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ABSTRACT We propose the property-specific aesthetic assessment (PSAA) algorithm with unsupervised
aesthetic property discovery. The proposed PSAA algorithm uses an aesthetic feature extractor, an aesthetic
property classifier, and multiple property-specific assessment networks. The aesthetic feature extractor
analyzes aesthetics of images to generate features. Using such aesthetic features, we discover diverse
aesthetic properties in an unsupervised manner and develop the aesthetic property classifier to predict
the aesthetic property of each image. For each discovered aesthetic property, we train a property-specific
assessment network. Thus, we can assess the aesthetic quality of an image using the property-specific
network that corresponds to its property. Experimental results on a large dataset show that the proposed
PSAA algorithm achieves state-of-the-art aesthetic assessment performance. Furthermore, we demonstrate
that PSAA is useful for improving aesthetic qualities of images in two applications: contrast enhancement
and image cropping.

INDEX TERMS Image aesthetics, aesthetic assessment, image composition, convolutional neural network,
unsupervised property discovery, and unsupervised attribute clustering.

I. INTRODUCTION
In art and photography, image aesthetics refers to the princi-
ples of beauty conveyed by images. Figure 1 shows examples
of aesthetically high- and low-quality images. Whereas the
high-quality image is colorful and well-composed, the low-
quality one looks pale and ill-composed. The objective of
image aesthetic assessment techniques is to computationally
distinguish high-quality images from low-quality ones based
on aesthetic criteria. The assessment of image aesthetics is
important for finding well-taken and appealing photographs.
There are lots of potential applications, such as photo-
graphic composition [1]–[3], image retrieval [4], [5], and
image editing [6], [7]. For example, when retrieving images,
image aesthetics can be exploited as one of the ranking
factors. Also, image editing systems can produce appealing
and polished photographs based on their aesthetic qualities.

The associate editor coordinating the review of this article and approving
it for publication was Haimiao Hu.

FIGURE 1. Examples of images with (a) high-quality and (b) low-quality.

Most aesthetic quality assessment techniques attempt to
classify images as either high-quality or low-quality [8]–[14].
However, aesthetic assessment is challenging due to the
diversity, subjectiveness, and ambiguity of aesthetic crite-
ria. To describe aesthetic criteria, professional photographers
use several rules, e.g., the rule of thirds and visual bal-
ance. Thus, early assessment techniques [8]–[10] adopted
various handcrafted features, such as the distribution of
edges, color histograms, and saliency maps, to describe these
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manually-defined aesthetic rules. However, the handcrafted
features have limitations for several reasons. First, aesthetic
rules were designed based on the experience of professional
photographers. Hence, some rules may not have been dis-
covered yet. Second, since aesthetic rules are subjective
and ambiguous, the handcrafted features merely approximate
these rules. Third, there is no absolute aesthetic criterion.
In other words, although a handcrafted feature may represent
an aesthetic rule well, it is not applicable to images to which
said aesthetic rule is irrelevant. Other approaches tried to
leverage generic features, such as Fisher vector [15], [16] and
bag-of-visual words [17], which exhibited good performance
in image classification tasks. However, these features are also
insufficient for assessing aesthetic qualities, since they were
designed to describe general image layouts rather than image
aesthetics.

Recently, inspired by the success of convolutional neural
networks (CNNs) in various computer vision tasks [18]–[22],
many CNN-based aesthetic quality assessment techniques
have been developed [11]–[14], [23]–[28]. Similarly to how
humans evaluate aesthetics based on their experience, CNNs
learn aesthetic criteria from massive datasets. Since fine-
grained details, as well as holistic image features, are
important in aesthetic quality assessment, many CNN-based
techniques combine features from both local and global
views [11]–[14]. They yield promising results by employing
a set of local patches as input [11], [12], [14] or extracting
multi-scale features in deep layers [13]. In [26], the layout of
an entire image was represented by a graph, and its aesthetic
quality was assessed by aggregating aesthetic scores of sub-
graphs. In [24], [28], the distribution of aesthetic scores for
an image was estimated, instead of binary aesthetic classifi-
cation, to address the inherent subjectivity of aesthetic assess-
ment. To leverage the expert knowledge of photography, CNN
features were combined with the hand-crafted or generic fea-
tures to describe various aesthetic criteria [27]. Furthermore,
in many techniques [11]–[14], [23], [25], aesthetic attributes
(e.g. dynamic range and exposure), scenes, or contents infor-
mation of images were used to further improve their aesthetic
assessment performances. In this work, we refer to this assist-
ing information as aesthetic properties.
In assessing the aesthetic quality of an image, aesthetic

properties are useful as guidelines for deriving aesthetic cri-
teria. Note that, given an aesthetic property of an image,
we can specify aesthetic criteria for the image more easily.
For example, suppose that an image is declared to have one
of two aesthetic properties, portrait or landscape. In other
words, suppose that an image is annotated either as portrait
or landscape. When we assess a portrait image, we focus
more on the details in the foreground rather than in the back-
ground and on the harmony between foreground and back-
ground. In contrast, to assess a landscape image, although
it may include people, we consider their details less impor-
tantly than in the assessment of a portrait image. Therefore,
to exploit such aesthetic property information for quality
assessment, previous approaches defined several aesthetic

properties manually. However, aesthetic attributes, scenes,
and contents are quite diverse and correlatedwith one another.
Hence, it is impractical to define numerous aesthetic prop-
erties and their relationship manually. Furthermore, human
annotation requires much effort, making it even more diffi-
cult. Driven by this issue, an important question arises: Can
we discover diverse aesthetic properties of images without
human annotation?

Motivated by this question, we propose an algorithm called
property-specific aesthetic assessment (PSAA) with unsu-
pervised aesthetic property discovery. The proposed PSAA
algorithm uses an aesthetic feature extractor and an aesthetic
property classifier to perform the property-specific assess-
ment. The feature extractor extracts aesthetic features using
multiple deep-layer outputs. Using the aesthetic features,
we discover aesthetic properties by employing a CNN-based
unsupervised clustering scheme and then train a property-
specific network for each discovered property. In the testing
phase, for a query image, we determine its aesthetic prop-
erty and assess its quality using the corresponding property-
specific network. Experimental results on a large dataset
show that the proposed algorithm outperforms the previous
state-of-the-art technique [14].

Main contributions in this work are summarized as follows:

• We propose a novel deep learning-based approach to
image aesthetic assessment, which provides the state-of-
the-art performance on the largest aesthetic assessment
dataset [29].

• We develop the unsupervised aesthetic property discov-
ery scheme to find diverse aesthetic properties effec-
tively, and the aesthetic property classifier to decide the
aesthetic properties of query images automatically.

• We design the property-specific assessment network for
each discovered property to address the diversity of
aesthetic criteria.

• We show that the proposed aesthetic assessment algo-
rithm can be used for two important image processing
applications: contrast enhancement and image cropping.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the pro-
posed PSAA algorithm. Section IV addresses two appli-
cations of the proposed algorithm, i.e., aesthetic image
enhancement and aesthetic image cropping. Section V
discusses experimental results. Finally, Section VI concludes
the paper.

II. RELATED WORK
A. AESTHETIC QUALITY ASSESSMENT
Images that are pleasing to the human eyes are considered
to have high aesthetic qualities. Aesthetic quality assess-
ment, hence, is a subjective process. However, various com-
putational algorithms have been proposed to quantify the
visual quality of an image based on aesthetic criteria, typi-
cally in the form of binary classification. Early assessment
techniques adopted handcrafted features to describe a few
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aesthetic criteria, including the rule of thirds, color vivid-
ness, and visual balance [8]–[10]. However, there are more
aesthetic criteria, and it is impractical to design a hand-
crafted feature for each criterion. Generic features, such as
the Fisher vector [15], [16] and bag-of-visual words [17],
were also employed in aesthetic assessment tasks. Although
generic features are competitive with or even outperform
simple handcrafted features, they were designed to represent
general image layouts rather than aesthetic characteristics.
Hence, these rule-based or generic features are not sufficient
for aesthetic assessment.

Recently, CNN-based aesthetic assessment algorithms
have been developed, yielding more successful results. Espe-
cially, in [11], [12], [14], it was shown that a combination
of global and local features can improve assessment perfor-
mance. Lu et al. [11] extracted aesthetic features by train-
ing two CNNs, which take an entire image and a randomly
cropped patch as global and local input data, respectively.
However, the single patch may not faithfully represent local
information. Furthermore, the CNN that takes the single patch
as input does not consider the holistic layout of the entire
image. To overcome this limitation, Lu et al. [12] fed a set
of randomly cropped patches into a CNN and aggregated
the resulting features. Instead of randomly selecting patches,
Ma et al. [14] extracted more informative patches using an
object detector and low-level information, such as saliency
and texture. On the other hand, Mai et al. [13] used a whole
image as the input to multiple CNNs, the last layers of which
have different receptive fields to extract multi-scale features.
Liu et al. [25] extracted local features from semantically
salient patches and cascaded the local features in order of
human gaze shifts among the patches.

These properties are mostly based on a priori knowl-
edge, instead of being learned automatically. Lu et al. [11]
extracted attribute features using a pre-trained attribute clas-
sification network, which categorizes images according to
several criteria, e.g., dynamic range, exposure, and depth-of-
field. Then, they combined those attribute features with aes-
thetic features to perform attribute-assisted aesthetic quality
assessment. In [12], a similar attribute classification network
was designed by fine-tuning an image classification network.
In [13], a scene classifier was adopted to label images as
human, architecture, landscape, and etc. Kong et al. [23] pro-
posed a regression network to exploit ten roughly categorized
contents, including humans, animals, and flowers, as well
as attributes. Lu et al. [25] designed an aesthetic feature by
encoding the existence of pre-defined aesthetic properties in
an image.

However, only a few aesthetic attributes, scenes, and con-
tents were considered in [11]–[13], [23], [25], [27]. More-
over, although diverse attributes, scenes, and content types
are useful for aesthetic quality assessment, it is infeasible
to manually mine and annotate all those properties. There-
fore, we propose the first algorithm to automatically discover
diverse aesthetic properties in an unsupervised manner.

B. UNSUPERVISED VISUAL ATTRIBUTE LEARNING
Visual attributes, such as colors, texture, shapes of objects,
and human facial expressions, provide useful mid-level
cues in vision tasks, including object description [30], face
recognition [31], and object recognition [32]. However, since
visual attributes are often ambiguous, manually-defined
attributes may be neither reliable nor discriminative in
the feature space. Recently, attempts have been made to
discover attributes from images [30]–[33]. For example,
Berg et al. [30] constructed visual attribute vocabularies by
mining a large dataset of images and descriptive texts. They
trained a visual classifier to measure the so-called visualness
of an unseen attribute. Ma et al. [31] carried out research
on unsupervised relative visual attribute learning. Using an
image dataset with class labels, they trained attribute ranking
functions, each of which computes class ranks according to
a visual attribute, and removed redundant visual attributes
iteratively. Singh et al. [33] developed an iterative procedure
that alternates between clustering and training a discrim-
inative support vector machine (SVM) classifier for each
cluster. Each SVM was trained to classify images within the
cluster against images not included in any clusters, which
were used as negative data. Huang et al. [32] performed
clustering [33] and CNN training alternately to obtain robust
visual attribute clusters and achieve the corresponding CNN
feature representation. In this work, we attempt to discover
visual attributes for image aesthetics (i.e. aesthetic proper-
ties) without supervision, even though those properties are
ambiguous and diverse.

III. PROPERTY-SPECIFIC AESTHETIC ASSESSMENT
In this section, we propose the PSAA algorithm with unsu-
pervised aesthetic property discovery. We regard aesthetic
assessment as a binary classification problem, which clas-
sifies an image into either high-quality or low-quality,
as in [11]–[14]. Figure 2 shows an overview of PSAA, com-
posed of an aesthetic feature extractor, an aesthetic property
classifier, and property-specific networks. The feature extrac-
tor generates aesthetic features by pooling and concatenating
two features from the baseline network. The property classi-
fier classifies the image into one of the aesthetic properties.
Finally, the corresponding property-specific network is used
to evaluate the aesthetic quality of the image. Let us describe
these three components of PSAA subsequently.

A. AESTHETIC FEATURE EXTRACTOR
The aesthetic feature extractor includes a baseline network
for image aesthetic analysis and additional pooling and con-
catenation layers for aesthetic feature generation, as shown
in Figure 2. The baseline network itself is also trained to
classify the aesthetic qualities of images into high- or low-
quality classes. In other words, it takes an image as input
and yields a binary classification result using a soft-max layer
with two outputs. In this work, we employ GoogLeNet [34]
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FIGURE 2. An overview of the proposed PSAA algorithm: It is composed of an aesthetic feature extractor, an aesthetic property classifier, and
property-specific networks. The baseline network contains five convolution layers (conv1∼conv5), eleven inception modules (In1_1∼In3_3),
an average-pooling layer (pool), a fully connected layer (fc), and a classification layer (Cls). Based on the combination (average-pooling and
concatenation) of In1_3 and In2_5, the aesthetic property classifier, which consists of property-discovering networks (Discover-Nets), computes the score
for each aesthetic property. Then, the aesthetic quality of the input image is determined by the property-specific network (Prop-Net), corresponding to
the maximum score (in this example, Prop-Net 3).

as the backbone of the baseline network. Note that aes-
thetic qualities are affected by both local details and holistic
features [35]. The inception modules of GoogLeNet, which
consist of parallel multi-scaled convolution layers, are effec-
tive to analyze both local and global aesthetic features.

The baseline network outputs a soft-max probability vector
y = (y1, y2), where y1 and y2 = 1 − y1 are the probabilities
that an input image belongs to the high-quality and low-
quality classes, respectively. The input is declared as high-
quality, if y1 is higher than 0.5. For the training, we use the
cross-entropy loss, given by

L(y, ȳ) = −ȳ1 log y1 − ȳ2 log y2 (1)

where ȳ = (ȳ1, ȳ2) is the ground-truth one-hot vector.
We extract aesthetic features from the baseline network and

use them in the subsequent processes. To take advantage of
multi-scale features [36], we concatenate the average-pooled
outputs of two inception modules, In1_3 and In2_5, as shown
in Figure 2.

B. AESTHETIC PROPERTY CLASSIFIER
1) AESTHETIC PROPERTY
The qualities of images are assessed based on many crite-
ria. To describe and enhance the qualities, professional pho-
tographers adopt aesthetic rules based on diverse attributes,
including lighting condition, contrast, and photographic com-
position. Also, when assessing images, different aesthetic
attributes are applied according to scene and content types
of images. Hence, aesthetic attributes, scenes, and contents,
and their relationship are all essential for aesthetic quality
assessment, and are called aesthetic properties in this work.

With more aesthetic properties, we can represent
more diverse high-quality photographs. However, previ-
ous approaches to aesthetic assessment used only several
manually-defined attributes [11]–[13], [23]. These attributes,
however, are ambiguous and subjective [35], and some

attributes may have not been discovered yet. Moreover,
as mentioned above, aesthetic attributes are related with scene
and content types. Therefore, it is impractical to define all
aesthetic properties manually. In this work, we develop an
unsupervised algorithm to discover a wide variety of aesthetic
properties.

2) UNSUPERVISED AESTHETIC PROPERTY DISCOVERY
The proposed algorithm discovers diverse aesthetic properties
without supervision. To achieve this, we develop the aesthetic
property classifier in Figure 2, composed of k property-
discovering networks (Discover-Nets). Each Discover-Net
has three fully connected layers and a soft-max layer. It takes
aesthetic features as input, and outputs the soft-max scores
for positive and negative classes.

It was observed from our empirical studies that aesthetic
properties are more obvious in images with higher aesthetic
scores. Hence, we construct the positive set P of such obvi-
ously high-quality images. For example, the AVA dataset [29]
provides the aesthetic score of an image between 1 and
10. Images with aesthetic scores higher than 5 are con-
sidered as high-quality, otherwise as low-quality in exist-
ing techniques [11]–[13], [23], [24]. To exclude border cases,
the positive set P is composed of only the training images
with scores higher than 6. On the other hand, the negative
set N is randomly sampled from all training images with
scores lower than 5. Note that N is used to train Discover-
Nets. To avoid severe data unbalance during the training, |N |
is set to be about one tenth of |P|.
Using the positive samples in P , we obtain initial aesthetic

property clusters using the k-means clustering [37],

P = ∪ki=1Ci, and Ci ∩ Cj = ∅ for i 6= j, (2)

where Ci denotes the ith cluster and k is set to 50 initially. In an
ideal case, a cluster should contain images with an identical
aesthetic property. However, 50 clusters are not enough to
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address diverse aesthetic properties. Hence, starting from
the initial clusters, we learn the aesthetic property classifier,
update the clusters, and split those clusters iteratively.

Specifically, suppose that there are k (t) aesthetic property
clusters at the tth iteration. Then, the aesthetic property clas-
sifier consists of k (t) Discover-Nets, one for each cluster. For
1 ≤ i ≤ k (t), we train the ith Discover-Net to discern the pos-
itive samples in the ith cluster C(t)i from all negative samples
inN . It is trained with the cross-entropy loss in (1), as in the
baseline network. Next, we update the cluster membership of
each positive sample p ∈ P as follows. We dichotomize p
using each Discover-Net and compute the soft-max score for
the positive class, which is regarded as the aesthetic property
score. Then, we update the cluster label of p by mapping it to
the cluster with the maximum aesthetic property score.

In the split stage, we divide each ‘unreliable’ cluster into
two sub-clusters. When all positive samples in a cluster have
the same clearly discernible aesthetic property, the corre-
sponding Discover-Net would classify those samples into the
positive class with a high accuracy. Otherwise, the Discover-
Net would yield a low accuracy. Hence, to determine whether
the ith cluster C(t)i is reliable or not, we first partition C(t)i into
two subsets C(t)i,1 and C(t)i,2 using the k-means clustering with
k = 2 [37]. Then, we measure the accuracies of the Discover-
Net on C(t)i , C(t)i,1, and C(t)i,2, respectively. For C

(t)
i , the accuracy

is defined as N (t)
i /M

(t)
i , where M (t)

i is the number of all
samples in the cluster and N (t)

i is the number of the correctly
classified samples. Similarly, we compute the accuracies
over C(t)i,1 and C(t)i,2. Then, we declare C(t)i as unreliable and
accept the split, if at least one of the three conditions are
satisfied:
• The accuracy on C(t)i is lower than a threshold τ1, which
means that the cluster contains images with heteroge-
neous aesthetic properties.

• The difference between the accuracies on C(t)i,1 and C
(t)
i,2 is

higher than a threshold τ2, which indicates that the two
sub-clusters have different properties.

• The ratio of the size of C(t)i to the size of P ∪N is larger
than a threshold τ3. This is to limit cluster sizes.

We fix τ1, τ2, and τ3 to 0.3, 0.5, and 0.007, respectively.
The unsupervised aesthetic property discovery is achieved

when the number k (t) of clusters converges. The number
of finally obtained clusters is 136 for the AVA dataset [29].
Figure 3 shows example images with the discovered aesthetic
properties. We see that the images with the same discovered
property have similar colors, texture, or contents.

C. PROPERTY-SPECIFIC AESTHETIC ASSESSMENT
NETWORKS
Each discovered cluster represents an aesthetic property.
As illustrated in Figure 3, it is easier to dichotomize images
into either high-quality or low-quality class, when they are
grouped according to their properties. Thus, we develop the
PSAA algorithm, by constructing a property-specific network
(Prop-Net) for each discovered property. Each Prop-Net has

the same structure as Discover-Nets. It takes aesthetic fea-
tures as input and outputs the soft-max scores for the high-
quality and low-quality classes.

Contrary to Discover-Nets, Prop-Nets are trained using all
training images in the entire score range. First, we determine
the aesthetic property of each training image using the aes-
thetic property classifier: we compute the aesthetic property
scores for all properties, and assign the image to the property
corresponding to the maximum score. Then, we train each
Prop-Net using the assigned training images. For the training,
we also use the cross-entropy loss in (1).

D. IMPLEMENTATION DETAILS
In Figure 2, the baseline network within the aesthetic feature
extractor is based on GoogLeNet [34]. It consists of five
convolution layers (conv1∼conv5), eleven inceptionmodules
(In1_1∼In3_3) of three different kinds, a fully connected
layer (fc), and a soft-max layer. Since GoogLeNet was trained
for the 1,000-way image classification, we modify the output
sizes of the fc and soft-max layers for the two-way aes-
thetic classification. To train the baseline network, we ini-
tialize the parameters of all layers, except for the fc layer,
with those of the GoogLeNet pre-trained on the ILSVRC-
2012 dataset [38]. We initialize the fc layer using the Xavier
method [39], which determines the scale of initialization
based on the numbers of input and output neurons. We update
these parameters using the Adam optimizer [40] with a batch
size of 16, β1 = 0.9, and β2 = 0.999.We start with a learning
rate ε = 0.001 for all layers and shrink it via ε ← 0.1ε
after every four epochs. For each training image, we flip it
horizontally with probability 0.5. To use the network in a
scale-invariant manner, we resize an input image to 229×229.

Discover-Nets and Prop-Nets have the same architecture,
i.e., three fc layers and a soft-max layer with two output
neurons. The three fc layers have 1024, 512, and 2 neurons,
respectively. To train Discover-Nets and Prop-Nets, we ini-
tialize the fc layers with the Xavier method starting with a
learning rate ε = 0.0001 and shrink it via ε ← 0.1ε after ten
epochs. We set the other hyper-parameters in the same way
as we do for training the baseline network.

IV. APPLICATIONS: AESTHETIC IMAGE ENHANCEMENT
In addition to the development of an effective image aes-
thetic assessment algorithm, we demonstrate how it can be
applied to practical image processing applications. Specifi-
cally, we show that the proposed algorithm can be used for
(1) aesthetic contrast enhancement and (2) aesthetic region
cropping. Both enhancement schemes use an aesthetic acti-
vation map, which represents the aesthetic importance of
each pixel.

A. AESTHETIC ACTIVATION MAP
Let us first describe how to generate an aesthetic activation
map. There are various tools for CNNs that can identify
important pixels, i.e. [41]–[43]. The aesthetic activation map
represents the level of importance of each pixel in terms
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FIGURE 3. Example images that are declared to have the first eight aesthetic properties, discovered by applying the proposed algorithm to the AVA
dataset [29]. For each property, we show high-quality images in the left column and low-quality images in the right one: (a) landscapes with symmetry
composition, (b) patterns in gray-scale images, (c) blue background, (d) vertical composition, (e) oval-shaped foreground with flat background,
(f) patterns in colorful scenes, (g) horizontal composition, and (h) dim scenes.

of image aesthetics. An aesthetically important pixel should
have a high value in the aesthetic activation map. To this end,
as similarly done in [41], we use output feature maps of more
than one layers in the baseline network. More specifically,
we use the output feature maps of two inception modules,
In1_3 and In2_5, which have 288 channels of size 35 × 35
and 768 channels of size 17× 17, respectively.

Let Fc denote the cth channel of the feature map of In1_3.
Given an image, the proposed PSAA algorithm yields the
soft-max probability vector p = (p, q). By back-propagating
the probability p for the high-quality class to Fc, we obtain
the gradient map Gc =

∂p
∂Fc

. Then, we define the significance
level wc of the cth channel as

wc = max
1≤x,y≤35

|Gc(x, y)|. (3)

Next, we obtain the aesthetic activation map AIn1_3 for In1_3,
by superposing the feature maps using the significance levels

as weights

AIn1_3(x, y) = max

{∑
c

wcFc(x, y), 0

}
. (4)

Note that, in (4), we only consider the positive influence to
the high-quality class. We also obtain the aesthetic activation
map AIn2_5 for In2_5 similarly.
Finally, we obtain the final aesthetic activation map A by

aggregating AIn1_3 and AIn2_5 as

A = AIn1_3 + ÃIn2_5 (5)

where ÃIn2_5 is the resized version of AIn2_5 to that of AIn1_3.
Figure 4 shows examples of aesthetic activation maps. It is

observable that the aesthetic activation maps show higher
values at the composition elements such as symmetric, hori-
zontal, and diagonal lines [3] as well as salient objects.
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FIGURE 4. Examples of aesthetic activation maps: (top) input images
and (bottom) their aesthetic activation maps. In these examples, high
activation values are on salient contents and regions, which determine
photographic composition rules [3]: symmetric, horizontal, and diagonal.

B. AESTHETIC CONTRAST ENHANCEMENT
Many contrast enhancement techniques provide user-
adjustable parameters to control the level of enhancement.
Optimal parameters are generally found on a trial-and-error
basis to maximize output qualities. In this work, we use aes-
thetic activation maps to determine optimal parameters auto-
matically and adaptively. To demonstrate the effectiveness
of the proposed algorithm in the parameter decision, we test
two enhancement algorithms: gamma correction (GC) [44]
with a parameter γ and histogram-based contrast enhance-
ment (HCE) [45] with two parameters (µ, β). However, note
that the proposed algorithm can be applied to any contrast
enhancement techniques with user-adjustable parameters. Let
us briefly review GC and HCE to describe the roles of the
parameters.

GC is one of the simplest contrast enhancement algorithm,
which converts intensity l of an image using the transforma-
tion function

T (l) = lmax

(
l

lmax

)γ
(6)

where lmax denotes the maximum intensity value. In this
work, lmax = 255.

HCE is a histogram modification technique based on
the logarithm function. The histogram of pixel intensi-
ties in an image h = [h0, h1, . . . , h255]T is modified to
m = [m0,m1, . . . ,m255]T . The modified histogram mk for
intensity k is obtained as

mk =
log(hkhmax10−µ + 1)
log(h2max10−µ + 1)

(7)

where hmax denotes the maximum element in h and µ is the
parameter to control the level of contrast enhancement. As µ
increases, the input histogram is less strongly modified and
HCE becomes more similar to the original histogram equal-
ization, which may yield over-enhancement artifacts. On the
other hand, as µ decreases, the input image is less strongly
enhanced. In [45], in addition to contrast enhancement, power
consumption is also controlled by the parameter β. As β gets
larger, the overall brightness of an enhanced image is dimmed
to reduce the power consumption more aggressively.

For HCE-based aesthetic contrast enhancement, we apply
HCE by varying µ in {2.0, 5.0, 5.5, 6.5} and β between
0.8 and 2.2 with step size 0.2 [45]. Let Aµ,β denote the
activation map in (5) with a parameter pair (µ, β). Then,
for an enhanced image with (µ, β), we measure its aesthetic
score by

Saµ,β =
1
N

∑
x,y

Aµ,β (x, y) (8)

where N = 35 × 35 is the size of Aµ,β . We assume that an
image with pixels that affect the high class probability pmore
strongly has a higher aesthetic score. Thus, we determine the
optimal pair of (µ∗, β∗) to yield the maximum score,

(µ∗, β∗) = arg max
(µ,β)

Saµ,β . (9)

Similarly, for GC-based enhancement, we apply GC to an
image by varying γ between 0.5 and 1.5 with step size 0.1,
and select the optimal γ ∗ to maximize the aesthetic score.

C. AESTHETIC IMAGE CROPPING
Aesthetic cropping attempts to retain the most appealing
view in a photograph, while excluding less important regions.
We use 368 windows with different sizes and aspect ratios.
Then, we obtain cropping candidates by sliding windows
within the image. In this work, 5,632 candidates are consid-
ered in total.

Unlike contrast enhancement, if we consider aesthetic
quality only, a cropping result may lose major subjects
or include the entire input image. To avoid both cases,
we attempt to preserve the contextual information of an
original image I0, and also trim off insignificant region as
much as possible. To this end, for each cropping candidate In,
we firstly extract its contextual feature fn, which is the output
of the last pooling layer of ResNet-50 [46] trained on the
ImageNet-2012 classification dataset [38]. Then, wemeasure
the contextual similarity between In and I0 by computing the
context-preservation score

Spn = −χ2(fn, f0) (10)

where f0 is the contextual feature of I0 and χ2(·, ·) denotes
the chi-square distance.

Secondly, we measure the size difference between the
candidate and input by normalizing the size of the cropping
candidate as

Szn = −
|In|
|I0|

, (11)

where | · | denotes the size of an image.
To find the optimal cropping region, we measure the over-

all cropping score Scn of each candidate In by

Scn = San + λ1S
p
n + λ2Szn (12)

where San is the aesthetic score of In, computed in the same
way as (8). Finally, we choose the candidate with the max-
imum cropping score as the optimal cropping region In∗ ,
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FIGURE 5. Examples of test images in the AVA dataset, which are categorized into the high- and low-quality classes. Notice that the landscape images
in Figure 3(a) are also included in this figure. Even for humans, their aesthetic classification is easier in Figure 3(a) than in this figure.

where

n∗ = argmax
n
Scn. (13)

In (12), λ1 and λ2 are empirically set to 0.05 and 0.59,
respectively, to maximize the subjective qualities of cropping
results.

V. EXPERIMENTAL RESULTS
A. DATASET
We evaluate the performance of the proposed PSAA algo-
rithm on the AVA dataset [29]. To the best of our knowledge,
AVA is the largest publicly available aesthetic assessment
dataset. It contains about 250,000 images, and the aesthetic
quality of each image was rated by about 200 human anno-
tators. The ratings range from 1 to 10, with 10 indicat-
ing the highest quality. For a fair comparison, we use the
same partition of training and testing data as the conven-
tional algorithms do [11]–[13], [23], [29]: 235,599 images
for training and 19,930 images for testing. Also, we follow
the same procedure as the conventional algorithms to assign

a binary aesthetic label to each image; images with mean
ratings smaller than 5 are labeled as low-quality, otherwise
high-quality.

B. AESTHETIC QUALITY ASSESSMENT
We first evaluate the aesthetic assessment performance of
the proposed PSAA algorithm qualitatively. Figure 5 shows
some test images, which are classified into the high- and
low-quality classes by PSAA. Notice that the eight landscape
images in Figure 3(a) are also included in Figure 5. When
they are mixed with other images of different aesthetic prop-
erties, it is more difficult to determine their quality classes.
Even for humans, the classification is easier in Figure 3(a)
than in Figure 5. This is why we perform the unsuper-
vised aesthetic property discovery and the property-specific
assessment.

The performance of the proposed algorithm is assessed
quantitatively, by measuring the accuracy score

Accuracy =
Ncorrect

Ntotal
(14)
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TABLE 1. Comparison of the aesthetic assessment accuracy of the
proposed PSAA algorithm with those of conventional algorithms. The best
result is boldfaced.

whereNtotal andNcorrect are the numbers of total and correctly
classified images, respectively.

1) COMPARISON WITH CONVENTIONAL ALGORITHMS
In an extensive survey of aesthetic assessment techniques
in [35], it was shown that CNN-based algorithms outperform
the others. Hence, we compare the proposed PSAA algorithm
only with the recent algorithms in [11]–[14], [23]–[29], most
of which are CNN-based. The AVA algorithm [29] is based
on handcrafted and generic features. The other algorithms
use CNNs. In addition to CNN features, external informa-
tion, such as learning-based aesthetic attribute classification
in [11], [12], scene categorization in [13], attribute and con-
tent classification in [23], salient object detection in [14],
aesthetic property classification [25], and hand-crafted and
generic feature in [27], is employed. In [11], [12], [14], [25],
both local and global characteristics are analyzed. Also,
the aesthetic score of an image is computed as the mean of the
aesthetic score distribution in [24], [28], or by averaging the
scores in local regions in [26]. Table 1 compares the accuracy
scores. We see that, whereas the traditional AVA algorithm
provides the lowest accuracy, the proposed PSAA algorithm
yields the highest accuracy. PSAA outperforms ASPP FCN-
GC [26], which is the best-performing conventional algo-
rithm, by a gap of 0.7%. Let us analyze subsequently how
this sate-of-the-art performance is achieved.

2) EFFECTIVENESS OF PROPERTY-SPECIFIC
ASSESSMENT
We verify the efficacy of the property-specific assessment
strategy of the proposed PSAA algorithm. Notice that the
baseline network itself can be used as a binary quality
classifier, but it does not exploit any aesthetic properties.
Hence, we compare PSAA with the baseline network to
measure the effectiveness of the property-specific assess-
ment. To confirm its general effectiveness, in addition to
GoogLeNet, we employ two additional backbone networks:
VGG-16 [47] and ResNet-50 [46]. As well as GoogLeNet,

TABLE 2. Comparison of the accuracy scores of the baseline networks
and PSAAs using three different backbones on the AVA dataset.

TABLE 3. The accuracy scores and the numbers, k , of aesthetic properties
of PSAA according to the split thresholds τ1, τ2, τ3.

both VGG-16 and ResNet-50 have been widely employed
as backbones in various CNN-based image processing and
computer vision techniques [21], [24], [36].

Similar to the GoogLeNet-based baseline network in Sec-
tions III, the additional baseline networks are constructed
based on VGG-16 and ResNet-50. For the VGG-based net-
work, we adopt its conv1∼conv5 blocks and first two fc
layers. Then, we modify the structure of the last fc layer and
the soft-max layer for binary aesthetic quality classification.
In training, the conv1∼conv5 blocks and the first two fc
layers are initialized with those of the pre-trained VGG-16 on
ILSVRC-2012 [38], and the modified fc layer is trained from
scratch. Similarly, for the ResNet-based network, we use
the residual blocks res1∼res5, and redesign its fc and soft-
max layers for binary classification. To train it, we initialize
the res1∼res5 blocks with those of the pre-trained ResNet-
50 using ILSVRC-2012, and train the other layers from
scratch. As done in Figure 2, we extract multi-scale aesthetic
features by average-pooling and concatenating conv4 and
conv5 for VGG-16 and res4 and res5 for ResNet-50.

Table 2 lists the accuracy scores of the baseline networks
and PSAAs using the three backbones on the AVA dataset.
Notice that all three PSAAs significantly outperform their
corresponding baseline networks. More specifically, PSAAs
using GoogLeNet, VGG-16, and ResNet-50 backbones
improve the accuracies by 11.2%, 11.4%, and 10.3%, respec-
tively. These large performance gaps between the baseline
networks and PSAAs confirm the efficacy of the aesthetic
property discovery and the property-specific assessment.
Also, note that the proposed algorithm is independent of the
architecture of a backbone network and thus can employ any
CNN-based feature extractor as a backbone.

Furthermore, notice from Tables 1 and 2 that, regardless of
the choice of the backbone, the proposed PSAA algorithm
outperforms the recent CNN-based algorithms [13], [14],
[23]–[28].
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TABLE 4. Comparison of contrast enhancement algorithms using objective quality metrics: Lee et al.’s algorithm [45], Regress-Net-based algorithm [23],
and the proposed algorithm. A boldfaced number denotes the best result for each test.

FIGURE 6. The distribution of training images (a) and that of testing
images (b) in the AVA dataset according to the property index.

3) NUMBER OF DISCOVERED AESTHETIC PROPERTIES
In Section III-B, we use three split thresholds (τ1, τ2, τ3) to
control the number k of aesthetic properties. Let us analyze
the impacts of these thresholds on the assessment perfor-
mance. Table 3 lists the accuracy scores and the numbers of
clusters of PSAA for several combinations of the thresholds
on the AVA dataset. Too large a k degrades the assessment
performance, since each cluster does not contain sufficient
samples for training Prop-Nets. On the other hand, too small
a k cannot represent diverse aesthetic properties faithfully.
Hence, we choose the split thresholds (0.3, 0.5, 0.007) to
achieve the highest accuracy, striking a balance between
reliable training and faithful representation. For this setting,
the number of discovered aesthetic properties is k = 136.
The proposed aesthetic property classifier can be regarded

as a clustering scheme. To analyze its contribution to the over-
all assessment performance, we replace the aesthetic property
classifier with the k-means clustering with k = 136 [37],
where only the positive set P is used. Then, we map all
training data into their nearest neighbor (NN) clusters and
train Prop-Nets. In the testing phase, for a query image,
the NN cluster is found and the corresponding Prop-Net
is employed for the aesthetic assessment. This k-means
clustering approach yields the accuracy score of 80.8%,
which is lower than the proposed PSAA algorithm by 3.5%.

TABLE 5. Comparison of the conventional and proposed image cropping
algorithm on the human crop dataset [53] in terms of the MaxOverlap
scores. The best result and the second best are boldfaced and
underlined, respectively.

This confirms that the proposed aesthetic property classi-
fier is more effective in grouping aesthetic features than the
k-means clustering.
Figure 6 shows the number of images that are assigned

to each aesthetic property for the AVA training and testing
datasets, respectively. We discover diverse aesthetic proper-
ties, but images are not uniformly distributed in terms of the
properties. In other words, although aesthetic properties are
quite diverse, some properties are more frequently adopted
than the others. However, even to the least adopted prop-
erty for the AVA training dataset, 704 training images are
assigned. They are then used to train the corresponding Prop-
Net. On the other hand, there are much fewer test images
than training images in the AVA dataset. Thus, for the AVA
testing dataset, 52 properties are not used, and the aesthetic
assessment is performed by the remaining 84 Prop-Nets.

C. AESTHETIC CONTRAST ENHANCEMENT
Next, the proposed PSAA algorithm is used to select opti-
mal parameters for contrast enhancement. For comparison,
we also test Regress-Net [23]. Regress-Net yields a continu-
ous aesthetic score between 0 and 1, whereas PSAA performs
the binary classification. Therefore, instead of the aesthetic
score in (8), we use the output of Regress-Net directly to
decide user-controllable parameters (µ, β) for HCE and γ for
GC. For HCE-based aesthetic contrast enhancement, we also
compare the proposed algorithm with the original HCE [45],
where the parameters are fixed as (µ, β) = (5, 1).
We first compare the performances objectively on

the 93 low-contrast images in [48] using four quality
metrics: discrete entropy (DE) [49], absolute mean brightness
error (AMBE) [50], measure of enhancement (EME) [50],
and PixDist [51]. DE measures the amount of information
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FIGURE 7. HCE-based contrast enhancement: from top to bottom, input images, enhancement results of Lee et al.’s algorithm [45], Regress-Net [23], and
the proposed algorithm.

FIGURE 8. Aesthetic gamma correction: from top to bottom, input images, enhancement results using Regress-Net [23] and the proposed algorithm.

in an image. A high DE means that the image conveys
more information. AMBE measures the absolute difference
between input and output mean brightness levels. It yields
a lower value when an algorithm well preserves the mean

brightness of the input. EME approximates the contrast in an
image by computing a score based on the block-wise mini-
mum and maximum intensity levels. PixDist also represents
a contrast level by computing the average mutual intensity
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FIGURE 9. Examples of aesthetic image cropping: (top) original images, (middle) aesthetic activation maps, and (bottom) cropping results.

FIGURE 10. More examples of aesthetic image cropping: (top) original images, (middle) aesthetic activation maps, and (bottom) cropping results.

differences for all pixel pairs in an image. Therefore, higher
DE, EME, and PixDist and a lower AMBE imply higher
image quality.

Table 4 lists the average performances of HCE-based
and GC-based enhancement algorithms on the test images.
Overall, HCE-based algorithms outperform simple GC-based
algorithms. Let us first compare the HCE-based algorithms.
For DE, the proposed algorithm conveys more information
than the other algorithms. Note that, because of the infor-
mation processing inequality [52], no algorithm can yield
a higher DE than an input image. In terms of AMBE and
PixDist, the proposed algorithm achieves the best perfor-
mances. This is because the proposed algorithm selects
images with well-preserved mean brightness and with uni-
formly distributed intensity histograms. With fixed parame-
ters, Lee et al.’s algorithm yields the highest EME. However,
it is less adaptive to image characteristics as illustrated
in Figure 7. In both GC-based and HCE-based tests, the pro-
posed algorithm performs better than Regress-Net in terms of

all metrics, except for PixDist in the GC-based test. This indi-
cates that the proposed algorithm more accurately assesses
image aesthetics, of which image contrast is one of the most
important factors.

Figures 7 and 8 show enhancement results of HCE-
and GE-based algorithms, respectively. In Figure 7, while
Lee et al.’s algorithm and Regress-Net provide under- or
over-enhanced results, the proposed algorithm yields better
results overall. In Figure 8, the proposed algorithm provides
more reliable results than Regress-Net.

D. AESTHETIC IMAGE CROPPING
We evaluate the performance of the proposed aesthetic image
cropping algorithm on the 500 ill-composed test images in
the human crop dataset [53], in which each image has ten
ground-truth cropping results annotated by experienced pho-
tographers. As in [53], the performance of an image cropping
result is measured by the maximum-overlap ratio (MaxOver-
lap) between the cropping result R and the ground-truth set
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G = {G1, . . . ,G10}, given by

MaxOverlap(R,G) = max
k

IoU(R,Gk ) (15)

where IoU(R,Gk ) is the intersection over union ratio between
R and Gk computed by

IoU(R,Gk ) =
|R ∩ Gk |
|R ∪ Gk |

. (16)

We compare the proposed algorithm with five conven-
tional cropping algorithms: Yan et al. [54], Fang et al. [53],
Kao et al. [55], Li et al. [56], and Wang et al. [57]. Whereas
Yan et al. and Fang et al. use handcrafted features and
generic image descriptors to measure the changes in contents
and composition after cropping, the others use feature maps
obtained by CNNs.

Table 5 compares the average MaxOverlap scores of the
proposed algorithmwith those of the conventional algorithms
on the test images. The proposed algorithm significantly
outperforms the Yan et al.’s algorithm and the Fang et al.’s
algorithm. This confirms that aesthetic features of the pro-
posed algorithm are more effective than handcrafted features
and generic image descriptors for the purpose of cropping.
Also, the proposed algorithm performs better than the other
aesthetic-based algorithms [55]–[57]. This shows quantita-
tively that the proposed algorithm can crop out aesthetically
important regions more effectively. Figures 9 and 10 present
some cropping results. We see that the proposed algorithm
successfully determines aesthetically attractive regions and
preserves major contents of original images.

VI. CONCLUSIONS
We developed a property-specific image aesthetic assessment
algorithm, called PSAA, that consists of the aesthetic feature
extractor, the aesthetic property classifier, and the property-
specific assessment networks. The aesthetic feature extractor
generates aesthetic features of an input image by analyzing
image aesthetics via a CNN. The aesthetic property classifier
then predicts the aesthetic property of the input image. Then,
the property-specific network, corresponding to the predicted
property, categorizes the image into either high-quality or
low-quality class. Experimental results showed that the pro-
posed PSAA algorithm outperforms conventional state-of-
the-art techniques. Moreover, it was demonstrated that PSAA
can be employed in the two applications of contrast enhance-
ment and image cropping.
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