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ABSTRACT An accurate vision system to classify and analyze fruits in real time is critical for harvesting
robots to be cost-effective and efficient. However, practical success in this area is still limited, and to the
best of our knowledge, there is no research in the area of machine vision for date fruits in an orchard
environment. In this work, we propose an efficient machine vision framework for date fruit harvesting
robots. The framework consists of three classification models used to classify date fruit images in real time
according to their type, maturity, and harvesting decision. In the classification models, deep convolutional
neural networks are utilized with transfer learning and fine-tuning on pre-trained models. To build a robust
vision system, we create a rich image dataset of date fruit bunches in an orchard that consists of more than
8000 images of five date types in different pre-maturity and maturity stages. The dataset has a large degree of
variations that reflects the challenges in the date orchard environment including variations in angles, scales,
illumination conditions, and date bunches covered by bags. The proposed date fruit classification models
achieve accuracies of 99.01%, 97.25%, and 98.59% with classification times of 20.6, 20.7, and 35.9 msec
for the type, maturity, and harvesting decision classification tasks, respectively.

INDEX TERMS Dates classification, maturity analysis, automated harvesting, deep learning, convolutional
neural networks.

I. INTRODUCTION
Global date fruit production was 8.5 million tons in 2016
according to the Food and Agriculture Organization [1]. Date
fruit cultivation is a major strategic agricultural industry in
Middle East and North Africa countries, which produce 91%
of the world’s dates [1]. FIGURE 1 shows the top 10 pro-
ducer countries in the world. Dates are harvested and mar-
keted as fresh ripe fruits at three stages of their development,
Khalal, Rutab, and Tamar, which makes them one of the most
suitable fruits for exportation and consumption throughout
the year [2].

In date cultivation, manual harvesting is the dominant
method used, which requires skilled workers to climb palm
trees to reach date bunches. However, manual harvesting is
dangerous and highly labor-intensive as well as inefficient
in terms of both time and the economy. Such methods are
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the major cause of delays in the date production cycle and
account for more than 45% of the date production cost [3].
Recently, due to the increase in date palm cultivation and
shortage of skilled workers, the cost of date harvesting has
increased significantly, necessitating a change to automated
harvesting. Indeed, advanced agricultural automation such as
robotic harvesting can significantly increase quality and yield
as well as reduce production costs and delays [4].

One of the most important aspects of harvesting robots is
their ability to interpret and analyze visual data. Using an
accurate vision system to classify and analyze fruits in real
time is critical for the harvesting robot to be cost-effective and
efficient. However, practical success in this area remains lim-
ited due to the difficulties caused by unstructured and uncon-
strained agricultural environments [4]. Furthermore, research
on machine vision for date fruits in the pre-harvesting and
harvesting stages is scarce. Hence, in this work, we inves-
tigate the machine vision problem of date fruit classification
based on type, maturity, and harvesting decision in an orchard
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FIGURE 1. Date fruit production of the top 10 producing countries in
2016 [1].

environment. The decision to harvest date fruit depends on
both fruit type (variety) and maturity stage. Date type is a key
factor in determining the stage at which dates are harvested,
unlike most fruits that only depend on the maturity stage of
an individual fruit (i.e. ripe or not). For instance, some types
of dates are harvested in the first maturity stage (Khalal)
such as Barhi, whereas other date types are usually har-
vested later in the Rutab or Tamar stages such as Sullaj and
Khalas. Therefore, an accurate, reliable, and real-time classi-
fication system for date fruits based on both type and matu-
rity in a natural environment is essential to establish robotic
harvesting.

Many studies have been performed to classify and harvest
fruits other than dates such as berries [5], citrus fruits [6],
and apples [7]. Compared with the research on other fruits,
especially in the area of automated harvesting, research on
date fruits is negligible. Most previous research has focused
on dates after the harvesting phase, with research on date fruit
classification or maturity analysis in an orchard environment
lacking. Current studies of date fruits can be categorized
into three groups: type classification [8]–[14], maturity anal-
ysis [15]–[17], and quality grading [18]–[26].

Most research on dates focuses on grading fruit quality.
Date quality can be evaluated by several factors such as
moisture and sugar content, hardness, and surface defects. For
instance, in [19], the authors proposed an electronic sensor to
measure the moisture content of dates to classify them into
moist, semi-moist, and dry. In [20], the researchers adopted
the hardness of dates as a quality indicator, using stepwise
and linear discriminate analysis to grade dates into soft, semi-
hard, and hard. Grading dates according to surface defects has
been investigated in many studies. For example, [21], [22]
proposed techniques using a co-occurrence matrix and color
machine vision for date grading. The study in [23] sorted
dates as defected or good using image analysis techniques.
In [24], a back-propagation neural network was used to clas-
sify dates into three quality grades using size, shape, intensity,
and surface defect features. In the more recent automatic date
grading approach proposed by [26], fuzzy inference was used
to measure the quality of dates based on length and freshness
features.

Unlike quality grading, few studies have analyzed the
maturity of date fruits. The study by [15] investigated date
maturity using infrared spectrometry. In [16], the authors used
a color distribution analysis and back projection to classify
one date type into four maturity classes. In another study [17],
a taxonomy classificationmethodwith RGB color and texture
features including contrast, entropy, and homogeneity was
used to classify one date type into four maturity classes.

The classification of date fruits according to their type
also has limited research. In [8], the researchers developed
a date fruit classification system using neural networks, and
in [9] they used probabilistic neural networks for a simi-
lar task. In [11], 15 size, shape, color, and texture features
were used to classify single date images into seven classes
according to their type. In another study [10], a technique was
proposed based on shape and size features and local texture
descriptors to classify four classes of dates using 800 sin-
gle date images. In a more recent study [12], the authors
classified single date images based on their types using a
dataset containing 5000 images of 10 date types. They used
an RGB color histogram, a gray-level co-occurrence matrix,
and four shape features including area and eccentricity, com-
bined with a Gaussian mixture model. All these studies used
single date images with a uniform background. However,
the handcrafted feature-based approaches used in previous
research are unsuitable for constructing a robust vision sys-
tem that works in unstructured natural environments such
as that of date orchards. In the most recent approach [14],
the researchers reported an accuracy of 99.2% using a deep
learning-based technique for date fruit classification. They
built a dataset of four date types by acquiring date images
from the Google search engine.

None of these previous works has investigated the problem
of date fruit classification or maturity analysis in an orchard
environment. All previous approaches have used datasets
with images from a limited perspective. Further, most such
images were for individual dates in the post-harvesting or
post-production stages, so they were solving simpler prob-
lems than this work, which solves a real-life problem that has
many difficulties.

Automatic fruit classification and maturity analysis in a
natural environment are challengingmachine vision tasks due
to the difference in size, shape, color, and texture proper-
ties of various fruits; the large degree of uncertainty with
unstructured orchard scenes; harsh occlusions; and highly
variable illumination and shadow states. However, these tasks
are more complicated in date fruits due to several aspects.
First, date orchards usually have many types (varieties) of
dates with numerous similarities in their visual appearance.
Second, different date varieties in the same orchard are har-
vested in different maturity stages. Third, individual dates
in one bunch do not mature uniformly (i.e. a date bunch
usually has individual dates at different maturity stages),
which complicates labeling or classifying date bunches into a
specific maturity class. Fourth, date bunches can be covered
with net bags, which distort their visual features. To overcome
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these challenges, we propose an efficient deep learning-based
machine vision framework for date fruit harvesting robots
in an orchard environment. The framework consists of three
classification models to classify date fruit images in real time
according to their type, maturity, and harvesting decision.
In the classification models, deep convolutional neural net-
works (CNNs) are utilized due to their robust ability in auto-
matic feature representation for challenging classification
tasks compared with handcrafted feature-based approaches.
We employ transfer learning with fine-tuning using two
pre-trained CNN models: AlexNet and VGGNet. Transfer
learning is an effective technique used to obtain high accuracy
with less training time using a relatively small dataset.

To build a robust vision system, a rich image dataset of date
fruit bunches is created. The dataset includes a wide degree of
variation to reflect the challenges in natural environments and
date orchards. The dataset consists of more than 8000 images
of date bunches of five date types in different pre-maturity
and maturity stages. It also has large variations in scales,
angles, and illumination with bagged and unbagged date
bunches. The dataset is fully labeled according to type, matu-
rity, and harvesting decision, and it is publicly available with
its associated files to the research community in the IEEE
DataPort repository [27] (http://dx.doi.org/10.21227/x46j-
sk98).

The remainder of this paper is organized as follows.
Section II describes the proposed framework in detail.
Section III presents the dataset and labeling method.
Section IV reports the experimental results. Finally, we con-
clude in Section V.

II. PROPOSED FRAMEWORK
The proposed framework consists of three classificationmod-
els for type, maturity, and harvesting decision. The input to
the framework is a stream of images (frames) from an RGB
video camera in a date orchard. The framework has three
outputs to determine the type, maturity stage, and harvesting
decision of dates in each image. Type and maturity mod-
els are multiclass classifiers that use transfer learning with
fine-tuning based on pre-trained CNN models. We investi-
gate two popular CNN architectures that differ in size and
depth: AlexNet [28] and VGGNet [29]. AlexNet has a light
architecture with a small size, while VGGNet has a deeper
architecture and a larger size. The harvesting decision model,
on the contrary, is a binary classifier that uses the output of
the two previous models with the harvesting rules, which are
entered manually by a user, and then suggests the appropriate
harvesting decision based on all the previous information.
The block diagram in FIGURE 2 provides an overview of the
proposed framework in the training phase (a) and real-time
implementation (b).

A. CNN DEEP LEARNING
Deep learning has become the dominant approach in many
computer vision tasks including object detection, recognition,
and classification [30], [31]. Deep learning achieves high

levels of success in these tasks due to the availability of a
large number of labeled images, such as ImageNet [32], and
substantial computing power devices such as GPUs or dis-
tributed large-scale clusters using cloud computing [33]. The
success of deep learning also goes beyond images and video
to speech and audio. Earlier, its success was restricted by its
need for large databases and long training times. However,
these problems have been solved using transfer learning and
fine-tuning techniques.

A CNN is one of the most successful types of deep learn-
ing. It uses deep convolutional networks and non-linearity
to learn local and spatial features and patterns directly from
raw data such as images, video, text, and sound. A CNN
thus learns the features from data automatically, eliminating
the need to extract them manually. It can build complex
features as an integration of simple features through a series
of successive convolutional layers. The earlier layers learn
low-level features such as edges and curves and the deeper
layers learn to recognize complex high-level features such as
entire objects in an image [30].

CNNmodels can be trained from scratch (with random ini-
tialization) or using transfer learning. Training from scratch
needs a large dataset to learn millions of parameters. In many
tasks such as fruit classification, it is rare for CNNs to learn
from scratch due to the need for a labeled dataset of suffi-
cient size. Instead, it is common to pre-train a CNN using
a large-scale dataset (e.g. ImageNet, which has 1.2 million
images with 1000 classes), and then use the CNN model
either as a fixed feature extractor or as an initialization for
other specific tasks. In transfer learning, the CNN learns
generic mid- and low-level features from a large dataset that
can be fine-tuned by other target datasets [34]. Therefore,
in this work, two CNN architectures, well trained over the
ImageNet dataset [32], are utilized and fine-tuned for the date
fruit dataset. This approach learns features automatically with
high accuracy and short training times.

B. ALEXNET ARCHITECTURE
The AlexNet model was the first deep architecture that pop-
ularized convolutional networks in computer vision and sig-
nificantly improved the classification accuracy of the Ima-
geNet ILSVRC2012 challenge compared with traditional
methods. The AlexNet architecture (FIGURE 3-b) consists
of eight learnable layers, five convolutional (conv) layers
followed by three fully connected (FC) layers. Every con-
volutional and fully connected layer is attached by recti-
fied linear unit (ReLU) as non-linear activation. Adding
non-linearity using ReLUs helps CNNs train much faster.
The first and second convolutional layers are followed by
both local response normalization (LRN) and max-pooling
layers, but only a max-pooling layer is used after the fifth
convolutional layer. The first convolutional layer has 96 ker-
nels (filters) of dimension 11 × 11 with a step (stride) of
four pixels. The strides of the remaining convolutional layers
are set to one pixel. The second layer has 256 kernels of
dimension 5× 5. The third, fourth, and fifth layers have 384,
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FIGURE 2. Block diagram of the proposed date fruit classification framework. (a) Training phase,
(b) real-time employment.

384, and 256 kernels of dimension 3 × 3, respectively. Max-
pooling layers use non-linear down-sampling to abstract the
network. They thus retain the most important features and

reduce the number of parameters that the network needs to
learn, which diminishes network computation. The first two
fully connected layers have 4096 neurons and the last one
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FIGURE 3. Deep learning architectures of the proposed date fruit classification framework based on the VGG-16 (a) and AlexNet (b) pre-trained models.

has 1000 neurons, which is the same as in the ImageNet
classes. The neurons in fully connected layers are connected
to all the neurons in the previous layer. The last layer of the
model provides the classification output using the softmax
classifier.

C. VGGNET ARCHITECTURE
VGG-16, which is the D-configuration in [29], also known
as VGG-D, is the best network configuration among
the VGGNets built by the VGG group [29]. VGG-16
(VGGNet) achieved 92.7% top-five accuracy in the Ima-
geNet ILSVRC2014 challenge. Its architecture is popular
in the literature due to its uniform structure and high accu-
racy in classification tasks. VGG-16 has a deeper network
than AlexNet and consists of 16 trainable layers including

13 convolutional layers and three fully connected layers
(FIGURE 3-a). The model features a homogeneous and
smooth architecture that only uses filters of size 3× 3 with a
stride of one for convolutions, and 2× 2 pooling with a stride
of two in all layers. The convolutional layers are grouped
into five blocks. Adjoining blocks are linked through a max-
pooling layer, which performs down-sampling by half along
the spatial dimensions. Max-pooling reduces the dimensions
of the layers from 224 × 224 in the first block to 7 ×
7 after the last one. The number of convolution filters remains
fixed within one block and doubles after each max-pooling
layer from 64 in the first block to 512 in the last block.
As in AlexNet, the ReLU layer is tailed after each convolu-
tional and fully connected layer. The fully connected layers
in VGG-16 have the same configurations as in AlexNet.
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VGG-16 does not use normalization layers due to their min-
imal contribution to enhancing accuracy.

D. TRANSFER LEARNING
Transfer learning makes CNNs work effectively in many
visual classification tasks, even if their datasets have insuffi-
cient or limited size [35]. In transfer learning and fine-tuning
techniques, the CNN network of a pre-trained model, trained
on a large-scale dataset, can be used either as a feature
extractor [36] or as a weight initializer rather than generating
weight values randomly [37]. The work in [35] discussed the
best practices for transfer learning with fine-tuning.

CNN models have millions of trainable parameters; for
example, AlexNet has 60 million and VGG-16 has 138 mil-
lion. Training these parameters from scratch is difficult using
relatively small datasets such as the one in this work. CNN
networks can easily memorize small datasets, which lead to
overfitting. Hence, to prevent overfitting, transfer learning
was used in this study. Moreover, the size of the dataset
was increased using image augmentation performed on the
training datasets randomly using different values. During the
training phase, the date images in each batch were randomly
subjected to the following operations: horizontal reflection,
horizontal and vertical translation with a random value in the
range [−30 30] pixels, and horizontal and vertical scaling
with a random rate in the range [0.9 1.1].

We used transfer learning with fine-tuning as demonstrated
in [38]. In the fine-tuning technique, the weights of the CNN
models were trained starting from the transferred values for
all the layers excluding the last fully connected layer. Because
this layer was trained to classify 1000 categories (ImageNet
classes), we replaced it with a new one to classify the new
tasks classes, as shown in FIGURE 3. The weights of the
new layer were initialized with random values and its learning
rates were raised compared with the rest of the CNN model.
In fine-tuning, learning rates are reduced for original layers
and boosted for new layers. This changes the CNN model
by only a small amount, as the weights were optimized
using a large dataset and only need to be modified slightly.
However, the new layers change their weights quickly and
therefore learn much faster. We also used dropout layers
with a 0.5 probability after the first two fully connected
layers. The dropout layer generalizes the network and pre-
vents overfitting [39]. At the end of the last fully connected
layer, a softmax layer was used to produce the classification
outputs. The images in the training and testing sets were
resized to 227 × 227 × 3 and 224 × 224 × 3 before feed-
ing them into the AlexNet and VGG-16 networks, respec-
tively. Finally, the models were trained using the training
datasets.

We experimented with different hyper-parameter set-
tings to make the CNN models generalize well. For both
CNN models (AlexNet and VGG-16), the learning rates of
the original and new layers were adjusted to 0.0001 and
0.002, respectively. The weights of the last fully connected
layer were initialized using a Gaussian distribution with

TABLE 1. The number of images taken in the six imaging sessions for all
the date types in the dataset.

zero mean and 0.01 standard deviation. The weights of
the remaining layers were initialized using the pre-trained
models. A stochastic gradient descent optimizer with a
momentum of 0.9 was used to train the CNN models.
A weight decay (regularization) of 0.0001 was added to the
cross-entropy loss function to help reduce overfitting.

III. DATASET
To build a robust vision system, a rich image dataset was
created with 8072 images of more than 350 date bunches
that belong to 29 date palms in an orchard environment.
It included five date types: Naboot Saif, Khalas, Barhi,
Meneifi, and Sullaj. Images of the five date types were cap-
tured at six imaging sessions, as illustrated in TABLE 1.
These sessions covered all date fruit maturity stages (imma-
ture, Khalal, Rutab, and Tamar) as well as intermediate
phases (i.e. transition between the maturity stages). There-
fore, the dataset had a large degree of variation that repre-
sents the challenges in a natural environment and date fruit
orchards. These variations in images included different angles
and scales, different daylight conditions (e.g. poorly illumi-
nated images), and date bunches covered by bags. Sample
images are shown in FIGURE 4.

Date fruit classification using this dataset is challenging.
In the case of type classification, some date types can easily
be distinguished based on their visual appearance, whereas it
is difficult, for even a specialist, to distinguish some types, as
shown in FIGURE 6. In addition, there are large differences
between date bunches of the same type, as they vary in
terms of maturity level, illumination, bagging state, scale, and
angle (FIGURE 4, 5). Maturity classification of date fruits
is also considered to be challenging because dates grow in
large clusters (bunches) and can be harvested in different
maturity stages that overlap because the dates in one bunch
do not mature at the same time. This fact makes them hard to
classify or even label by an expert, as shown in FIGURE 7.
Furthermore, many external effects make classification based
on maturity difficult. This includes images of date bunches
covered by bags and images with poor illumination. All
these variations were included in the dataset to help build a
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FIGURE 4. Sample images of the dataset showing large variations in
scales, angles, and illumination with some date bunches covered by bags.

FIGURE 5. Maturity levels of the Sullaj date at the six imaging sessions
starting from the immature stage to the tamar stage.

FIGURE 6. Sample images of three date types at the Khalal stage that are
difficult to distinguish.

FIGURE 7. Sample images of date bunches that have individual dates at
different maturity levels, which makes them hard to label or classify.

robust vision system that provides accurate results in natural
environments.

A. DATASET LABELING
Each image in the dataset had two labels: one for type and
one for maturity phase. The dataset was labeled into five
type classes and seven maturity classes (with three inter-

FIGURE 8. Sample images of individual dates in the four maturity stages
of the five date types. The description of dates colors at each stage is
according to [40].

mediate classes). TABLE 2 shows the distribution of the
dataset images between these classes. Type-based labeling
was performed during dataset collection by an expert marking
the selected date trees in the orchard. For maturity-based
labeling, images were labeled according to the decision to
harvest date bunches and maturity index of individual dates.
The maturity index typically indicates when an individual
fruit is ready to harvest. However, for date fruits, several
aspects should be taken into consideration when making
the harvesting decision. First, dates grow as bunches and
the individual dates in one bunch do not mature uniformly.
Second, dates are harvested by different methods: either by
cutting the whole bunch (when most of the dates are ripe) or
by selecting and picking individual ripe dates. Third, dates
are harvested in different maturity stages (Khalal, Rutab,
and Tamar). Based on these factors, we categorized the date
bunches into seven classes (phases): Immature-1, Immature-
2, pre-Khalal, Khalal, Khalal-with-Rutab, pre-Tamar, and
Tamar. These maturity classes are based on the color and tex-
ture of dates, as shown in FIGURE 8, as well as the harvesting
decisions and methods described by experts and farmers,
as demonstrated in TABLE 3. Hence, in this paper, maturity
stages refer to the maturity status of date fruits (immature,
Khalal, Rutab, and Tamar), whereas maturity phases refer to
the seven maturity classes.

Since individual dates in a bunch do not mature uniformly,
this lead to overlaps between the seven maturity classes,
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FIGURE 9. Sample images of Sullaj dates labeled into the seven maturity classes based on the threshold values described in TABLE 3.

TABLE 2. Distribution of the dataset images between the seven maturity
classes and five type classes.

making it difficult to categorize all the images in the dataset
into these seven classes. In some cases, when date images
have a high degree of confusion (e.g. an equal chance of
being classified into two classes), we labeled them as an inter-
mediate class between their two confused adjacent classes.
Therefore, there are three intermediate classes between the
seven main classes, as shown in TABLE 2. FIGURE 9 shows
sample images of date bunches labeled based on the seven
maturity classes. Intermediate classes were not used to train
the system; however, during the testing phase, the images of
these classes were classified by the system into one of the
confused adjacent classes.

The process of labeling date images between the maturity
classes was performed by an expert. We set an approximate

FIGURE 10. Demonstration of the labeling process into the maturity
classes. The process depended on the visual estimation of the number of
individual dates in date bunches that belonged to the four maturity
stages.

thresholding for each class, as shown in FIGURE 9 and
described in TABLE 3, to make this process more accurate.
The threshold values depended on the number of individual
dates in bunches that belong to the four maturity stages,
as shown in FIGURE 10. The threshold ranges were approx-
imations based on information gathered from experts and
farmers, with no distinct boundaries between the adjacent
classes.

B. DIVIDING THE DATASET INTO TRAINING AND TESTING
SETS
Since the date dataset has several types in different maturity
stages and the number of images per type and maturity stage
differ, dividing the dataset randomly into training and testing
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TABLE 3. Description of the proposed maturity classes (phases).

sets affects classification accuracy due to bias. Therefore,
we divided the dataset into training and testing sets based on
rules to ensure the robustness of the classification models and
sufficient distributed data to validate the system correctly:
1. The number of training images for all classes should be

equal. This gives the classification model an equal chance
of learning each class fairly.

2. At least 30% of the images should be included in the test-
ing set for each date type as well as for each maturity stage
or imaging session. This will help validate the models by
testing them using enough images distributed over all date
types, maturity stages, and imaging sessions.

3. The selected training images (after image equalization;
rule 1) should be distributed equally between all imaging
sessions, for the type classification model, and between all
date types, for the maturity classification model. This will
help build robust classification models independent of the
maturity stage or date type.

4. In cases of conflict, priority is given to the rules in
sequence from rule 1 to rule 3.
TABLE 4 shows the number of training and testing images

after applying these rules. The training dataset for date
type classification consisted of 4530 images (906 per class).
As Meneifi had the lowest number of images, we took 30%
for testing (389 images) and 70% for training (906 images).
This number of training images was fixed for all the other
types, and the rest of the images were used for testing,
as shown in TABLE 4-a. Hence, the testing set amounted

to 44% of the overall dataset (3542 images: Barhi 905,
Khalas 479, Meneifi 389, Naboot Saif 518, and Sullaj 1251).

The same distribution rules applied to date maturity classi-
fication, which had 3227 training images, 461 per class (40%
of overall dataset) distributed among all date types, as shown
in TABLE 4-b. The remaining imageswere used as the testing
dataset.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We performed many experiments for the three classification
tasks. In all the experiments, the CNN models were trained
by one GPU, Nvidia GeForce GTX 1060 6 GB, with an Intel
Xeon E5-2600 CPU and 28 GB RAM, using Matlab2018b.
The batch sizes were set to 128 and 32 training images for the
AlexNet and VGG-16 models, respectively. The batch sizes
were set depending on the hardware capabilities (GPU) and
depth of CNNmodels used (number of trainable parameters).
The improvement in the CNN models was tracked during the
training phase by testing them on the testing datasets every
50 iterations. Using the testing datasets, the proposed models
achieved final accuracies of 99.01%, 97.25%, and 98.59%
for date type classification, date maturity classification, and
harvesting decision, respectively.

The performance of the classification models was eval-
uated using speed and accuracy measures. The speed of
the model was measured by the classification rate, number
of classified frames (images) per second (fps), and aver-
age classification time (i.e. the average time spent by the
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FIGURE 11. Visualization of the type classification models based on AlexNet (1) and VGG-16 (2). The figure shows the first 36 features (filters) of the first
and last convolutional layers at the top as well as the activations of these features at the bottom.

model classifying one frame (seconds/frame)). The accuracy
of the model was evaluated using the positive predictive value
(PPV) or precision, true positive rate (TPR) or recall, f score,
and accuracy (ACC). These measures were calculated by
Equations (1), (2), (4), and (4), respectively.

For class x, if TPX is the true positive (i.e. the number of
images correctly predicted as belonging to class x), the PPV
is the number of true positives divided by the total number
of images predicted as belonging to class x. The TPR is
defined as the number of true positives divided by the actual
number of images in class x. The f-score is used to combine
PPV and TPR into one measure using the harmonic mean.
The overall accuracy in Eq. (4) was calculated using balanced
accuracy, which normalizes the true positive for each class by
the number of images in the class and divides their sum by the
number of classes. Balanced accuracy ensures that all classes
contribute equally to the calculation of overall accuracy even
if the number of samples in the classes is unequal. In our
experiments, we demonstrated the confusion matrices of the
classification models using the same format as in TABLE 5.

PPVX =
TPX

TotalPredictedX
(1)

TPRX =
TPX

TotalActualX
(2)

f scoreX =
1

α
/
TPRX +

α
/
PPVX

(3)

where :∝ = 0.5 gives equal weight to TPR and PPV

ACC =

∑n
i=1 TPi/Ii
n

where : n = no. of classes,

Ii = no. of images in classe i

(4)

FIGURE 11 presents some of the visualization results for
the fine-tuned AlexNet and VGG-16 CNN models. The first
row in the figure (a to d) visualizes the first 36 features
(filters) of the first and last convolutional layers for AlexNet
and VGG-16, respectively. The second row visualizes their
36 activations. The filters in the first convolutional layers (a
and c) mostly contain colors and edges, which indicates that
they are color filters and edge detectors. In the last layers
(b and d), the filters represent more detailed and compacted
features. We can also see that the filters in all the layers are
well formed, smooth, and have no noisy patterns, indicating
a well-converged network. Noisy patterns usually indicate
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TABLE 4. Dataset images in the training and testing sets. (a) The number of training and testing images for the date type classification task showing their
distribution among the six imaging sessions. (b) The number of training and testing images for the date maturity classification task showing their
distribution among the five date types.

insufficient training time or very low regularization, which
may lead to overfitting. The corresponding activations (fea-
turemaps of these 36 features) are shown at the bottom (e, f, g,
and h). In these feature maps, the light (white) pixels in some
location indicate strong positive activations at that position,
whereas the dark (black) pixels indicate strong negative acti-
vations. Mostly gray feature maps indicate weak activation
on the input image. Since we employ ReLUs, the initial
activations appear relatively dense; however, as the training
progresses, they look more localized and sparser.

A. DATE TYPE CLASSIFICATION MODEL
In both the pre-trained CNN networks, the last fully
connected layer was set to five neurons, equal to the
number of date type classes. The AlexNet and VGG-
16 CNN networks were trained using 4530 training images
(TABLE 4-a) for 7000 iterations. The VGG-16 model needs
more iterations than AlexNet to pass all the training exam-
ples in the dataset because it has more learnable param-
eters. In 7000 iterations, VGG-16 and AlexNet adjusted
their weights using all the training images during 50 and
200 epochs, respectively.

After fine-tuning, the CNNmodels were tested on the test-
ing dataset containing 3542 images (TABLE 4-a) and they
achieved accuracies of 96.51% and 99.01% for the AlexNet

and VGG-16 models, respectively. The VGG-16 model
achieved better accuracy than AlexNet due to its deeper net-
work. The multiple stacked smaller filters in VGG-16 are bet-
ter than the larger ones in AlexNet because a higher number
of non-linear layers increases the network depth. The deep
architecture of VGG-16 enables it to learn more complex
features and therefore it is more accurate. The training and
validation accuracies and losses during the training phase
are shown in FIGURE 12. The losses of the pre-trained
models decrease slowly. After around 4000 iterations, both
the pre-trained models reach almost their highest accuracies
and stabilize in further iterations with little improvement.
The performance of the fine-tuned CNNmodels on the testing
dataset is illustrated by the confusion matrices in TABLE 6
and summarized in TABLE 7.

B. DATE MATURITY CLASSIFICATION MODEL
The date dataset was labeled into seven maturity classes
according to the maturity state of the date fruit bunches,
as illustrated in the dataset labeling subsection. These
maturity classes represent the four maturity stages of date
fruits (immature, Khalal, Rutab, and Tamar). The objec-
tive of the maturity classification model was to classify
the images of date fruit bunches into the four maturity
stages using the proposed seven classes. We conducted
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FIGURE 12. The behavior of the training and validation accuracies and
losses of the date type classification model during the training phase.

TABLE 5. The confusion matrix for the multiclass classification problem
with classes C1, C2, . . . ., Cn. TP, TPR, and PPV refer to the true positive,
true positive rate, and positive predictive value, respectively.

many experiments to determine the best selection of matu-
rity classes and their training examples to train the CNN
networks. Here, we present three experiments for training
the CNN models using three selections of the maturity
classes.

1 - In the first experiment, the CNN models were trained
on the seven maturity classes using 3227 training images
(TABLE 4 -b) for 5000 iterations. The CNNmodels achieved
accuracies of 90.1% and 92.3% on the testing dataset con-
taining 3420 images for the AlexNet and VGG-16 models,
respectively. FIGURE 14 shows that both the pre-trained
models reached almost their highest accuracies after around

TABLE 6. The confusion matrices (as illustrated in TABLE 5) of the type
classification model on the testing dataset.

TABLE 7. Results of the proposed type classification models on the
testing dataset.

3000 iterations and did not show significant improvement in
further iterations.

The achieved accuracies are relatively low because adja-
cent classes significantly overlap, which is clearly noticeable
in FIGURE 9. The confusion matrices in TABLE 8 show
that in both CNN models, most of the misclassified images
were predicted between the prior or subsequent classes of the
actual class. For example, as shown in TABLE 8-b, 13 of
14 Khalal sample images were predicted either as pre-Khalal
(prior class) or Khalal-with-Rutab (subsequent class). For the
images misclassified as Tamar (last columns in TABLE 8),
most had poor illumination, as shown in FIGURE 13. This
can be justified by the fact that dark images lost most of
their color features and thus were closer to the features of
the Tamar class that contain dates with dark colors (e.g. dark
brown).

Due to the small inter-class variation in the adjacent
classes, it is difficult for the CNN models to learn distinct
features for these classes. Therefore, to increase the accuracy
of thematurity classificationmodel, we need to train the CNN
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FIGURE 13. Samples of misclassified images using the maturity classification CNN models on the seven maturity classes.

FIGURE 14. The behavior of the training and validation accuracies and
losses of the date maturity classification model based on the seven
maturity classes.

models with fewer maturity classes that have more distinct
features and directly represent the required maturity stages
of date fruits. This will help the classification model learn
the clear and strong features related to date maturity stages.
Then, in the test process, it will automatically classify other
confused images to the appropriate nearest classes. This was
done in the next experiment.

2 - In the second experiment, we excluded the immature-2
class and merged the pre-Khalal and Khalal classes. For the
harvesting objective, date bunches in the pre-Khalal and Kha-
lal phases are considered to be in the Khalal stage. We only
separated these two classes in the dataset labeling section to
allow the farmer to give date bunches in the Khalal phase
priority to be harvested before those in the pre-Khalal phase.

The CNN models were thus trained to classify five matu-
rity classes using 2305 training images for 5000 iterations.
We achieved accuracies of 93.36% and 95.8% on the test-
ing dataset containing 3604 images for the AlexNet and

TABLE 8. The confusion matrices (as illustrated in TABLE 5) of the
maturity classification model on the testing dataset based on seven
maturity classes.

VGG-16 models, respectively. The behavior of the training
and validation accuracies and losses during fine-tuning are
shown in FIGURE 15. The confusion matrices in TABLE 9
show that most of the misclassified images (270 of 292 and
176 of 192 in TABLE 9 a and b, respectively) belong to the
Khalal or Khalal-with-Rutab classes due to the high similarity
between these and their adjacent classes. The Khalal and
Khalal-with-Rutab classes (phases) represent the harvesting
indicator of date bunches in the Khalal and Rutab stages,
respectively. Hence, they cannot be merged or excluded.
Instead, it is possible to increase the number of training exam-
ples of these two classes compared with the other classes,
which will increase the ability of the CNN to learn their
fine features and therefore improve the overall accuracy of
the maturity classification model. This was done in the final
experiment.
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FIGURE 15. The behavior of the training and validation accuracies and
losses of the date maturity classification model based on the five classes.

FIGURE 16. The behavior of the training and validation accuracies and
losses of the date maturity classification model based on the five
maturity classes with doubling the number of training examples of the
Khalal and Khalal-with-Rutab classes.

3 - The third experiment used the same classes as in the
second experiment but with twice the number of training
examples for the Khalal and Khalal-with-Rutab classes and

TABLE 9. The confusion matrices (as illustrated in TABLE 5) of the
maturity classification model on the testing dataset based on the five
maturity classes.

TABLE 10. The confusion matrices (as illustrated in TABLE 5) of the
maturity classification model on the testing dataset based on the five
maturity classes with doubling the number of training examples of the
Khalal and Khalal-with-Rutab classes.

fewer testing images. The CNN models were trained for
5000 iterations on 3277 training images (922 for Khalal
and Khalal-with-Rutab and 461 for the other classes). The
test accuracies rose to 94.98% and 97.25% for the AlexNet
and VGG-16 models, respectively. The CNNmodels reached
nearly their highest test accuracies after around 3000 itera-
tions and stabilized in the subsequent iterations, as shown in
FIGURE 16. The confusionmatrices inTABLE10 show that
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FIGURE 17. Samples of misclassified images using the maturity classification CNN models on the five maturity classes.

TABLE 11. Results of the proposed maturity classification model on the
testing dataset using the different settings of the maturity classes.

FIGURE 18. The harvesting decision of dates depending on the harvesting
methods during the development period.

increasing the training samples of the Khalal and
Khalal-with-Rutab classes enhanced the accuracy of the
CNN models. However, these two classes still challenge the
maturity classification model due to their low inter-class
variation and wide intra-class variation. FIGURE 17 shows
samples of some misclassified images. TABLE 11 presents
the results of the three experiments.

C. HARVESTING DECISION SYSTEM
Dates are harvested and sold as ripe fruit in three stages:
Khalal, Rutab, and Tamar. The choice to harvest in one or
other stage depends on many factors such as climatic condi-
tions, date fruit type, and market demand [2]. The proposed
system determines the decision to harvest date bunches in
two steps. First, the user enters the required harvesting stage
for each date type, according to the climatic conditions,
market demand, and so on. Next, the system automatically
recognizes the types of date bunches in the orchard and

FIGURE 19. Possible harvesting stages of the five date types in the
dataset.

defines their maturity stages, then making the harvesting
decision.

Date fruits can be harvested either by picking individual
mature dates (selective harvesting) or by cutting the whole
bunch when the most dates are mature (bunch-based harvest-
ing). The latter method is used in large orchards for com-
mercial production. Therefore, in this experiment, we inves-
tigate the harvesting decision associated with bunch-based
harvesting. In bunch-based harvesting, date bunches labeled
Pre-Khalal, Khalal, and Khalal-with-Rutab are harvested in
the Khalal stage, whereas only date bunches labeled Khalal-
with-Rutab and Tamar are harvested as Rutab or Tamar,
respectively, as shown in FIGURE 18.

According to the date fruit characteristics, Barhi and Kha-
las are consumed in all maturity stages, whereas Meneifi,
Naboot Saif, and Sullaj are consumed in Rutab or Tamar [40],
as shown in FIGURE 19. In this experiment, we test the har-
vesting decision model for the five date types in the most fre-
quent harvesting stage selected for each type. We assume that
the required harvesting stage of Barhi is Khalal, of Meneifi
and Sullaj is Rutab, and of Khalas and Naboot Saif is
Tamar.

The fine-tuned VGG-16 models of date type and matu-
rity classification in the previous experiments were used
to determine the harvesting decision in this experiment.
The harvesting decision system was tested using a dataset
containing 2682 images of the five date types. Each date
type in the dataset was categorized into two classes (harvest
and not harvest), as shown in FIGURE 20. The performance
of the harvesting decision model on the testing dataset is
illustrated by the confusion matrix inTABLE 12. This matrix
consists of four large cells that report the number of true
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FIGURE 20. Labeling each date type in the testing dataset according to
the harvesting decision. Decisions are based on the assumption that the
required harvesting stage of Barhi is Khalal, Meneifi and Sullaj is Rutab,
and Khalas and Naboot Saif is Tamar.

TABLE 12. The confusion matrix of the harvesting decision model on the
testing dataset.

positives, false positives, false negatives, and true negatives
of the decision to harvest date bunch images. Each large cell
consists of five small cells related to the five date types.
The rows represent the required harvesting decision for each
date type and the columns represent the predicted harvesting
decision. The overall framework performance is shown in
TABLE 13. This TABLE reports the speed and accuracy
measures of the date type and maturity classification models
based on the VGG-16 network and the performance of the
harvesting decision system based on the entered decision
factors and two classification results.

D. COMPARISON WITH OTHER CLASSIFICATION
METHODS
We compared the performance of the proposed classifica-
tion method with that of the methods used in other studies

TABLE 13. Performance of the proposed classification models (speed
and accuracy measures).

of date fruit type and maturity classification, as shown in
TABLE 14. The author in [10] used support vector machine to
classify date types using LBP andWLD local texture descrip-
tors combined with size and shape features. He classified
date images of four date types and achieved an accuracy
of 98.1%. In [11], the authors used 15 features including
color, shape, size, and texture descriptors to classify dates
according to their types using neural networks. The study
reported an accuracy of 98.6%; however, only 140 images
were used to classify and test seven date classes. The authors
in [12] classified date images based on their types using
a dataset containing 5000 images of 10 date types. They
used an RGB color histogram, a gray-level co-occurrence
matrix, and four shape features including area and eccen-
tricity, combined with a Gaussian mixture model. They
reported an accuracy of 97.5% with a classification time
of 0.029 seconds. All these studies used single date images
with a uniform background. Hence, previously used methods
are unsuitable for real-life applications in natural environ-
ments where the variety in the data is enormous (e.g. in date
orchards).

Few studies of maturity classification have been per-
formed, and they all have the same limitations discussed
above. One such study [16] used a color distribution analysis
and back projection to classify one date type into four matu-
rity classes. The authors achieved a classification accuracy
of 97.5% on single date images. In another study [17], a
taxonomy classification method with RGB color and tex-
ture features including contrast, entropy, and homogeneity
was used to classify a date type into four maturity classes.
The authors reported an overall accuracy of 88.33% with a
0.34-second classification time.

In the most recent approach [14], the researchers pro-
posed a date type classification based on a pre-trained CNN
model and reported an accuracy of 99.2%. They used images
of single and multiple dates for four date types. However,
the studied date types had wide visual inter-class variation
and their images were all taken after the production stage.
Hence, the classification task was much simpler than the
classification in this work.

All previous approaches have used single or multiple
date images taken after the harvesting or production stages.
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TABLE 14. Performance comparison between the methods.

TABLE 15. Performance comparison between the methods using the same dataset adopted in this work.

FIGURE 21. Comparison between the accuracy obtained by the proposed
approach for date classification problems and the approaches
in [10], [11], and [14].

By contrast, this work deals with date bunch images in dif-
ferent pre-maturity and maturity stages with a large degree
of variation in an orchard environment, which makes them
challenging to classify.

FIGURE 22. Average classification time of the date harvesting decision
system based on the proposed method and the methods in [10], [11],
and [14], using a machine with a GPU and CPU.

TABLE 15 compares the performance of the proposed
approach with that of other recent approaches using the same
dataset that we created. The methods described in [10], [11],
and [14] were carried out and evaluated using the same

VOLUME 7, 2019 117131



H. Altaheri et al.: Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning

environment and machine used in the previous experiments.
To conduct the methods of [10] and [11], color and texture
features were used and size and shape features were ignored
because they cannot identify the maturity stage of dates or
their types as bunches. A k-nearest neighbor classifier was
chosen to implement [11] and LBP was chosen as the texture
descriptor in [10]. FIGURE 21 shows the average accuracy
obtained by the proposed approach in the three classification
problems and by the approaches in [10], [11], and [14].
FIGURE 22 presents the average classification time of each
method using a machine with and without a GPU. The
results show that the proposed approach achieved excellent
classification accuracies, which outperformed those of the
other approaches and had a low classification time using a
GPU.

V. CONCLUSION
A real-time machine vision framework for date fruit harvest-
ing robots in an orchard environment was proposed based on
deep learning. The framework consisted of three models used
to classify date fruit bunches according to their type, maturity,
and harvesting decision. Transfer learning with fine-tuning
was used in the classification tasks. Two pre-trained CNN
models were investigated, namely AlexNet and VGG-16.
To build a robust machine vision system, we used a rich
image dataset of five date types for all maturity stages. The
dataset was designed with a large degree of variation that
represents the challenges in natural environments and date
fruit orchards. The proposed approach achieved excellent
classification accuracies on this challenging dataset with a
high classification rate. The results showed that a pre-trained
CNN could achieve robust date fruit classification without
the pre-processing of images to remove background noise
or enhance illumination. The best accuracies were obtained
by the fine-tuned VGG-16 model, which achieved 99.01%,
97.25%, and 98.59% accuracies with classification times
of 20.6, 20.7, and 35.9 msec for the date fruit type, maturity,
and harvesting decision classification models, respectively.
As for future work, we will improve the dataset by including
testing images captured from different date orchards. We will
also investigate more recent CNN models to minimize the
usage of memory and lower computational complexity. One
more area to investigate is the confusion in thematurity detec-
tion of date fruit, including labeling rules, and the interference
among maturity stages.
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