have used the
same publicly available dataset [17] consisting 31 instances
(23 PD patients and 8 healthy individuals) with 195 sound
recordings. Another PD dataset [4] has 40 examples of 20 PD
patients and 20 healthy individuals with multiple speech
recordings. Both datasets have commonly extracted features
such as vocal fundamental frequency, measures of variation
in fundamental frequency, measures of variation in ampli-
tude etc. Since most of the PD detection studies are con-
ducted experiments with these datasets, obtained features
from both datasets generally are known as baseline features.
Apart from the baseline features, other features that are
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based on signal processing techniques were also employed
in PD detection. Signal-to-noise ratio (SNR), Mel-frequency
cepstral coefficients (MFCC) and Tunable Q-factor Wavelet
Transform (TQWT) are important tools for extracting rel-
evant features in PD classification [18]. Rather than using
separate feature types in model training, most studies use
the combination of individual feature types to perform clas-
sification task. Extended feature space in these studies can
be reduced via feature selection methods [16]. Although,
there are lots of symptoms among the people subjecting to
the PD including slowed movement, posture and balance
deficiencies, dysphonia which is defined as the changes in
speech and articulation, is the most meaningful forerunner
of PD. This is the reason why many studies are focused on
speech based PD classification.

PD patients mainly face vocal defections which directly
influence the vocal loudness, instability and frequency abnor-
mality. Voice breaks and impaired vocal quality are also the
other impairments that can be seen in PD patients. Speech
processing techniques is commonly used to detect anomalies
in speaking and it is often preferred in automated extraction
of PD-related vocal features. During the last decade, several
machine learning based studies have been performed in the
detection of PD using vocal features. Tsanas et al. [18] pro-
posed a novel PD detection model with vocal features and
they applied several feature selection techniques to select the
top 10 features with high relevance scores as the inputs of
such model. Least Absolute Shrinkage and Selection Opera-
tor (LASSO), Minimum Redundancy Maximum Relevance
(mRmR), Relief and Local Learning-Base Feature Selec-
tion (LLBFS) were the methods used for feature selection and
the performance of the selected features were evaluated with
Random Forest (RF) and Support Vector Machines (SVM)
classifiers. These classifiers resulted the performances up to
98.6% of precision rate using features from the shimmer,
HNR and vocal fold excitation. Their study was also found
out that the feature set with the lowest classification error was
obtained from the Relief selection.

Rouzbahani and Daliri [19] suggested a model for the
detection of PD using voice signals. The inputs of the pro-
posed model were based on parameters such as fundamental
frequency, jitter, shimmer, pitch, HNR and several statisti-
cal measures based on these parameters. In order to select
informative features among whole feature set, several feature
selection methods such as correlation rates, Fisher’s Discrim-
inant Ratio, t-test and ROC curves were utilized. The number
of optimal features was specified by wrapper approach that
used SVM classifier to form a feature-performance curve.
After the determination of optimal features, SVM, KNN and
Discrimination-Function-Based classifiers were trained. The
performances of the classifiers were measured with accu-
racy, error rate, sensitivity and specificity, and the best per-
formance was obtained using the KNN classifier (with an
accuracy rate of 93.82%).

Vikas and Sharma [8] extractedee the different sets
of features from voice signals with Praat software for
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distinguishing PD patients from healthy individuals. They
compared MFCC, pitch, jitter and shimmer features along
with the individual’s glottal pulse. It was concluded that
MEFCC and glottal pulse did not show similar characteristics
and had higher fluctuations when comparing PD patients and
healthy individuals. When the values of jitter and shimmer
features were examined, it was also found out that PD patients
had higher feature values than healthy subjects.

In Parisi er al. [20], they aimed to built a system based
on a novel hybrid Artificial Intelligence-based classifier for
the early diagnoses of PD. The data used in the study
was obtained from the University of California-Irvine (UCI)
Machine Learning repository which had 68 instances with
dysphonic measures and clinical scores. Multi-Layer Per-
ceptron (MLP) with custom cost function (function includes
both accuracy and Area Under Curve (AUC) scores) was
trained to assign the importance scores of the features. Thus,
20 features with high importance scores were given as inputs
to a Lagrangian Support Vector Machine (LSVM) for classifi-
cation. The overall performance of the proposed hybrid clas-
sification framework (MLP-LSVM) was compared against
available similar studies and the results showed that the
proposed feature-driven algorithm (MLP-LSVM) achieved
100% of accuracy rate.

In a recent study by [16], the tunable Q-factor wavelet
transform (TQWT) was applied to vocal signals of the indi-
viduals for the diagnoses of PD. The success of extracted
TQWT features was compared with commonly used vocal
features in PD studies. Experiments were conducted with
the multiple voice instances of 252 individuals and different
types of features sets were extracted from these instances.
The feature subsets were given to numerous classifiers as
input data and the outputs of such classifiers were combined
with the majority voting scheme. This study concluded that
TQWT features resulted better or close performance than the
state-of-the-art voice features frequently used in PD classi-
fication. In addition, it was found out that the combination
of MFCC and TQWT features boosted up the classification
performance when the mRmR selection was performed on.

When aforementioned studies are examined, it is clear that
related PD studies generally use voice-based features with
machine-based learning algorithms. Although these studies
make use of vocal-based features to deal with PD classi-
fication, there are some recent studies that extract features
from different data sources such as electroencephalogram
(EEG) [13], smart pens [14] and wearable sensors [15].

B. DEEP LEARNING FOR PD CLASSIFICATION

Besides common machine learning algorithms, a subdivision
of machine learning called deep learning also has been suc-
cessfully implemented in the PD studies. For instance, study
by [14] used a well-designed smart pen to capture hand-
written dynamics from healthy individuals and PD patients.
In this study, the handwritten dynamics were modeled as a
time series data, and used as inputs to the proposed CNN.
Suggested CNNs were built on already-trained deep learning
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architectures as LeNet, Cifarl0 and ImageNet. In order to
compare the performances of the proposed CNN, Open Path
Forest (OPF) classifier was trained with the raw time series
data. Over all experiments, CNN results in better perfor-
mances than the OPF with the help of its ability to learn
important features to distinguish PD patients from healthy
individuals.

[21]’s study proposes a DNN classifier that is composed of
a stacked autoencoder (SAE) and a softmax layer. While SAE
was employed for extracting intrinsic information within the
speech features, softmax layer was used for interpreting the
encoded features to classify the patients. In order to justify
the performance of proposed model, several experiments
were conducted with two different datasets. The results were
compared with the state-of-art machine learning models and
experimental results showed that DNN classifier was conve-
nient classifier in the diagnoses of PD.

Another PD diagnoses study relies on the effectiveness of
the DNN [22]. The data used in this study included digital
bio-markers and speech records of PD and non-PD individ-
uals that were collected with a mobile application. An open-
source tool OpenSmile was utilized to extract two types of
feature sets from preprocessed speech signals. Since the first
feature set, named as, AVEC had dimensions up to 2200,
Minimum Redundancy Maximum Relevance (mRMR) was
applied to these feature for selection. mRMR selects the fea-
tures with high relevance scores respect to class labels, while
eliminating redundant features. Second feature set consisted
of 60 features which were formed with MFCC. Both feature
sets were given as inputs to several artificial learning classi-
fiers including 3-layered DNN. Classification results showed
that DNN had the highest success rate among all models in
terms of accuracy. An accuracy rate of 85% obtained by DNN
model also outperformed the average clinical diagnosis accu-
racy of non-experts that had nearly accuracy rate of 73.8%.

Since PD is directly dependent on the brain abnormality,
EEG signals are the main indicators for the early diagnosis of
PD. Another automated detection system for PD employing
the CNN was proposed in study [13]. In this work, the EEG
signals of 20 PD patients and 20 healthy individuals were
fed to a thirteen-layer CNN architecture for the detection of
PD. While the metrics used in performance measurements
were accuracy, sensitivity and specificity; the suggested CNN
model achieved a hopeful performance with the rates of accu-
racy, sensitivity and specificity 88.25%, 84.71% and 91.77%
respectively.

PD is arised by the progressive impairments of motor
functions in individuals and the developments in wearable
sensors enable us to capture these disorders with minimum
cost. [15] was aimed to classify bradykinesia which is char-
acterized by an impaired ability to move the body. This
study employed wearable sensors for collecting data from
10 patients with idiopathic PD. After obtaining several motor
functions, they were assigned to class labels by domain
experts. Preprocessed and labeled feature vectors were served
as inputs to machine learning and deep learning pipelines.
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Their CNN-based classifier performed better than traditional
machine learning models in terms of accuracy rates.

Ill. DATASET

The data used in this study were taken from UCI Machine
Learning repository and it has been recently used in
study [16]. The dataset was gathered at the Department
of Neurology in Cerrahpasa Faculty of Medicine, Istan-
bul University and it contained 188 PD patients (107 men
and 81 women) and 64 healthy individuals (23 men and
41 women). The age of PD patients varied between 33 and
87 years, while the age of healthy subjects ranged from 41 to
82 years. During the data collection, frequency response of
the microphone was set to 44.1 KHz, and after the doctor
review, repeated repetition of the vowel /a/ letter in each
person was collected with three replicates.

In literature [23], PD has been shown to affect speech even
in the early period, and therefore, speech characteristics have
been successfully used to evaluate PD and to monitor its evo-
lution after medical treatment. Jitter and glow based features,
fundamental frequency parameters, harmonicity parameters,
Recurrence Time Density Entropy (RPDE), Detrended Fluc-
tuation Analysis (DFA) and Pitch Period Entropy (PPE) are
commonly used speech characteristics in PD studies [6], [18].
In obtained data, these characteristics are called baseline fea-
tures [16]. Acoustic features such as speech density, formant
frequencies, and bandwidth are formed with spectrograms
from speech signals are also key features in classification
process. These features could be extracted with Praat acoustic
analysis software [24].

Mel-Frequency Cepstral Coefficients (MFCCs), which
mimic effectively the characteristics of human ear, have been
used as a robust feature extraction method from speech sig-
nals in different tasks such as speaker recognition, automatic
speech recognition [25], biomedical voice recognition [26]
and diagnosis of Parkinson’s disease [6]. MFCCs extraction
method uses triangular overlapping filter banks to combine
cepstral analysis with spectral domain partitioning. In PD
studies, MFCCs are used to detect rapid deteriorations in the
movement of articulators like as tongue and lips which are
directly affected by PD [6]. In our data, there are 84 MFCCs
related features and these features are formed with mean
and standard deviation of the original 13 MFCCs, addi-
tion to log-energy of the signal and their first and second
derivatives [16].

Wavelet transform (WT) is a prominent tool when making
decisions about signals generally, especially having small
fluctuations in the regional scale. Particular features obtained
by WT from the raw basic frequency of speech signal (F),
are employed for PD diagnosis in several studies. The rea-
son of using WT-based features is to capture the amount
of deviation in speech samples [27]. Thus, sudden changes
in the full periodicity of a long-term vowels in pathologi-
cal speech samples would be detected. In data collection,
10-level discrete wavelet transformation is applied to speech
signals for extracting WT-based features obtained from
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TABLE 1. Detailed explanations of feature sets.

Feature set Measure # of features

5

Baseline features Jitter variants,

6
5
2

ty of the turbulent

Det;
Analysis (DFA)
Pitch Period Entropy
(PPE)

ndamental

Intensity Parameters

Formant Frequencies
Bandwidth

1
1
3
I tract (the first four formants). 4
formant frequencies (the first 4

MFCCs To catch the PD affects in vocal tract separately from the vocal folds. 84

“To quantify the deviations in from fundamental frequency. 182

e
(GNE)
Excitation
o (VFER)

“Tunable Q-Tactor Wavelet Transform
(TQWT) with Fy

the raw (Fp) contour and the log transformation of the
(Fop) contour. This process results in 182 WT-based features
including the energy, Shannon’s and the log energy entropy,
Teager-Kaiser energy of both the approximation and detailed
coefficients.

Tunable Q-factor wavelet transform (TQWT) is another
method used for feature extraction. TQWT takes advantage
of 3 tunable parameters (Q (Q-factor), r (redundancy) and
J (number of levels)) to transform signals in a better qual-
ity according to behaviour of signal. Q-factor parameter is
directly related to the number of oscillations in the signals,
and the relatively high Q-factor value is selected for signals
with high oscillations in the time domain. J is considered
as the number of levels in the decomposition stage. After
decomposition, there will be J + 1 subbands coming from
J high-pass filter and one final low-pass filter outputs. The
parameter r controls the excessive ringing in order to localize
the wavelet in time without affecting its shape [28]. As men-
tioned earlier, PD patients lose the periodicity patterns in
vocal fold vibration, which causes distortions in the speech
signals. Therefore, the parameters of the TQWT in the used
dataset are set by taking into account the time domain char-
acteristics of the speech signals. The order in which the
TQWT parameters are determined is as follows: At first,
the value of the Q-factor parameter is defined to control
the oscillatory behavior of wavelets. In order to prevent the
undesired ringings in wavelets, value of r parameter is needed
to be set to equal or greater than 3. In order to find out best
accuracy values the different Q-r pairs, several number of
levels (J) are searched for in the specified intervals. In this
dataset, several experiments results in 432 TQWT-related
features [16].

Besides to aforementioned features, features based on
vocal fold vibration also have been employed for exploring
the effects of noise on vocal fold. For this purpose, the Glottis
Quotient (GQ), Glottal to Noise Excitation (GNE), Vocal
Fold Excitation Ratio (VFER) and Empirical Mode Decom-
position (EMD) features are used [16].
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Detailed information about feature types are shown at
Table 3. Before conducting experiments with both frame-
works, we apply min-max normalization on our data to
transform the feature values into a common scale without
distorting differences in the ranges of values. Normalization
is a process often applied as part of data preprocessing for
handling the bias to larger feature values [29].

IV. METHODOLOGIES

A. CLASSIFICATION FRAMEWORKS

In our study, PD classification is done with CNN and SVM
classifiers. Two frameworks built on CNN are proposed for
classification. These models differ in terms of combining
the sets of features given to the input layer of the networks.
Details of two frameworks are explained in following subsec-
tions. Also, we use SVM as a benchmark model for compar-
ing the performance of proposed models.

1) CONVOLUTIONAL NEURAL NETWORKS (CNN)

CNN is essentially formed of multiple layers where the con-
volution operations are performed on. The main difference
between ANN and CNN is the number of connections within
the successive layers. In CNN, each local part (known as a
receptive field) of the inputs is connected to only one neuron
while the inputs in ANN are fully connected to the neurons in
the next layer. In each layer of CNN, convolution operation
is done by applying different-sized filters on inputs. After
convolution, the outputs of the convolution layers are passed
through the activation function. Then, the pooling layers are
employed for sub-sampling from the activated outputs. With
the help of pooling, dimensions of input data can be reduced
automatically by the network.

CNN’s foremost attributes are resistance to location vari-
ance and compositionality. Since CNNs’ trained filters have
passed over all input data, they can detect the patterns with-
out having to know where they are located in. This can
be revealed by the pooling process. Pooling is the solution
to rotation and scaling in input data and it brings location
invariance property. CNN filters also convert the low-level
features obtained from receptive fields into high-level feature
representations on deeper layers. This maintains the compo-
sitionality property of the CNN [30].

However, CNN has several hyper-parameters such as filter
size, stride, and pooling type. Filter size indicates the length
of the sliding window in convolution operation. Filters can be
applied to each element of the input data or to the region of
the data. Stride shows how many steps are to be taken in each
step of the window sliding. Pooling type indicates whether the
pooling process will be applied to each filter map (outputs of
the filtering process) or globally to the feature maps that are
the results of the multiple filters [31].

In this study, CNN is employed as a classification frame-
work [29], [32]. This framework is an entirely end-to-end
neural network in which the input data is the PD data to be
predicted and the output is its label.
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FIGURE 1. Graphical representation of feature-level combination.

2) PROPOSED CNN CLASSIFIERS

As aforementioned in Section 3, our data has different types
of feature sets. In order to investigate the effects of each fea-
ture type on classification process, we combine such feature
sets to serve as input data to the proposed classifiers. Accord-
ing to feature combination schemes, we design different clas-
sification frameworks with different input layers. Our first
framework is a 9-layered CNN that has 1 input layer, 6 con-
volution layers (each of two convolution layers followed by
max pooling operation), 1 fully-connected (dense) layer and
1 output layer. The graphical representation of the proposed
framework is given in Fig. 1. In this framework, different
types of feature sets are concatenated before serving them to
the input layer of the network. Therefore, this framework is
named as a feature-level combination.

Our second framework, exposed in Fig. 2, has a total
of 9 layers with 1 input layer with n feature sets, 1 parallel
layer with n branches, 1 merge layer, 4 successive convo-
lution layers (each of two convolution layers followed by
max pooling operation), 1 fully connected (dense) layer and
1 output layer. n denotes the number of feature sets used in
the classification. Second framework differs from the first
one with regard to the stage of the feature combination.
In this network, feature sets are given to the n input lay-
ers separately. Then, feature sets in the input layer are for-
warded to its corresponding branch in the parallel layer. Each
part (branch) in the parallel layer consists of 2 convolution
layers which are used to extract deep features from each
feature set separately. Parallel layer forms multiple feature
representations of different feature sets and allows us to view
the effects of different types of features. In the merge layer,
all extracted features from parallel layers are concatenated.
Finally, 4 more convolutional layers followed by dense layer,
and an output (a soft-max) layer are employed for generating
the final output. The second framework uses parallel layers
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TABLE 2. CNN parameters.

Parameter: {Value}

Filter size: {8}

Size of max-pooling: {(2, 1)}
Optimizer: { Adam}
Activation function: {RELU}
#Epochs: {200}

Batch size: {16}

Dropout rate: {0.3}

to obtain deep feature representations from the raw feature
sets. Therefore, this framework is called as a model-level
combination.

Both networks are complete classification frameworks and
all weights are trained jointly using the back propagation
algorithm. We train our CNN classifiers using KERAS [33]
package with defined hyper-parameters shown in Table 2.
In classification process, several techniques have been used

to prevent the over-fitting in training:
o L2 regularizer is the first technique to prevent the over-

fitting by adding the squared magnitude of all weights
to the objective function to penalize extremely large
weights [34].

« Dropout is another technique used to handle the prob-
lem of over-fitting. In the training phase, Dropout only
keeps the neuron active with some probability value,
p, or otherwise sets it to zero. Hence, Dropout can be
thought as a neural network sampling within the full
neural network, and the weights are updated only for the
sampled network based on the input data [35].

As in our previous study in finance domain [29], our pro-
posed models differs from the existing CNN architectures in
the way of representing of input data. Since CNN considers
the spatial relationship between neighbour features, we need
to change the order of features in input data to be able to
extract the relationships between the features. In order to
this, we compute the feature correlations on each model-
level and feature-level experiment. Then, we apply hierar-
chical agglomerative clustering on each correlation matrix
and cluster the features according to the values of the feature
correlations. The order of the features in the input data are
rearranged considering the order of the clustered features
in the dendrograms. With this approach, instead of using
random ordered features in our input data, the positions of the
features are rearranged considering the order of the clustered
feature correlations.

3) SUPPORT VECTOR MACHINES (SVM)

Support Vector Machines (SVM) is a supervised learning
model and is used in both classification and regression prob-
lems. In binary classification problems, if the data can be
separated linearly, this discrimination can be done with an
infinite number of hyper-planes. SVM is aimed to find the lin-
ear function with the largest margin to distinguish the classes
from each other. SVM has ability in performing nonlinear
classification successfully via kernel operations. In order to
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FIGURE 2. Graphical representation of model-level combination.

provide linear separability in nonlinear data, n-dimensional
samples are projected to a new m-dimensional space (m>n)
using kernel functions. In the new space, instances are divided
into two classes using hyper-planes. Parameters in SVM
vary depending on the type of used kernel function. For
example, C is the regularization parameter that defines the
complexity of the fitted model. While low values of C
provides a simpler model that may have lots of misclas-
sified instances, higher values of C increases the variance
of the model and cause overfitting. The optimal parameter
set for SVM is found with K-fold cross validation proce-
dure. Detailed information about SVM model can be found
in [36].

4) FEATURE-BASED MODELS VS DEEP

NEURAL NETWORKS

PD classification tasks are generally modelled in feature-
based fashion that highly depend on the relevance of extracted
features from raw data. However, this requires much effort to
obtain prominent features for capturing the latent attributes
of data [37]. Extraction of relevant features also needs
human intervention and domain knowledge [38]. Moreover,
the redundancies in features cause computational burden in
extraction of useful information [39]. Machine learning meth-
ods that contain only shallow transformations do not have
enough potential to model irrelevant and high dimensional
data [40]. Recently, deep learning models, in particular CNN
and SAE, have been applied to PD data due to their strong
generalization and noise toleration [13], [22]. The ability of
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forming hierarchical abstract features and hidden relations
from data without the need for human expertise, makes CNN
a leading option to existing feature-based models [41].

CNN can mine the intrinsic properties of the input data
using convolution and pooling operations [32]. In several
studies, CNN is employed as a feature extractor pipelined
with existing machine learning models [14], [32]. In these
studies, CNN generates robust features automatically with the
help of stacked multiple convolutional layers. Also, it reduces
the dimensionality of the feature space by using the pool-
ing operation [40]. In addition, as in our study, CNN can
be employed as a classification framework [29], [32]. This
framework is an completely end-to-end neural network in
which the input data is the instances of PD or Non-PD indi-
viduals to be predicted and the output is its label.

B. EVALUATION METRICS

Evaluation metrics are needed to assess the predictability
performances of the classifiers. Although accuracy is one
of the most commonly used metric, it may yield misleading
results in case of unbalanced class distribution in data. Eval-
uation metrics such as F-measure and Matthews Correlation
Coefficient can measure how well a classifier can distinguish
among different classes, even in case of class imbalance.

Let the confusion matrix as in Table 3 express the counts of
correctly and incorrectly classified instances per class based
for a binary classification. In the confusion matrix, #p, fp,
fn and t denote true positive (tp), false positive (fp), false
negative (fn) and true negative (tn) counts respectively. Based
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TABLE 3. Confusion matrix for two-class classification.

Actual/Predicted as | Positive | Negative
Positive tp fn
Negative fp tn

TABLE 4. Classification results of individual feature sets.

Feature Set  Accuracy  F-Measure MCC
TQWT 0.825 0.888 0.503
Wavelet 0.758 0.854 0.220
MFCC 0.782 0.864 0.350
Concat 0.813 0.885 0.448

on these counts, F-Measure are computed as:

.. Ip
precision = (1)
p+fp
Ip
recall = 2
tp+fn @

2 X precision X recall
F-Measure

3

precision + recall

Matthews Correlation Coefficient (MCC) is another metric
used for quantifying the quality of binary classifications.
MCC considers #p, fp, fn and tn counts and is generally
regarded as a balanced measure which can be used even if
the class distribution is unbalanced. MCC is fundamentally
a correlation coefficient between the actual and predicted
instances and takes a value between —1 and +1. While a value
of +1 indicates a perfect prediction, a value of —1 specifies
the disagreement between prediction and actual labels.

V. EXPERIMENTAL RESULTS

In this section we explain the details of experimental results
obtained by our proposed CNN architectures. Due to the
small number of instances in our dataset, performance evalu-
ation is performed by LOPO CV. In each iteration of LOPO
CV, instances belonging to one individual are left out as a
test set while remaining instances of the others are used as
a training set. Since the number of recordings per individual
is 3, class label of individual is decided by taking the majority
of class labels assigned to these recordings.

As stated before, different feature types are concatenated
in feature-level in the first proposed CNN. While first exper-
iments are done with only individual feature types, the lat-
ter experiments are used the combination of two, and three
types of features respectively. Accuracy, F-Measure and
MCC are the metrics used for assessing the performances
of the classifiers. Table 4 shows the classification results
obtained by only one type of features. TQWT features have
the best performance among all classifiers in terms of all
metrics. Concat features that are the combination of base-
line, vocal fold and time frequency features follow up the
performance of the TQWT with an accuracy rate of 0.813
(0.885 F-Measure Rate). When MCC rates are considered in
judging the discriminative power of the classifiers, we can
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TABLE 5. Results of feature-level combination: Binary feature sets.

Feature Comb. Accuracy  F-Measure MCC
TQWT+Wavelet 0.845 0.902 0.556
TQWT+MFCC 0.841 0.897 0.556
TQWT+Concat 0.829 0.892 0.508
MFCC+Wavelet 0.793 0.872 0.380
MFCC+Concat 0.778 0.860 0.345
Concat+Wavelet 0.778 0.865 0.308

TABLE 6. Results of feature-level combination: Triple feature sets.

Feature Comb. Accuracy  F-Measure MCC
TQWT+MFCC+Wavelet 0.833 0.894 0.521
TQWT+MFCC+Concat 0.825 0.887 0.506
TQWT+Wavelet+Concat 0.825 0.890 0.492
MFCC+Wavelet+Concat 0.793 0.871 0.383

conclude that TQWT and Concat classifiers are good at dis-
tinguishing healthy individuals from PD patients.

After completing the experiments with individual feature
sets, different sets of features are combined into binary
groups. Formed feature groups are given to the first CNN
as input vectors. Table 5 shows the results of all possible
binary feature combinations. Results express that the combi-
nation of the TQWT and Wavelet features has nearly same
classification performance with the TQWT+MFCC pair.
Both classifiers achieve about 0.845 accuracy rates with the
F-Measure rates of 0.900. Using TQWT features along with
Wavelet or MFCC also boost up MCC rates up to 0.556.
Combination of TQWT with Concat features has a reason-
able performance in terms of accuracy, F-measure and MCC
scores. The accuracy scores of other feature combinations
(MFCC+Wavelet, MFCC+Concat and Concat+Wavelet) do
not exceed at the rate of 0.800, while their MCC scores are
below than 0.400.

In the last of feature-level combination, triple feature
sets are employed for new experiments. The results of the
classifications are expressed at Table 6. While the com-
bination of TQWT, MFCC and Wavelet features results
in the accuracy rate of 0.833 (with the F-Measure rate
of 0.894), the accuracy scores of TQWT+MFCC+Concat
and TQWT+Wavelet+Concat combinations are remained
at the rate of 0.825. Combination without TQWT fea-
tures (MFCC+Wavelet+Concat) shows slightly worse per-
formance than the others in terms of accuracy, F-Measure and
MCC scores.

After obtaining results with the feature-level combination,
we continue our experiments with the second framework. As
in the feature-level combination, binary and triple feature sets
are given to the corresponding parallel layers in the proposed
CNN. The number of parallel layers in the CNN are specified
by the number of the feature sets using in the experiments.
While binary feature sets are given to the inputs of 2 parallel
layers, the number of parallel layers increases to 3 when triple
feature sets are used. Table 7 and 8 shows the classification
results obtained from both feature groups.
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TABLE 7. Results of model-level combination: Binary feature sets.

Model Comb. Accuracy  F-Measure MCC
TQWT+Wavelet 0.825 0.888 0.503
TQWT+MFCC 0.849 0.902 0.581
TQWT+Concat 0.821 0.887 0.481
MFCC+Wavelet 0.793 0.872 0.405
MEFCC+Concat 0.785 0.863 0.380
Concat+Wavelet 0.793 0.872 0.379

TABLE 8. Results of model-level combination: Triple feature sets.

Model Comb. Accuracy  F-Measure MCC
TQWT+MFCC+Wavelet 0.853 0.904 0.591
TQWT+MFCC+Concat 0.869 0.917 0.632
TQWT+Wavelet+Concat 0.845 0.902 0.557
MFCC+Wavelet+Concat 0.805 0.872 0.469

Results show that except for the Concat+Wavelet feature
combination, model-level combination with the binary fea-
ture sets does not improve the classification performance
according to the feature-level results. Concat+Wavelet is
the only combination that has nearly 1% of performance
increase in model-level. When the results of the triple
feature sets considered, it can be seen that using model
combination leads the performance increase in all combina-
tions. Among these combinations, TQWT+MFCC+Concat
combination achieves the highest performance with an accu-
racy rate of 0.869 (F-Measure rate of 0.904). In addi-
tion, this combination has a MCC score of more than
0.600, which indicates the success of the classifiers’ dis-
criminative power. Although TQWT+MFCC+Wavelet and
TQWT+Wavelet+Concat models have almost the same
accuracy and F-Measure rates, TQWT+MFCC+Wavelet is
at the forefront with its high MCC score. The combination
of MFCC+Wavelet4-Concat, has the lowest accuracy in all
models with an accuracy rate of 0.805.

Compared to the feature-level results, the model-level
combination improves the accuracies up to the rate of 4%
in the triple feature sets. In addition to the improvements in
the accuracy scores, there has been noticeable increases in
MCC scores. The MCC rate of the TQWT+MFCC+Concat
combination increases from 0.506 to 0.632, while the least
increase is realized in the MFCC4Wavelet+Concat with the
rate of 6%.

Our results are also compared with SVM model that is
commonly used classifier in many health informatics studies
such as PD [42], Anemia [43] and Kidney disease [44] pre-
dictions. Along with SVM, Chi-Square selection is employed
to select informative features from different feature sets [45].
The ratio of selected features are specified as 0.25. Table 9
shows the classification results obtained by only individual
feature sets. The results show that TQWT features again
perform better than the other feature sets. When using only
TQWT and Wavelet features, SVM has nearly same perfor-
mance with CNN models. When the results of the binary
feature sets are examined (Table 10), it is found out that SVM
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TABLE 9. Results of SVM classifier with individual feature sets.

Feature Set  Accuracy = F-Measure =~ MCC
TQWT 0.829 0.894 0.503
Wavelet 0.742 0.849 0.084
MFCC 0.817 0.885 0.467
Concat 0.765 0.861 0.234

TABLE 10. Results of SVM classifier with binary feature sets.

Feature Set Accuracy  F-Measure MCC
TQWT+Wavelet 0.829 0.894 0.503
TQWT+MFCC 0.857 0.910 0.594
TQWT+Concat 0.845 0.903 0.556
MFCC+Wavelet 0.813 0.883 0.451
MFCC+Concat 0.805 0.880 0.419
Concat+Wavelet 0.761 0.855 0.245

TABLE 11. Results of SVM classifier with triple feature sets.

Feature Set Accuracy  F-Measure = MCC
TQWT+MFCC+Wavelet 0.845 0.903 0.556
TQWT+MFCC+Concat 0.857 0.910 0.594
TQWT+Wavelet+Concat 0.833 0.896 0.516
MFCC+Wavelet+Concat 0.821 0.888 0.479

classifier has higher accuracy rates than both CNN based
approaches. The combination of TQWT+MFCC features
with SVM classifier results in an accuracy rate of 0.857.
According to feature and model based models, there are per-
formance increases in the TQWT+MFCC, TQWT+Concat,
MFCC+Concat and MFCC+Wavelet feature sets. Lastly,
SVM classifier is trained with triple feature sets. In the triple
feature results (Table 11), TQWT+MFCC+Concat combina-
tion has the best performance among all classifiers in terms of
all metrics. Although the accuracy rate of this combination is
0.857, this results stays behind the model-level combination
that has an accuracy rate of 0.869.

Additionally, we check our experimental results against
a recent study performed by Sakar ef al. [16]. This study
uses the same model training methodology (ie. same dataset,
training procedure and evaluation metrics) as our study and
this gives us chance to compare our results directly with
the suggested models in such study. While Sakar et al. [16]
achieve the highest accuracy of 0.86 with 0.84 F-Measure and
0.59 MCC by combining feature subsets and then choosing
the informative features using mRMR feature selection, our
proposed model outperforms this study with an accuracy rate
of 0.869 with 0.917 F-Measure and 0.632 MCC.

VI. DISCUSSION AND FUTURE WORKS

In this study, we have proposed deep CNN architectures to
classify PD using sets of vocal (speech) features. For this
purpose, we build two frameworks based on CNN that help us
distinguish healthy individuals from PD patients. In the first
framework, named as feature-level combination, we combine
different feature sets before given to 9-layered CNN as inputs.
In the second framework, called as model-level combination,
we pass feature sets to the parallel input layers that are
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directly connected to convolution layers. Thus, we extract
deep features from each parallel branch simultaneously while
network training. We combine deep features obtained from
each branch in the merge layer and transfer them to the next
layers like in the first framework.

Both frameworks are trained with the dataset obtained from
UCI Machine Learning repository. This dataset has 252 indi-
viduals (188 PD patients and 64 healthy individuals) that
includes 3 voice records per individual. There are 4 feature
types in the dataset such as TQWT, Wavelet, MFCC and Con-
cat (Concatenation of baseline, vocal fold and time frequency
features). Due to the number of individuals in the dataset,
prediction performances of the frameworks are evaluated
with LOPO CV using F-Measure and MCC metrics.

The first experiments are done with separate feature sets.
In these experiments, TQWT features performs better than
the others in terms of all measurement metrics. When the con-
catenation of two feature types are considered, the combina-
tion of TQWT features with Wavelet or MFCC features result
in performance increase nearly 2% in accuracy rate and 5% in
MCQC rate. Last results are obtained from the combination of
the triple set of features. Although TQWT+MFCC+Wavelet
and TQWT+MFCC+Concat sets show similar performances
with nearly 0.833 accuracy rates, both results stay behind the
performances of binary set combinations.

After completing experiments with first framework,
we repeat same experimental steps with the second frame-
work. We do experiments with binary feature sets firstly
and we find out that the combination of TQWT+MFCC
performs better than all binary combinations with the accu-
racy rate of 0.845. In this combination, although there is no
increase in performance in terms of accuracy according to
first framework, main improvement is realized in MCC score
with an increase of 2.5%. When the triple set combination
results are examined, we can conclude that the second frame-
work improves both accuracy and MCC rates in all feature
combinations compared to the first framework. While most
significant accuracy change occurs in the combination of
TQWT+MFCC+Concat (approx. 4%), the MCC rate of this
combination also increases from 0.506 to 0.632. In addition,
we compare our results with SVM classifier. Although SVM
classifier is a powerful alternative to the CNN based models,
the highest overall classification success has been achieved
with the model-level CNN combination approach. Model-
level CNN has established superiority over SVM classifier,
especially in experiments where the combination of 3 differ-
ent feature sets is used. Also, we validate our results with
recent study that has used the same dataset and validation
process. Our proposed CNN that uses model combination
approach is a strong alternative to Sakar et al.’s [16] study
with an accuracy rate of 0.869 with the F-Measure and
MCC rates of 0.917 and 0.632 respectively. Opposite to the
Sakar et al that has used manual feature engineering
approach, our proposed CNN utilizes from the parallel convo-
lution layers corresponding to each feature set to create fea-
ture representations directly and automatically. This brings us
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successful classifiers that are fed with deep features obtained
from different feature sets with non-linear transformations.

Upon examination of all experimental results, it is found
out that deep features extracted via parallel convolution lay-
ers improve the classification accuracies especially when
using more features sets. Deep features also boost up the
discriminative power of the classifiers as proven in MCC
rates. When the highest classification results obtained from
both frameworks are examined, it is seen that TQWT fea-
tures show promising performance when they take part in
both model-level and feature-level combinations. In addition,
the success of classification has increased in all results where
TQWT has been used with MFCC features. There are two
reasons why MFCC features are successful. The first reason is
that MFCCs are capable of modeling non-linear logarithmic
audio frequencies perceived by the human ear. MFFCs also
yield information regarding the audio frequencies without
requiring pitch detection. The second one is that MFFCs can
detect the changes on resonant frequencies that are occurred
by the anatomy of the tract and functioning of voice artic-
ulators. Since the fluctuations on resonant frequencies are
the main indicator in PD, satisfactory experimental results
can be noted even only MFCC features. When Concat fea-
tures give general information about audio signals, the use
of these features with Wavelet has lowered the accuracy of
classification.

The main advantages of the proposed frameworks intro-
duced in this study with respect to the feature based models
in the previous studies [6], [7], [16], [18] can be summarized
as follows:

« Unlike recent PD prediction studies [6], [16] that include
feature selection and classification steps separately, our
proposed frameworks are designed as classification
pipeline that combine feature selection and classification
steps.

o Our work is the first study to implement the CNN with
parallel layers for detection of PD. Parallel convolution
layers allows to extract feature representations from dif-
ferent types of features.

o Since our dataset includes in 3 voice recordings per
individual and we aim to prevent the use of the same
individual’s records in both the training and the testing in
Cross-Validation (CV), we validate our proposed models
with LOPO CV. Opposite to our study, most of related
studies used leave-one-out cross validation technique
which results in biased predictive models in case of
having multiple recordings per individual. It is clear
that when LOPO CV is performed on model validation,
the accuracy rates of the proposed models dramatically
decrease according to reported accuracy rates in the
literature.

« Most PD studies use only accuracy rates which can be
a misleading metric in case of skewed class distribution
[46]. Inspired by study [16], we use F-Measure metric
along with MCC to analyze our classification results.
F-measure and MCC seem to be very promising and
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efficient from the point of view of assessing the discrim-
inative power of the models.

In regard to future works, we aim at extending our recent
study with different ways. With the help of parallel con-
volution layers in our proposed CNN, different data types
simultaneously can be fed into the network as inputs. This
gives us chance to utilize from the multi-modal data in PD
classification. In the future, we plan to use different types
of data obtained from wearable sensors in PD classification.
Also, we plan to use different deep learning models in classi-
fication process. Long-short Term Memory (LSTM) will be
the first option we consider due to its ability in modelling time
series (sensor) data.
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