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ABSTRACT This study presents a modified recurrent neural network (RNN) model designed as a parallel
computing structure for serial information processing. The result is a novel parallel recurrent neural
network (P-RNN), proposed for application to time-varying signal classification. The network uses gated
recurrent units (GRUs) for basic information processing and consists of a multi-channel time series signal
input layer, parallel processing structure units, a signal feature fusion layer, and a softmax classifier. The
P-RNN expands the existing RNN serial processingmode formulti-channel time-varying signals into parallel
mode and realizes the embedding of multi-channel signal structure features. In these parallel processing
units, the input signal for each channel corresponds to a GRU recurrent network. Feature extraction and
attribute association of single-channel signals were performed to achieve parallel processing of all-channel
signals. In the feature fusion layer, feature vectors from each channel signal were integrated to generate a
comprehensive feature matrix. On this basis, the softmax function was used as a classifier for multi-channel
signals. With this mechanism, the P-RNN model achieved independent feature extraction of single-channel
signals, characteristic fusion of each channel signal, and signal classification based on an integrated feature
matrix. This approach maintained characteristic combination relationships that improved serial modes for
existing RNN multi-channel signal processing, reduced the loss of structural feature information, and
improved the representation ability of combined feature in local time region and the efficiency of the
algorithm. In this paper, the properties of the proposed P-RNN are analyzed and a comprehensive learning
algorithm is developed. Seven disease classification types commonly diagnosed using 12-lead ECG signals
were used to validate the technique experimentally. Results showed the computational efficiency improved
by a factor of 11.519, compared with existing RNN serial processing times, producing a correct recognition
rate of 95.976%. In particular, the resolution of signal samples with similar distribution characteristics
improved significantly, which demonstrates the effectiveness of the proposed technique.

INDEX TERMS Time-varying signal classification, recurrent neural network, parallel structures, feature
fusion.

I. INTRODUCTION
Pattern classification problems usingmulti-channel nonlinear
time-varying signals are common in a variety of computer
vision applications [1]. Such signals are multi-component
waveforms with a frequency and amplitude that vary with
time, exhibiting both non-linearity and non-stationarity [2].

The associate editor coordinating the review of this article and approving
it for publication was Md. Kamrul Hasan.

This combination of attributes and structural features com-
plicates the corresponding classification process, making this
a critical issue in the fields of signal analysis and machine
learning [3]. Multi-channel signals must be considered not
only a characteristic distribution of single-channel data, but
also as global structural information between signals in each
channel and a combination relationship for local regional
features [4]. Time-varying samples are also subject to ran-
dom disturbances, noise, and coupling between signals. As a
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result, such data tend to show multi-peak characteristics,
as well as scaling, drift, and noise artifacts that are highly
dependent on the associated time scale [5]. Process charac-
teristics for multiple signal combinations in multi-variable
systems exhibit a particularly high degree of complexity [6].
As such, most existing algorithms consider time-varying sig-
nals to be both short-term stationary and linear, focusing
instead on information contained in the time and frequency
domains [7]. They also extract digital features describing
signal distribution patterns for further analysis. As a result,
any information carried by these signals that changes over
time is partially ignored or lost, which affects the objectivity
and accuracy of time-varying information extraction [8]. This
omission can have a detrimental effect in practical applica-
tions such as high-frequency sensor signal acquisition, mas-
sive stream data processing, and multi-source time-varying
signal fusion. These fields are currently experiencing rapid
growth that continues to increase efficiency requirements and
introduces new challenges for the analysis and modeling of
multi-channel time-varying signals.

Artificial neural networks are a common tool that have
proven to be effective for signal processing.With the develop-
ment of deep learning, modified neural network models have
been proposed for time-varying signal analysis, including
deep convolutional neural networks [9], deep auto-encoder
neural networks [10], deep recursive networks [11], deep
recurrent networks, and Markov chains [12]. Deep recur-
rent networks have exhibited particularly good adaptabil-
ity for the classification and analysis of time-varying
signals [13] and they have successfully been applied to
speech recognition [14], natural language processing [15],
and document analysis [16]. Recurrent networks are based
on initial work done by Rumelhart in 1986 [17]. Elman
(1990) proposed simple RNNs (SRNs), which are 3-layer
networks with context units added to the hidden layer.
SRNs are also capable of completing sequence prediction
tasks that standard MLPs cannot solve [18]. Schuster (1997)
extended regular RNNs and introduced bidirectional recur-
rent neural networks (BRNNs), which can be trained without
the limitation of providing input information to a preset
future frame [19]. Hochreiter (1997) introduced a novel,
efficient, gradient-basedmethod called long short-termmem-
ory (LSTM), a deep learning system that avoids the vanishing
gradient problem. LSTM performs well even when pre-
sented with long delays between significant events, allowing
it to process signals with mixed low- and high-frequency
components [20]. Jaeger (2004) presented a special type of
RNN method, for learning nonlinear systems, called echo
state networks (ESNs). These large-scale randomly con-
nected recurrent networks are used to replace the middle
layer of classical neural networks in order to simplify the
network training process [21]. Graves (2013) investigated
deep recurrent neural networks, which combine multiple
levels of representation and a flexible use of long-range con-
text. The combination of deep, bidirectional, long short-term
memory RNNs with end-to-end training and weighting noise

has produced state-of-the-art results for phoneme recognition
using the TIMIT database [22]. Auli (2013) proposed a joint
language and translation model based on a recurrent neural
network, which predicted target words using an unbounded
history of both source and target words [23]. Cho (2014)
proposed gated recurrent unit (GRU) networks for neural
machine translation. GRUs provide improvements over con-
ventional RNNs [24]. Koutnik (2014) introduced a simple
yet powerful modification to the standard RNN architec-
ture, the clockwork RNN (CW-RNN), for sequence predic-
tion and classification [25]. Li (2015) introduced a novel
parallel recursive deep model (PRDM) used for predicting
sentiment label distributions. The primary advantage of this
technique is that it not only uses composition units, but
also exploits information encoded among the structure of
sentiment labels [26]. Hidasi (2016) introduced a number of
parallel RNN architectures to model sessions based on the
features (images and text) of clicked items [27]. Wang (2016)
presented a novel parallel-fusion RNN-LSTM architecture
by combining the advantages of a simple RNN and LSTM,
which produced better results than a dominated algorithm and
improved the operational efficiency [28]. Turchenko (2010)
developed a parallel algorithm for batch pattern training of a
recurrent neural network using a back-propagation algorithm
and a general-purpose parallel computer [29]. In recent years,
the design of parallel computing framework has attracted
extensive attention in machine learning. Larhlimi (2018)
proposed a GPU parallel Neural Hierarchical Multi Objec-
tive solver, which has strong scalability and adaptability in
framework [30]. Połap (2018) proposed three parallel strate-
gies of meta-heuristic algorithm, which greatly improves the
accuracy and efficiency of the solution [31].

Comprehensive analysis suggests that existing parallel
RNN models are primarily intended for applications such
as image and text analysis, sentiment label prediction, and
speech recognition. These tasks typically require multiple
RNNs to construct parallel architectures. Most of the RNN
models used for time-varying signal analysis implement
serial feature extraction and the association of temporal
information based on feature vectors. In the classification
of multi-channel signals, the RNN is processed in a serial
mode in which each channel signals are sequentially con-
nected. This delays the correlation and memory allocation of
time-varying signal features, causing suppression of network
property parameters determined by previous signals. Par-
tial combination features and structural information between
multi-channel signals are subsequently lost, increasing the
required training time. If the serial processing mode of
the existing RNN for multi-channel time-varying signals is
extended to the parallel mode, and the structural information
of the signal can be embedded in the mechanism, the com-
putational efficiency and classification accuracy of the RNN
can be improved.

This study proposes a parallel-structure recurrent neural
network (P-RNN) model for multi-channel time-varying sig-
nal classification. In the presented architecture, serial signal
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FIGURE 1. The recurrent network and information processing workflow based on GRU gated units.

processing models in existing RNNs are modified to form
parallel calculation structures. Each channel input then cor-
responds to a deep GRU recurrent network, used for fea-
ture extraction and attribute association of single-channel
signals. Feature vectors in each channel were sparsely fused
to produce a comprehensive feature matrix of multi-channel
signals, by establishing a fusion layer after the parallel struc-
ture units. A softmax classifier was then used to classify
multi-channel signals based on this comprehensive matrix.
The proposed P-RNN not only achieved independent fea-
ture extraction of single-channel signals, but also main-
tained structural information and combination relationships
for multi-channel signals. This result improved the RNN’s
ability to identify global features in multi-channel signals and
significantly improved algorithm efficiency.

Cardiovascular disease diagnosis using electrocardio-
grams (ECGs) is currently of significant interest in the field of
artificial intelligence [32]. ECG signals exhibit unique char-
acteristics includingmulti-peak, non-stationary, periodic, and
high background-noise. These structural properties can com-
plicate the combination of 12-lead signals. In clinical settings,
some diseases may exhibit abnormal changes in only a few
leads or local time interval, while others remain unaffected.
Diagnosis is then dependent on the structural characteristics
of multiple leads in the local region. In this study, classifica-
tion of seven disease types was conducted using 12-lead ECG
signals. The proposed model was validated by identifying
local sensitive characteristics of single-lead signals and the
combined characteristics of multiple leads.

The remainder of this paper is organized as follows. After
presenting current challenges in time-varying signal classifi-
cation and the status of artificial neural networks for signal
processing, a novel P-RNN classification model and cor-
responding algorithm are proposed. Section 2 analyzes the
P-RNN and its theoretical properties. In Section 3, a com-
prehensive learning algorithm is developed for the P-RNN.
Classification experiments using ECG signals are presented
in Section 4 and the results are discussed. The study is then
summarized and the advantages and limitations of the pro-
posed model are detailed in the conclusion.

II. THE PARALLEL-STRUCTURE RECURRENT
NETWORK MODEL
This study introduces a parallel-structure deep recurrent neu-
ral network (P-RNN) with a GRU gating serving as the
basic information recurrent unit. The structure and perfor-
mance parameters of this GRU were used to extract and
memorize distribution characteristics of time-varying signals.
Each channel corresponded to a GRU recurrent network,
which facilitated the feature extraction and characterization
of single-channel signals. All processing was implemented in
a parallel structure to form a parallel GRU recurrent network.
Signal features in each channel were integrated by adding
a fusion layer, thereby producing a comprehensive feature
matrix. A softmax classifier, developed from this matrix, was
then used to classify multi-channel time-varying signals. The
complexity of such signals varies in practical applications,
which introduces a variety of deep GRU recurrent network
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structures to achieve full extraction and high-level character-
ization of complex signal features.

A. THE GRU RECURRENT NETWORK MODEL
Gated recurrent units (GRUs) include reset and update gates.
In this structure, which embeds self-renewal states into
hidden states after linear accumulation, lower GRU model
parameters typically result in higher algorithm efficiency.
The recurrent network structure and GRU-based information
processing workflow are shown in Fig. 1. The forward prop-
agation formula can be expressed as follows:

(1) The input layer includes input data given by{
x(t) ∈ Rn×d

}T
t=1, where x

(t) represents the input at time t
and T is the length of the time series.
(2) The GRU recurrent unit consists of reset and update

gates. Reset gates (rt ∈ Rn×d ) can be expressed as:

rt = σ
(
x(t)Wxr + h(t−1)Uhr + br

)
. (1)

Update gates (zt ∈ Rn×d ) are represented by:

zt = σ
(
x(t)Wxz + h(t−1)Whz + bz

)
. (2)

In the above expressions,Wxy,Wxz ∈ Rd×h andUhr ,Uhz ∈
Rh×h are weighting parameters, br , bz ∈ R1×h are deviation
parameters, and σ is a sigmoid function over the range [0, 1].
The range of rt and zt is also [0, 1]. The candidate hidden
state at time step t is h̃(t) ∈ Rn×h, expressed as:

h̃(t) = tanh
(
x(t)Wxh +

(
rt � h(t−1)

)
Uhh + bh

)
. (3)

Here, the terms Wxh ∈ Rd×h,Uhh ∈ Rh×h are weighting
parameters, bh ∈ R1×h is a deviation parameter, and �
indicates multiplication of individual elements. The hidden
state at time step t is h(t) ∈ Rn×h, represented by:

h(t) = zt � h(t−1) + (1− zt )� h̃(t). (4)

Here, zt represents the update gate at the current time step,
h(t−1) indicates the hidden state at the previous time step, and
h̃(t) represents a candidate hidden state at the current time.
(3) The GRU recurrent network includes hidden layer

states given by:

h(t)i = zt � h
(t−1)
i + (1− zt )� h̃

(t)
i , (5)

where zt represents the update gate for the ith layer at the cur-
rent time step, h(t−1)i indicates the hidden state of the ith layer
at the previous time step, and h̃(t)i represents the candidate
hidden state of the ith layer at the current time. The output of
the recurrent unit is:

y(t)i = σ (Wo · h
(t)
i )+ bo, (6)

where Wo is a weighting parameter and bo is a devia-
tion parameter. The output of the fully-connected layer is
given by:

y(o)i = relu(Wfcy
(t)
i )+ bfc, (7)

FIGURE 2. The structure of the deep recurrent network model.

whereWfc is a weight parameter in the fully-connected layer,
bfc is a deviation parameter, and relu is a linear activation
function.

B. THE DEEP GRU RECURRENT NETWORK
Due to the complexity of characteristic distributions for
time-varying signals, several GRU recurrent networks were
stacked to form a deep recurrent neural network model.
The structure and information processing workflow for this
proposed technique are shown in Fig. 2. The hidden layer
in the deep recurrent network was stacked with multiple
GRU recurrent networks, with temporal expansion in the
horizontal direction and stack depth in the vertical direction.
Time-varying signals were input from the input layer to the
recurrent network. Inputs to the current layer were com-
posed of outputs from the previous hidden layer and the cur-
rent input signal. The information processing workflow for
these deep recurrent neural networks can be summarized as
follows:

(1) The signal input at time t consists of the input h(t−1)j
from the hidden layer at time t − 1 and the signal input
x(t) at the current time. This process can be represented as:
h(t)j = Wx(t) + Uh(t−1)j , where W ,U are weight matrices.
(2) Connections exist between hidden layer neurons, which

reflects the expansion of time and ensures the continuity of
time-varying signals (t ∈ {t1, t2, · · · , tn}).
(3) Multiple GRU recurrent networks were stacked to form

deep recurrent networks h = {h(1), h(2), · · · , h(n)}. The out-
put of the previous hidden layer was then used as the input for
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FIGURE 3. The parallel GRU recurrent network model.

the next hidden layer (h(n)in = h(n−1)out ). This formed an n-layer
recurrent network.

(4) Layer features, prior to the extraction of classifiers to
form a feature matrix, were used as input to the softmax clas-
sifier. The multi-classification softmax function was defined
as follows:

hθ =


p(y(i) = 1|x(i); θ )
p(y(i) = 2|x(i); θ )

· · ·

p(y(i) = k|x(i); θ )

 = 1∑k
j=1 e

θTj x
(i)


eθ

T
1 x

(i)

eθ
T
2 x

(i)

· · ·

eθ
T
k x

(i)

 , (8)

where θ1, θ2, · · · , θk ∈ Rn+1 are model parameters and
1∑k

j=1 e
θTj x

(i) was used to normalize the probability distribution

with the sum of all probabilities being 1. The term p(y(i) =
j|x(i); θ ) represents the estimated probability value belonging
to category j.

C. THE PARALLEL-STRUCTURE RNN MODEL
This P-RNN model was used to design serial processing
modes for GRU deep recurrent networks. The time-varying
signals discussed in Section 2.2 were organized into a par-
allel structure and each channel signal was processed sepa-
rately by a GRU recurrent network. Parallel structures were
formed by multiple GRU networks with single-channel sig-
nals. Multi-channel signal features were integrated in the
subsequent feature fusion layer to generate a comprehensive
feature matrix. A softmax function was then used as a classi-
fier for multi-channel signals. The structure and information
processing workflow for this P-RNN are shown in Fig. 3.

The first half of the network model adopts a parallel struc-
ture, with each channel input signal corresponding to a single
deep GRU recurrent network. Each channel time-varying
signal was then processed and the features were extracted
by a recurrent network to generate a signal feature vector.
In the second half of the model, a feature fusion layer was
stacked after the parallel structure to achieve feature conver-
gence of all channel signals, thereby producing a compre-
hensive feature matrix of multi-channel signals. A softmax
classifier was linked after the feature fusion layer to achieve

multi-channel signal classification based on a comprehensive
feature matrix.

This multi-channel softmax classifier is defined as follows:

hθ =


p(y(i) = 1|fea(i); θ )
p(y(i) = 2|fea(i); θ )

· · ·

p(y(i) = k|fea(i); θ )

 = 1∑k
j=1 e

θTj fea
(i)


eθ

T
1 fea

(i)

eθ
T
2 fea

(i)

· · ·

eθ
T
k fea

(i)

 ,
(9)

where θ1, θ2, · · · , θk ∈ Rn+1 are model parameters. The
classification of multi-channel signals was achieved using
maximum probability membership.

According to the structure of P-RNNmodel and the way of
information processing, the time series signal corresponds to
the GRU processing unit. The longer the time series, the more
neurons in each layer. At the same time, the more complex
the process characteristics of time-varying signals, the higher
the requirement for feature extraction and memory ability
of the network, and the more hidden layers of the network.

This P-RNN has the following advantages. (1) The model
not only considers differences between the characteristics of
single-channel signals for each sample, but also the com-
bined characteristics of all channel samples. (2) The effi-
ciency of the signal processing algorithm was significantly
improved by the inclusion of a parallel computing structure.
(3) Signal samples can be processed in various sampling time
intervals.

III. THE P-RNN LEARNING ALGORITHM
The P-RNN learning process can be divided into the follow-
ing steps. (1) Each channel signal corresponded to a GRU
recurrent network, with the class label of the multi-channel
signal serving as the desired output for iterative training. The
exchange of parameters was not performed between parallel
modules. (2) Feature vectors were then generated and feature
integration of multi-channel signals was achieved in the fea-
ture fusion layer. (3) The softmax classifier was then trained
and fine-tuning of P-RNN parameters was conducted using
the BP algorithm.
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Learning algorithm steps in the parallel GRU deep recur-
rent network were as follows:

(1) Construction of the n-channel signal training dataset
was represented as {x(t) ∈ Rn, y(t) ∈ Rm

}
T
t=1, where x

(t)

represents the input at time t . The length of the time-series
was T and the output y(t) was related to the input before (and
including) time t . The ith channel signal sample set was given
by: {x(t)i ∈ R, y(t) ∈ Rm

}
T
t=1, where i = 1, 2, · · · , n. Here,

x(t)i represents the input of the ith channel signal at time t .
(2) The training of single-channel GRU recurrent net-

works was conducted by calculating reset gates, update gates,
the output of candidate hidden states, and hidden states in
each GRU unit of the recurrent network corresponding to
each channel signal. This calculation is described in (1)− (4)
above. A loss function was constructed using the negative
logarithmic likelihood.

The loss function can be expressed as:

L
(
{x(1), x(2), · · · , x(t)}, {y(1), y(2), · · · , y(t)}

)
=

∑
t

L(t)

= −

∑
t

log pmodel
(
y(t)|{x(1), x(2), · · · , x(t)}

)
, (10)

where L(t) is the negative logarithmic likelihood of y given
x(1), x(2), · · · , x(t). The term pmodel

(
y(t)|{x(1), x(2),· · · ,x(t)}

)
reads the item corresponding to {x(1), x(2), · · · , x(t)}, and the
output of the model is the probability of y(t). Here it is
assumed that the data obey Gauss distribution.

The stochastic gradient descent algorithm was then used to
develop an updating iterative formula for the recurrent neural
network state:

∇h(t)L =
(
∂h(t+1)

∂h(t)

)T (
∇h(t+1)L

)
+

(
∂o(t)

∂h(t)

)T (
∇o(t)L

)
= W T (

∇h(t+1)L
)
diag

(
1− (h(t+1))2

)
+ V T (

∇o(t)L
)
,

(11)

where diag
(
1− (h(t+1))2

)
represents a diagonal matrix con-

taining elements 1 − (h(t+1)i )2. W represents the connection
weight parameter matrix from the input layer to the hidden
layer, and V represents the connection weight parameter
matrix from the hidden layer to the output layer.

Iterative calculation formulas for other network parameters
are as follows:

∇cL =
∑
t

(
∂o(t)

∂c

)T
∇o(t)L =

∑
t

∇o(t)L, (12)

∇bL =
∑
t

(
∂h(t)

∂b(t)

)T
∇h(t)L=

∑
t

diag
(
1−(h(t))2

)
∇h(t)L,

(13)

∇VL =
∑
t

∑
i

(
∂L

∂o(t)i

)T
∇V o

(t)
i =

∑
t

(
∇o(t)L

)
h(t)

T
,

(14)

∇WL =
∑
t

∑
i

(
∂L

∂h(t)i

)
∇W (t)h(t)i

=

∑
t

diag
(
1− (h(t))2

) (
∇h(t)L

)
h(t−1)

T
, (15)

∇UL =
∑
t

(
∂L

∂h(t)i

)T
∇U (t)h(t)i

=

∑
t

diag
(
1− (h(t))2

) (
∇h(t)L

)
x(t)

T
, (16)

In the above expressions, c represents the bias vector of linear
transform from h(t) to o(t), and b represents the bias vector
in linear combination transform h(t−1) and x(t). U represents
the connection weight matrix from hidden states to hidden
layer units.

(3) The fusion of multi-channel signal features was
achieved using a combination of spatial and temporal
feature fusion. Sparse feature matrices acquired from the
multi-layer extraction of each recurrent network were stacked
according to the channel number of the input signal. This
fusion function was defined as: f : x1t + x2t + · · · +
xnt → yt , where x1t , x

2
t , · · · , x

n
t represent the characteristic

matrices for each deep recurrent network at time t . The
integrated feature matrix after fusion can be represented as
follows: 

x(t)11 x(t)21 · · · x(t)n1
x(t)12 x(t)22 · · · x(t)n2

· · ·

x(t)1n x(t)2n · · · x(t)nn

 . (17)

(4) The training softmax classifier accepts integrated fea-
ture matrices as input and produces multi-channel signal
sample labels. The classification function is defined as:

hθ (x(i)) =


p(y(i) = 1|x(i); θ )
p(y(i) = 2|x(i); θ )

· · ·

p(y(i) = k|x(i); θ )

 = 1∑k
j=1 e

θTj x
(i)


eθ

T
1 x

(i)

eθ
T
2 x

(i)

· · ·

eθ
T
k x

(i)

 .
(18)

The weighting parameter matrix is given by:

θ =


θT1
θT2
· · ·

θTk


k×(n+1)

. (19)

In the training process, over-fitting is prevented using a
dropout item [33] for control. The cost function for the soft-
max classifier during the training phase is given by:

J (θ ) = −
1
m

 m∑
i=1

k∑
j=1

1{y(i) = j} · log(p(y(i) = j|x(i); θ ))


+
λ

2

k∑
i=1

n∑
j=0

θ2ij , (20)
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where θj is a row vector representing the weight of each input
x connected to the jth classification output. Division in the
logarithm above can be expressed in terms of subtraction:

J (θ )

= −
1
m

 m∑
i=1

k∑
j=1

1{y(i) = j} · log(θTj x
(i)
− log(

k∑
l=1

eθ
T
l x

(i)
))


+
λ

2

k∑
i=1

n∑
j=0

θ2ij , (21)

where, λ ∈ (0, 1) is a balance parameter.
By implementing the stochastic gradient descent algo-

rithm, the updated iteration formula for softmax classifier
parameters can be expressed as:

∇J (θ )
∇θj

= −
1
m

m∑
i=1

[
∇
∑k

j=1 1{y
(i)
= j}θTj x

(i)

∇θj

−

∇
∑k

j=1 1{y
(i)
= j} log

(∑k
l=1 e

T
l x

(i)
)

∇θj

+ λθj
= −

1
m

m∑
i=1

x(i)
[
1{y(i) = j} − p(y(i) = j|x(i); θ )

]
+λθj

(22)

(5) P-RNNmodel parameters were optimized using the BP
algorithm and the training set {x(t) ∈ Rn, yn ∈ Rm

}
T
t=1.

IV. APPLICATION TO ECG SIGNAL CLASSIFICATION
ECG signals reflect changes in the electrical potential of the
human heart. These data often exhibit multiple peaks, peri-
odicity, non-stationary waveforms, and high levels of back-
ground noise. Various cardiovascular diseases correspond to
different signal distribution characteristics [34].

A. THE EXPERIMENTAL DATASET
The data used in this validation experiment consisted of 12-
lead ECG signal samples from the Chinese Cardiovascular
Disease Database (CCDD) [35]. The sampling frequencywas
500 Hz and each recording interval was longer than 10 sec-
onds. Samples were marked by beat segmentation and the
diagnosis of medical experts. Delete samples with vague
markers, insufficient duration, or incomplete waveforms in
candidate data. Seven such classes including 50408 samples
were identified to construct the sample dataset. Relevant
information, such as disease name, sample distribution, and
category code are shown in Table 1.

As the dimension andmagnitude of each lead differed, data
were normalized using:

x ′(t) = x(t)−min x(t)/max x(t)−min x(t), (23)

where min x(t) and max x(t) are the minimum and maximum
values of ECG lead signals in a measurement interval.

TABLE 1. The distribution of experimental sample data.

B. THE P-DRNN MODEL FOR ECG SIGNAL
CLASSIFICATION
In the experiment, 12 input channels were established in
a parallel GRU recurrent network, corresponding to the
12-lead ECG signals. The parallel structure unit was com-
posed of 12 deep GRU recurrent networks, each of which
was composed of 6 GRU information unit layers. The first
layer was a time-series input layer and the other layers were
GRU hidden layer units. There were 128 neurons in the first
through fourth hidden layers, 64 neurons in the fifth layer,
and 128 neurons in the sixth layer. A ReLU linear function
was used as the activation function. Each channel input signal
corresponded to aGRUdeep recurrent network during feature
extraction, producing a 128-dimensional feature vector. The
feature fusion layer integrated signal feature vectors in each
channel to form a multi-channel signal integrated feature
matrix with dimensions of 12 × 128. A softmax classifier
developed from thismatrix was used to classifymulti-channel
signals. This classifier included 12 × 128 input nodes and
7 output nodes.

C. EXPERIMENTAL RESULTS
1) ANALYSIS
The sample set was randomly divided into 2 groups according
to the proportion of the disease. The training set consisted
of 37,806 samples while the test set included 12,602. Prop-
erty parameters and connection weights in the P-RNN were
determined by the learning algorithm discussed in Section 3.
The experiment was performed using an NVIDIA TITAN X
GPU with a core frequency of 1418 MHz. Since the ECG
sampling duration varied in the data set, a consistent pro-
cessing step was included for standardization. In this process,
15 seconds were taken as the sampling interval. The parts
that exceed 15 seconds was truncated, and a portion of less
than that is complemented by a numerical value of 1000 [36].
The training error was set to 0.05, the maximum number of
iterations was 10,000. Test samples were then classified and
identified. The classification results for 7 disease types and
various evaluation indicators are shown in Table 2, achieving
a recognition accuracy of 95.86%.

In 12-lead ECG signals, each lead is indicative of
different symptoms corresponding to different types of
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TABLE 2. Experimental results for the proposed P-RNN.

cardiovascular diseases. As such, the relative importance of
each signal differs depending on the diagnosis. The P-RNN
can independently extract signal characteristics for each
lead during information processing and adaptively select the
lead signal with the most significant effect on classification
using feature weighting. The combined characteristics in
local regions of 12-lead ECG signals also have an important
impact on disease diagnosis. The P-RNN can simultaneously
describe the role of these two factors through the learning of
various models in large-scale training sets and the association
of category attributes.

2) CONTRAST EXPERIMENTS AND ANALYSIS
This study conducted a series of contrast experiments utiliz-
ing three other deep neural network models that can directly
classify multi-channel process signals. This included the
multi-channel deep convolutional neural network proposed
by Yi in 2014 [37], the LSTM+RF deep neural network
based on an LSTM recurrent network, a random forest classi-
fication algorithm proposed by Sharma in 2018 [38], and the
deepGRU recurrent network proposed by Rajan in 2018 [39].
These three models were compared to the proposed network
using a series of tests involving the same training sample set
and test set for disease classification and discrimination.

In this experiment, the architecture for the MC-DCNN
model was I-C1(Size)-S1-C2(Size)-S2-H-O, where Size
denotes the kernel size, C1 and C2 denote the number of
filters, and S1 and S2 denote the subsampling factors. I,
H, and O respectively denote the number of input layers,
units in the hidden layer, and MLP output layer. Using
comparative analysis, this architecture was determined to be
12-8(5)-2-4(5)-2-440-10. A series of two LSTM networks
were constructed in the RNN + RF model and the number
of hidden layers in each LSTM was set to 6. A random forest
classifier was then established in the feature vector space to
achieve classification, and the number of trees was 160. The
GRU recurrent network was composed of 12 layers of GRU
information units.

A 4-fold crossover experiment was conducted in which the
sample set was randomly divided into 4 groups, according to

TABLE 3. Experimental results for comparable models.

TABLE 4. The confusion matrix for 7 classification ECG signals using the
proposed technique.

TABLE 5. The confusion matrix for a serial GRU recurrent network.

the proportion of disease type, with 12602 samples per group.
Three of these were combined to form a training set while
the remaining group served as the test set. Average values
for each evaluation index across four experimental trials were
used as the contrast index. These results are shown in Table 3,
where it is evident that the proposed method achieved the best
results for each evaluation index. This is primarily because
our method is based on information fusion of characteristics
from each lead signal in the mechanism, which can better
maintain distribution characteristics for single-lead signals
and structural information between 12-lead signals. This
improved the identification of 12-lead sample distributions.
This multi-channel parallel computing framework considers
model parallelism and data parallel processing, which lower
parallel runtime by a factor of 11.519 (compared with serial
computing). The high recognition rate, stability, and general-
izability of the network have been significantly improved.

Feature recognition ability were used to compare the serial
recurrent network and parallel models to samples with similar
morphological distributions. Two methods were used to cal-
culate a confusion matrix for recognition results from 7 clas-
sification tests. These results are shown in Tables 4 and 5 and
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suggest the method presented in this paper can significantly
improve the ability to distinguish samples with similar dis-
tribution characteristics and other easily confused samples.
This is because 12-lead ECG signals are periodic and parallel
models are better than serial models in describing characteris-
tics and combination relationships for multi-channel signals.
In addition, some diseases are only sensitive to multiple lead
signals when typical features of the disease are present in only
a local region of the signal. Serial processing considers long
signals connected by all leads, which affects and suppresses
the extraction and storage of local signal features. Parallel
processing effectively overcomes this limitation.

V. CONCLUSION
In this paper, a parallel-structure deep recurrent neural
network was established for structural feature extraction
and multi-channel time-varying signal classification. In the
model, an existing serial processing RNN for multi-channel
signals was designed as a parallel processing structure for
each single-channel signal. Each channel corresponded to a
deep recurrent network used to extract feature information.
The feature integration of each channel signal was then com-
pleted in the feature fusion layer. This approach considered
both model and data parallelism, facilitating multi-core and
multi-thread parallel computing. The proposed P-RNN was
applied to the classification of 12-lead ECG signals to val-
idate its effectiveness. Experimental results showed that the
performance evaluation index and the confusion matrix prop-
erties improved significantly, indicating the P-RNN can dis-
tinguish distribution characteristics for single-channel signals
and structural features for multi-channel signals. The results
of 4-fold crossover experiment show that it improved the
robustness and generalizability of the model, which increased
the computational efficiency. As a result, the proposed net-
work has significant potential for application tomulti-channel
signal classification.
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