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ABSTRACT The extensive use of mobile intelligent devices, such as smart phones and tablets, induces new
opportunity and challenge for computation offloading. Task offloading is an important issue in a system
consisting of multiple types of devices, such as mobile intelligent devices, local edge hosts and a remote
cloud server. In this paper, we study the offloading assignment of multiple applications, each one comprising
several dependent tasks, in such a system. To evaluate the total cost in the offloading process, a new metric
is introduced to take into account features of different devices. The remote server and local hosts are
more concerned about their processors utilization, while mobile devices pay more attention to their energy.
Therefore, this metric uses relative energy consumption to denote the cost of mobile devices, and evaluates
the cost of the remote server and local hosts by the processor cycle number of task execution. We formulate
the offloading problem to minimize the system cost of all applications within each application’s completed
time deadline. Since this problem is NP-hard, the heuristic algorithm is proposed to offload these dependent
tasks. At first, our algorithm arranges all tasks from different applications in a priority queue considering
both completed time deadline and task-dependency requirements. Then, based on the priority queue, all
tasks are initially assigned to devices to protect mobile devices with low energy and make them survive
in the assignment process as long as possible. At last, to obtain a better schedule realizing lower system
cost, based on the relative remaining energy of mobile devices, we reassign tasks from high-cost devices to
low-cost devices to minimize the system cost. Simulation results show that our proposed algorithm increases
the successfully completed probability of whole applications and reduces the system cost effectively under
time and energy constraints.

INDEX TERMS Offloading, dependent tasks, mobile, cost.

I. INTRODUCTION
In the recent few years, with the extensive use of mobile intel-
ligent devices, such as smart phones and tablets, computation-
ally intensive applications including image/video processing,
augmented reality, face recognition and interactive gaming
are becoming popular on these mobile devices. Although
users enjoy the benefits of these applications, the quickly
draining battery frustrates users since these complex applica-
tions consume more energy. Hence, to address this problem,
computation offloading has been proposed. Computational
offloading refers to application migration from a mobile
device with limited computation capacity to the powerful
cloud server [1]. Generally, an application consists of sev-
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eral tasks, and task offloading order will influence the over-
all energy consumption and makespan. Hence, offloading
tasks rather than entire applications may be more efficient.
Computation offloading is able to reduce mobile devices’
energy consumption by offloading complicated tasks to the
cloud. Nevertheless, offloading tasks to the remote cloud
brings significant transmission delays, particularly in busy
networks. Thus, local edge hosts which are closer to mobile
devices, leading to low latency, may be another answer to
task offloading. Besides, tasks can also be offloaded to nearby
idle mobile devices [2]. Therefore, the future computation is
expected to combine diverse sources of computation services
in networks [3]–[7].

In existing research on offloading tasks [10], it is assumed
that an application consists of multiple tasks which are
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independent of each other. However, tasks in an application
have internal dependent relationship. A task may have prede-
cessor tasks which must be completed before the beginning
of the task, and it may also have successor tasks which
cannot be executed until the task is completed. Obviously,
the precedence constraints between tasks will drastically
complicate the scheduling decision. Furthermore, new chal-
lenge will be incurred since both the cost and the executing
time of applications are taken into account. To facilitate
tractable analysis, prior studies assume simplified processor
models, such as infinite-capacity local processors [12]–[14],
non-concurrent local and remote processors [11], executing
time denoted by task length and negligible delay between
local processors [15], [16]. Besides, the prior studies simply
use the absolute value of energy and time to evaluate the
offloading problem. This may not reflect the real cost of
mobile devices with limited energy.

In this paper, we study the offloading assignment of mul-
tiple applications in a system, which consists of different
computing devices such as mobile intelligent devices, local
edge hosts and a remote cloud server. A more realistic model
is designed to consider dependent tasks in an application,
finite-capacity mobile devices, executing time denoted by
processor cycle number and parallel execution between the
local devices and the cloud. To evaluate the offloading cost,
we define a new metric in the whole offloading process. The
different features of all computing devices are considered
in this new metric, where relative energy consumption is
used to evaluate mobile devices and processor cycle num-
ber is proposed for local edge hosts and the remote cloud
server. Based on the realistic model and the new metric, the
offloading problem is formulated to minimize the system cost
of all applications while satisfying each application’s com-
pleted deadline. Since this problem is NP-hard, the heuris-
tic algorithm is proposed to offload these dependent tasks.
Considering completed time deadline and task-dependency
requirements, at first, our algorithm arranges all tasks in a pri-
ority queue. Then, based on the priority queue, all tasks are
sequentially assigned to computing devices and initial assign-
ment is obtained. At last, based on the relative remaining
energy of mobile devices, we reassign tasks from high-cost
devices to low-cost devices to minimize the system cost. Sim-
ulation results show that our proposed algorithm reduces the
system cost effectively and the successfully completed prob-
ability of all applications increases under time and energy
constraints.

This paper studies the dependent task offloading problem
in a system. The main contributions are summarized as fol-
lows:
•We define the system architecture consisting of multiple

mobile intelligent devices, local edge hosts and a remote
cloud server, and describe the data exchange among them.
Moreover, a new metric, considering relative energy con-
sumption of mobile devices and processor cycle number of
local edge hosts and the remote server, is proposed to evaluate
the offloading effect.

• Based on the system architecture and the metric, we for-
mulate task offloading problem to minimize the system cost
of all applications within each application’s completed dead-
line.
• The heuristic algorithm is proposed to offload total

dependent tasks. During the initial assignment, all tasks from
different applications are arranged based on a priority queue.
After the initial assignment, we reassign tasks based on rel-
ative remaining energy to minimize the system cost while
satisfying the energy and completed time constraints.
• Simulation results show that our proposed algorithm

reduces the system cost effectively and increases the success-
fully completed probability of all applications.

The rest of the paper is organized as follows. In Section II,
a review about related works is provided. In Section III,
we describe the system architecture, define a new evalua-
tion metric and propose the system model. In Section IV,
the heuristic algorithm is developed to solve the task offload-
ing problem. In Section V, the proposed algorithm is evalu-
ated by simulation results. Finally, conclusions are shown in
Section VI.

II. RELATED WORKS
To facilitate offloading process, prior studies assume tasks
of an application are independent. Nevertheless, tasks in
an application have internal dependent relationship. A task
may have predecessor tasks which must be finished before
the beginning of the task, and it may also have successor
tasks which cannot be executed until the task is completed.
Considering the relationship among tasks, authors use call
graph between methods of an application which implies
that tasks are dependent [8]. In [9], all tasks are sequen-
tially executed, and the output data generated by one task is
the input of the next one. The internal dependent relation-
ship among tasks will drastically complicate the scheduling
decision [17], [18].

Since the offloading of dependent tasks is complex under
precedence constraints, earlier works focus on a singlemetric,
energy or makespan. In [19], authors focus on performance
of the parametric partitioning and measure the energy con-
sumption, with the assumption that the cloud and a mobile
device will not run simultaneously. However, exploiting par-
allelism between the cloud and the mobile device can sharply
improve the makespan of the application. During the wireless
communications, authors propose a dynamic energy-aware
model to solve energy waste problems under the dynamic
networking environment [25]. In [26], authors focus on the
energy-saving problem and propose a novel task assignment
which reduces the energy cost to heterogeneous cores and
mobile cloud. In [18], genetic algorithms are proposed for
dependent tasks to reduce makespan. To solve the contradic-
tion between optimal outputs and latency, authors propose a
novel approach based on the mechanism of Reinforcement
Learning to achieve optimal allocation through a self-learning
process [27]. Then, several approaches using both energy and
makespan as the metrics have been proposed [30]–[32].
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Most recent studies have focused on offloading decisions.
In [20], authors propose techniques to improve the perfor-
mance for specific mobile applications. In [21], authors try
to save energy of mobile devices by offloading. However,
these jobs do not consider task scheduling problem of mul-
tiple applications to decrease cost. In [23], authors coordi-
nate offloading requests of multiple applications to reduce
the wireless energy cost which is caused by the tail prob-
lem. This research does not improve performance in a sys-
tem comprising multiple mobile devices. Considering both
energy and application completed time, authors of [22] pro-
pose new offloading algorithms. In [11] and [12], application
deadline and cost minimization are jointly considered. Sub-
ject to the application deadline, authors aim to save max-
imized energy at a mobile device by task offloading [11].
They simply assume that tasks on cloud and the mobile
device cannot run simultaneously, and formulate the offload-
ing problem based on the assumption. In [12], authors pro-
pose a dynamic programming algorithm for deterministic and
stochastic application deadlines. The aforementioned studies
only consider offloading tasks from a mobile device to the
remote cloud, rather than scheduling tasks in a complex sys-
tem consisting of different kinds of devices, such as mobile
intelligent devices, local edge hosts and a remote cloud
server.

Considering multiple types of devices, the problem
of offloading dependent tasks has been studied [13], [14],
[16], [24]. In [13], under a resource cost constraint, authors
propose a fully polynomial time approximation scheme to
minimize the overall latency when they offload dependent
tasks to multiple devices. It is assumed that the devices pos-
sess infinite computing capacity so that any number of tasks
can be processed simultaneously, which is unrealistic. In [14],
to maximize the overall useful computation, authors consider
a similar offloading model for a cluster of mobile devices and
design generic task scheduling heuristics. In [16], authors for-
mulate the scheduling problem of an application comprising
dependent tasks and propose a heuristic algorithm. However,
only energy consumption of mobile device is considered as
an objective, and it is assumed all local processors exist on
a single mobile device. Subject to an application deadline,
authors of [24] minimize the cost for heterogeneous local
and remote processors. The cost, associated with both task
execution and transmission between any two devices, is con-
sidered under the realistic assumption that the local proces-
sors possess finite capacity. However, this work is applicable
to an application and multiple applications are not consid-
ered. In [11], authors divide tasks into cloud tasks and local
tasks, and schedule local tasks into a randomly selected local
core.

III. SYSTEM MODEL
In this section, at first, the system architecture is described.
Then, a new metric is proposed to evaluate the offloading
effect. After that, the offloading problem is formulated to
minimize the system cost under the constraints.

FIGURE 1. The system architecture.

A. SYSTEM ARCHITECTURE
The system is composed of multiple mobile intelligent
devices, local edge hosts and a remote cloud server. There are
two kinds of mobile intelligent devices, busy mobile devices
launching applications and idle mobile devices without any
application. Each busy device may launch several applica-
tions, and each application consisting of multiple dependent
tasks has a completed time constraint. A busy mobile device
with applications can compute tasks itself or offload them
to idle mobile devices or local edge hosts or the remote
server. Each mobile device can only execute one task at
a time, while each edge host with several processors can
execute more than one task and the remote server with infinite
computing processors is able to execute infinite tasks at the
same time. Each mobile device communicates other mobile
devices or edge hosts by wireless transmission, and edge
hosts have cables to communicate with the remote cloud
server. Therefore, mobile devices cannot exchange data with
the remote cloud server directly. Edge hosts are used as relays
when the communication between a mobile device and the
remote cloud server occurs. Let M denote the set of busy
mobile devices launching applications, M ’ denote the set of
idle mobile devices, Q denote the set of local edge hosts, and
R denote the remote server. The system architecture is shown
in Fig. 1. There are a remote cloud server, three edge hosts
and several mobile devices. Edge hosts and mobile devices
are connected by wireless transmission, such as WLAN and
cellular network, while edge hosts have cables to communi-
cate with the remote cloud server.

B. A NEW EVALUATION METRIC
The system consists of different kinds of devices such
as mobile devices, local edge hosts and a remote cloud
server. These devices focus on various aspects. The remote
server and local hosts are more concerned about their proces-
sors utilization, while mobile devices pay more attention to
their energy. Therefore, we design a new metric which takes
the features of all devices into consideration to evaluate the
offloading cost of the system.
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For the remote server and local hosts, the cost is evaluated
by their processor utilization. The longer the utilization time
is, the higher the cost is. Previous studies assume processor
utilization time is proportional to the task length, and use task
length as the cost for simplicity [24]. Actually, the computa-
tion complexity depends on the task property, rather than task
length. For instance, the computation complexity of a video
is different from that of a text, even they have the same file
length. Therefore, using task length as the cost is unrealistic.
Here, the processor cycle number of task execution is used to
evaluate the cost. For the remote server, we use the sum cycle
number of processors during executing tasks to evaluate the
cost. The cost is obtained as

CR = b1NR (1)

where b1 is a constant and NR denotes the sum cycle number
to execute the total tasks in the remote server.

For an edge host, we also use the sum cycle number of
processors during executing tasks to evaluate the cost. For an
edge host k , the cost is derived as

Ck = b2Nk k ∈ Q (2)

where b2 is a constant and Nk is the sum cycle number to
execute the total tasks in the edge host k .
For mobile devices, energy is one of the most important

issues. Hence, energy consumption is introduced to denote
the cost. We use the normalized value in the range (0, 1) to
denote eachmobile device’s energy. For a mobile device, if its
initial energy is less than a predefined threshold before exe-
cuting a task, or the energy consumption during completing
a task makes its remaining energy less than the predefined
threshold after executing this task, the device will not execute
this task. Otherwise, the device will execute the task. Here,
we do not directly use the energy consumption as a mobile
device’s cost since the same energy consumption means dif-
ferent actual impacts on mobile devices with various initial
energy. For instance, the same energy consumption value
0.1 has different impacts on two mobile devices, one device
with initial energy value 0.3 and the other device with initial
energy value 0.9. The device with initial energy value 0.3 is
more affected because its energy falls by 33.3%, while the
energy of the other device only falls by 11.1%. Therefore,
the ratio between the energy consumption and the total avail-
able energy is introduced to describe the cost of a mobile
device. Let 1eb denote the energy consumption during an
idle mobile device b completing tasks, eb denote device b’s
initial energy, THb denote device b’s energy threshold, ed
denote the energy consumption during a busymobile device d
completing tasks, ed denote device d’s initial energy and THd
denote device d’s energy threshold. Then, the cost of mobile
device b and device d is derived as

Cb = b3
1eb

eb − THb
, b ∈ M ′

Cd = b3
1ed

ed − THd
, d ∈ M

(3)

where b3 is a constant.

In (1)-(3), there are three constants (b1, b2 and b3), which
have dependency. If a task is executed by a mobile device, the
main cost is computation, resulting in energy consumption.
If the task is executed by an edge host, the task is transmitted
to the edge host and then executed. Hence, we need to con-
sider not only the transmission time but also the executing
time of this task. In addition, the energy consumption of
mobile devices is denoted by the relative value while the cost
of the remote server and edge hosts is denoted by the absolute
value. This is another issue that should be noticed when we
define these three constants. Thus, the ratio between b2 and
b3 is defined as (T s + T e)/(T eN ′k ), where T

s denotes the
transmission time of an application from amobile device to an
edge host, T e denotes the executing time in the edge host and
N ′k denotes the corresponding host cycle number to complete
the task load that equals a mobile device’s maximized com-
puting ability within its energy constraint. Similarly, the ratio
between b1 and b2 is defined as (T s

′

+ T e
′

)/T e
′

, where
T s
′

denotes the transmission time of the whole application
from an edge host to the remote server, and T e

′

denotes the
executing time in the remote server. After b3 is given, b1 and
b2 can be obtained.
Therefore, the total cost of the system is

Cs = CR +
∑
k∈Q

Ck +
∑
b∈M ′

Cb +
∑
d∈M

Cd (4)

C. SYSTEM MODEL
In our system, each application, consisting of several depen-
dent tasks, has its internal relationship. To illustrate the rela-
tionship among dependent tasks, we use a directed acyclic
graph to represent the internal relationship within each appli-
cation. Let Aji denote task i of application j, Ajk denote task
k of application j and the directed edge (Aji, Ajk ) denote
the task-dependency relationship that Ajk cannot be executed
before Aji is completed.

As shown in Fig. 2, there are two applications (application
1 and application 2). The first application comprises location-
based information finding tasks while the second application
comprises content creation tasks, similar to the application
types in [33]. Each of them consists of ten dependent tasks
and their connections are different. In application 1, there is
task-dependency relationship among ten tasks from A1,1 to
A1,10. Task A1,2 and A1,3 cannot be executed before task A1,1
is completed. Similarly, only when both task A1,4 and A1,5
are completed, task A1,7 will be executed. After task A1,7 and
A1,8 are finished, task A1,9 will be executed. Then, task A1,10
will not be processed until taskA1,9 is completed. Application
2 also has its task-dependency relationship, which is different
from application 1. The beginning time of task A2,2, A2,3 and
A2,4 is determined by A2,1. The later completed time of A2,6
and A2,7 indicates the beginning time of task A2,9. Addition-
ally, we should notice that tasks of different applications are
independent of others and they can be executed in parallel.
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FIGURE 2. Task-dependency relationship.

When a busy mobile device d has some applications, each
one consisting of several tasks, it can executes these tasks
itself or offload them to others. There are four cases below.
i) If a busy mobile device d executes task Aji of application

j itself, there is only executing time for this task. The com-
pleted time Tjid equals the executing time. Let Njid denote the
processor cycle number to execute task Aji in mobile device
d , and Td denote the length of each processor cycle. We can
obtain

Tjid = NjidTd (5)

The corresponding energy consumption of device d is
1ejid = TjidPd , where Pd denotes the operating power of
device d. The operating power is the same with [24].
ii) If the mobile device d offloads its task Aji to an idle

mobile device b, it should send task Aji to the device b.
Then, task Aji is executed in device b. After that, device d
receives the results from device b. Therefore, the completed
time consists of not only executing time in the device b but
also the duration of sending task Aji and receiving results. Let
lji denote the length of task Aji, resji denote task Aji’s results,
and v denote the wireless transmission rate. The duration of
sending task Aji to device b is T sjib = lji/v, and duration of
receiving task Aji’s results from device b is T rjib = resji/v. Let
Njib denote the processor cycle number to execute task Aji in
mobile device b, and Tb denote the length of each processor
cycle. The executing time is NjibTb. Thus, the completed time
Tjib is derived as

Tjib = T sjib + NjibTb + T
r
jib (6)

In this process, both device d and device b consume their
energy. For device d , there are sending energy consumption

and receiving energy consumption. Let Psd denote device d’s
sending power and Prd denote the receiving power. Thus,
device d’s energy consumption is 1ejid = PsdT sjib + PrdT

r
jib.

For device b, there are receiving energy consumption, com-
puting energy consumption, and sending energy consump-
tion. Let Psb denote device b’s sending power, Prb denote
the receiving power, and Pb denote the operating power of
device b. Thus, device b’s energy consumption is 1ejib =
PrbT sjib + PbNjibTb + PsbT

r
jib.

iii) If the mobile device d offloads its task Aji to a local
edge host k , it should send task Aji to edge host k . Then, task
Aji is executed in edge host k . After that, device d receives
the results from edge host k . Therefore, the completed time is
composed of executing time in edge host k and the duration of
sending taskAji and receiving results. The duration of sending
task Aji to device k is T sjik = lji/v, and duration of receiving
task Aji’s results from device k is T rjik = resji/v where resji
denotes task Aji’s results. Let Njik denote the processor cycle
number to execute task Aji in a local host k , and Tk denote the
length of each processor cycle. The executing time is NjikTk .
Thus, the completed time Tjik is derived as

Tjik = T sjik + NjikTk + T
r
jik (7)

In this process, it is not necessary to consider energy
consumption of device k because it has electricity supply. For
device d , there are sending energy consumption and receiving
energy consumption. Thus, device d’s energy consumption is
1ejid = PsdT sjik + PrdT

r
jik .

iiii) If the mobile device d offloads its task Aji to the remote
server R, it should send task Aji to server R. That means it
needs to send task Aji to a local edge host g at first, then
the local edge host g relays task Aji to server R. After that,
task Aji is executed in server R. When task Aji is completed,
server R transmits its results to local edge host g and this edge
host relays the results to device d . Therefore, there are the
exchange time between d and g, executing time in remote
server R, and exchange time between R and g. The time that
device d sends task Aji to edge host g is T sjig = lji/v, and the
time that device d receives task Aji’s results from edge host
g is T rjig = resji/v. The exchange time between R and g is
determined by how busy the backbone network is. Let T sjiR
denote the task sending time from g to R, and T rjiR denote the
result sending time from R to g. Let NjiR denote the processor
cycle number to execute task Aji in the remote server R, and
TR denote the length of each processor cycle. The executing
time is NjiRTR. Thus, the completed time TjiR is derived as

TjiR = T sjig + T
s
jiR + NjiRTR + T

r
jiR + T

r
jig (8)

In this process, it is not necessary to consider energy con-
sumption in g and R because they have electricity supply. For
device d , there are sending energy consumption and receiving
energy consumption. Thus, device d’s energy consumption is
1ejid = PsdT sjig + PrdT

r
jig.

Considering task-dependency relationship in application
j, task Aji cannot be assigned to a device x until the total
predecessors of task Aji have been completed. When task Aji
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is able to be assigned to device x, if device x is the remote
cloud serverR, taskAji will be executed immediately since the
remote server has infinite computing processors to support
multitasking. If device x is a local edge host, which is able
to execute several tasks at a time, task Aji has to wait for the
availability of a processor when all device x’s processors are
executing tasks. If device x is a mobile device, only executing
one task at a time, task Aji has to wait for the availability of
device x when there is another task being executed in device
x. Let TSjix denote task Aji’s started moment for device x, P
denote the task set of all task Aji’s predecessors, TCjp denote
the completed moment of task Ajp ∈ P, and TAjix denote the
available moment of task Aji in device x. Then, we can obtain

TSjix =


max{max

Ajp∈P
TCjp,TAjix}, x 6= R

max
Ajp∈P

TCjp, x = R
(9)

Based on (5)-(8), the completed time Tjix of task Aji in
device x can be obtained. Thus, task Aji’s completed moment
TCjix for device x is derived as

TCjix = TSjix + Tjix (10)

When all tasks of application j have been assigned to
devices, the completed moment of application j equals the
completed moment of its latest task. Let TCji denote the
completed moment of task Aji. If task Aji is assigned to device
x, TCji equals TCjix . Thus, the completed moment TCj of
application j is obtained as

TCj = max
Aji

TCji task Aji ∈ application j (11)

Let Ujix denote whether task Aji is assigned to device x.
We can obtain

Ujix =

{
1, if Aji is assigned to x
0, otherwise

(12)

Since a task will be assigned to a device, we can obtain∑
x Ujix = 1. Let Vim denote the executed order between task

task Aji and task Aqm. Vim is defined as

Vim =

{
1, if task Aqm executed before Aji
0, otherwise

(13)

If task Aji is assigned to mobile device x, the available
moment TAjix in device x is not earlier than the completed
moment of task Aqm that device x has before task Aji. This
constraint is obtained as

TAjix≥UjixUqmxVimTCqm x ∈ M ′ ∪M for ∀Aji,Aqm (14)

Based on the description from i) to iiii), the total energy
consumption 1ed of mobile device d ∈ M is derived as

1ed =



∑
j

∑
i

UjidNjidTdPd∑
j

∑
i

Ujib(PsdT sjib + PrdT
r
jib), b ∈ M ′∑

j

∑
i

Ujik (PsdT sjik + PrdT
r
jik ), k ∈ Q∑

j

∑
i

UjiR(PsdT sjig + PrdT
r
jig), g ∈ Q

(15)

The total energy consumption 1eb of mobile device b ∈
M ′ is obtained as

1eb =
∑
j

∑
i

Ujib(PrbT sjib + PbNjibTb + PsbT
r
jib) (16)

The total cycle number NR for the remote server and the
cycle number Nk for local edge host k ∈ Q are derived as

NR =
∑
j

∑
i

UjiRNjiR

Nk =
∑
j

∑
i

UjikNjik , k ∈ Q
(17)

Each application consisting of several tasks has completed
time constraint. That means the completed moment of its
latest task cannot exceed this constraint. Let Conj denote the
completed time constraint of application j. Based on (11),
the completedmoment TCj of application j should be nomore
than Conj.
Based on (4), (15), (16) and (17), the offloading problem

can be formulated as

min b1NR +
∑
k∈Q

b2Nk +
∑
b∈M ′

b31eb
eb − THb

+

∑
d∈M

b31ed
ed − THd

s.t. TCj ≤ Conj
eb −1eb ≥ THb, b ∈ M ′

ed −1ed ≥ THd , d ∈ M

Eq.(9)− (14) (18)

The problem in (18) is NP-hard because Generalized
Assignment Problem (GAP), which is NP-hard, is a special
case of this problem. Hence, it is difficult to find an optimal
solution within polynomial time. Consequently, we propose
the heuristic algorithm to solve it in next section.

IV. OFFLOADING ALGORITHM
In this section, the heuristic offloading algorithm is proposed
to minimize the system cost under the constraints.

A. OFFLOADING ALGORITHM
During the assignment process, we try to assign task Aji to a
device x∗ to realize the lowest system cost. The assignment
process consists of priority arrangement, initial assignment
and reassignment. In the initial assignment, we generate a
schedule to obtain the system cost as low as possible under the
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energy and completed time constraints. Then, we introduce
relative remaining energy to reassign tasks based on the initial
schedule to minimize the system cost.

At the first step, all tasks are arranged in a priority queue
based on their assignment urgency.

Let1ejix denote mobile device x’s energy consumption for
task Aji, and THx denote its energy threshold. To maintain
the remaining energy of mobile device x higher than THx
after executing task Aji, mobile device x should have enough
energy no less than the real threshold THRjix before executing
task Aji. Thus, real threshold THRjix is derived as

THRjix = THx +1ejix (19)

Let LCji denote the latest allowable completed moment of
task Aji, S denote the task set of Aji’s successors,LCjs denote
the latest allowable completed moment of task Ajs ∈ S, Xjs
denote the set of mobile devices satisfying real threshold
before executing task Ajs, and Tjsx denote the completed time
of task Ajs in device x. Then, we can obtain

LCji = min
Ajs∈S

(LCjs − min
x∈Xjs

Tjsx) (20)

For the last task of application j, the latest allowable com-
pleted moment of this task is Conj, which denotes the com-
pleted time constraint for application j. Otherwise, the time
constraint will not be satisfied. Based on the latest allowable
completed moment Conj of the last task in application j,
each predecessor’s latest allowable completed moment can
be calculated following (20) until the first task in application
j. To avoid the application j breaking the completed time
constraint, any task Aji of application j must be completed
before LCji.
Let Xji denote the set of mobile devices satisfying real

threshold before executing task Aji. Using (20), the latest
allowable beginning moment LBji of task Aji can be obtained
as

LBji = LCji − min
x∈Xji

Tjix (21)

A task with a smaller value of the latest allowable begin-
ning moment is more urgent and should be assigned earlier
than others. Otherwise, the time constraint will be broken.
Therefore, the smaller LBji is, the higher priority of task Aji
is. The latest allowable beginning moment of each task can be
calculated following (19)-(21). Based on the latest allowable
beginning moment of each task, the priority queue of all tasks
is obtained.

At the second step, all tasks are initially assigned following
the priority queue. When there is only one application, all
tasks of this application are simply assigned in the order
of the priority queue. When there are multiple independent
applications, each consisting of several tasks, tasks of these
applications can be executed in parallel. This leads to such
a case. At a time point, the predecessors of a task with lower
priority in one application are completed, while the predeces-
sors of another task with higher priority in other application
are not completed. In this case, the task with lower priority

should be assigned first to improve efficiency. The details of
initial assignment are described as follows.

Task Aji with the highest priority is chosen from all unas-
signed tasks. If all Aji’s predecessors have not been com-
pleted, this task cannot be assigned and it is deposited in a
backup queue. If all Aji’s predecessors have been completed,
the remote server, local edge hosts and mobile devices with
current energy higher than the real energy threshold in (19)
are potential devices for task Aji’s assignment. We calcu-
late the completed moment and system cost of task Aji in
each potential device based on (4)-(17). From the devices
which are able to complete task Aji before its latest allowable
completed moment LCji, we can select a suitable device to
assign task Aji. If it is the remote server or a local edge host
which achieves the lowest system cost for task Aji, task Aji
will be assigned to the device realizing the lowest system
cost. If some mobile devices can achieve lower system cost
than the remote server and local edge hosts, one of these
mobile devices will be chosen. Task Aji will be assigned to
a mobile device, which has highest remaining energy after
executing task Aji, rather than the mobile device achieving the
lowest system cost. The aim is to protect low energy mobile
devices andmake them survive during the assignment process
as long as possible. We should notice that Aji’s assignment
influences the tasks in the backup queue andmay lead to these
tasks exceeding their latest allowable completed moment,
which will break the time constraint of the corresponding
applications. Therefore, we do not immediately assign Aji
to a device even if its predecessors have been completed.
Instead, we calculate the completed moment of each task in
the backup queue as if Aji is actually assigned. If a task Ank
in the backup queue cannot be completed no later than its
latest allowable completed momentLCnk , task Aji will not be
assigned, and it is deposited into the backup queue. If each
task in the backup queue can be completed no later than LCnk ,
task Aji will be actually assigned to the chosen device. After
the actual assignment of a task, we will renew the current
energy of mobile devices and assign the next task until the
whole tasks are assigned.

At the last step, tasks assigned during the initial assignment
are reassigned to decrease system cost. We try to move tasks
from high-cost devices to low-cost devices under the com-
pleted time constraint. When we move a task from one device
to another, there may be several choices leading to different
reassignment results, and only the reassignment realizing
lowest cost is chosen.

To choose the proper task reassignment, we introduce the
relative remaining energy to evaluate the reassignment oppor-
tunity of tasks in a mobile device. Let REk denote the remain-
ing energy of mobile device k after the initial assignment. For
mobile device k , relative remaining energy RREk is defined
as

RREk = REk − THk (22)

where THk denotes device k ′s energy threshold, REk and THk
are the normalized values in the range (0, 1).
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Relative remaining energy RREk evaluates the relative dis-
tance between the actual remaining energy of mobile device
k and its energy threshold. Thus, based on (3), the lower
RREk is, the higher the mobile device k’s cost is in initial
assignment.

To move tasks from high-cost devices to low-cost devices,
after the initial assignment, we choose a mobile device with
the lowest relative remaining energy, and reassign the tasks in
this mobile device. It is assumed m tasks are assigned to this
mobile device in the initial assignment and there are n devices
in the system. Each task can be moved to other n− 1 devices
leading to m∗(n− 1) reassignment cases. Some reassignment
cases may break the time or energy constraints and they
should be removed. For the reassignment cases satisfying
constraints, their system cost values can be calculated based
on (4), (15), (16) and (17). The reassignment case realizing
the lowest system cost is chosen.

We use the current chosen reassignment to update global
task distribution, leading to the change of mobile devices’
remaining energy. Then, we repeat the reassignment process
until no lower system cost is found.

The details of the heuristic multi-user reassignment
offloading algorithm (MRO) are described in Alg. 1.

For example, we perform the proposed algorithm on two
applications with the task graphs shown in Fig. 2. In the
system, there are four mobile devices, two local hosts and
a remote cloud server. For four mobile devices, we set the
initial energy as 1.0, 0.92, 0.88 and 0.96. For simplicity, these
mobile devices have the same energy threshold which equals
0.1. For tasks from A1,1 to A1,10, we set the task executing
time as 2s, 2.2s, 2.2s, 2.4s, 2.6s, 2.8s, 2.6s, 2.4s, 2.6s, 2.7s
when they are executed by mobile device 1. For tasks from
A2,1 to A2,10, we set the task executing time as 2s, 2.2s, 2.2s,
2.4s, 2.6s, 2.8s, 2.6s, 2.4s, 2.6s, 2.7s when they are executed
by mobile device 1. We use the executing time of mobile
device 1 as the baseline. For the same task, the executing time
ofmobile device 2 is 1.1 times as long as that of mobile device
1. The executing time of mobile device 3 is 1.2 times and
the executing time of mobile device 4 is 1.1 times. Two local
hosts possess the same computing capacity and the executing
time is 0.9 times that of mobile device 1. The executing time
of remote server is 0.75 times. The transmission time is set
to one third of the executing time of mobile device 1 for
simplicity. We set b1 = 0.2, b2 = 0.4 and b3 = 0.3. The
completed time constraints of the two applications are 17.5s
and 17s, respectively.

Based on the latest allowable beginning moment of all
tasks, the priority queue is obtained as (A2,1, A1,1, A1,2, A1,3,
A2,2, A2,3, A2,4, A1,4, A1,5, A1,6, A2,5, A2,7, A2,6, A2,8, A1,7,
A1,8, A1,9, A2,9, A2,10, A1,10). During the initial assignment,
these tasks are assigned based on the priority queue. Fig. 3(a)
presents the results of initial assignment. At first, task A2,1,
which has the highest priority, is assigned to mobile device 1.
Then, task A1,1 is assigned to mobile device 4. After that,
task A1,2 and A1,3 cannot be assigned until A1,1 is completed.
Similarly, task A2,2, A2,3 and A2,4 are waiting for task A2,1’s

Algorithm 1 Heuristic Multi-User Reassignment Offloading
Input: Task relationship in each application Energy and time
constraints
Output: The minimized cost z and task assignment RA(z)
1. priority queue PQ← ϕ

2. backup queue BQ← ϕ

3. for each application j
4. for each task Aji ∈ application j
5. THRjix ← Eq. (19)
6. obtain Xjs satisfying real threshold
7. LCji ← Eq. (20)
8. LBji← Eq. (21)
9. add Aji to PQ based on LBji
10. end for
11. end for
12. while PQ ∪ BQ 6= ϕ

13. select task Aqm with smallest LBqm from PQ ∪ BQ
14. if Aqm’s predecessors are not completed
15. move Aqm to BQ
16. else
17. calculate potential assignment device set S
18. compute the cost of each device in S
19. choose x ∈ S realizing lowest cost
20. choose y ∈ Q ∪ R realizing lowest cost
21. If x 6= y
22. obtain mobile set S ′ achieving lower cost than y
23. x ← a device with highest remaining energy in

S ′

24. end if
25. assign Aqm to x virtually
26. If any task in BQ does not break constraints
27. assign Aqm to x really
28. If Aqm ∈ PQ
29. PQ←PQ / Aqm
30. else
31. BQ←BQ/ Aqm
32. end if
33. else
34. move Aqm to BQ
35. end if
36. end if
37. end while
38. select a mobile device k with the lowestRREk
39. for each task in k
40. for each other device
41. compute reassignment cost
42. If this reassignment satisfying constraints
43. z← minimized reassignment cost
44. RA(z)← reassignment with minimized cost
45. end if
46. end for
47. end for
48. update mobile devices’ tasks and remaining energy
49. repeat 38-48 until no lower cost
50. Return z and RA(z)

completion. Within one application, a task can be assigned
after all its predecessors are finished. As shown in Fig. 3(a),
tasks are assigned to mobile devices, local hosts and the
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FIGURE 3. An example of task assignment.

remote server. Based on our algorithm, the corresponding
system cost is 17.39.

After the initial assignment, our algorithm will reassign
tasks to decrease the system cost. Fig. 3(b) shows the results
of task reassignment. Since mobile device 3 executes many
tasks, leading to drastic energy decline approaching its energy
threshold, task A1,8 in mobile device 3 is reassigned to the
remote server to reduce cost. Similarly, task A2,8, located in
mobile device 2 in the initial assignment, is reassigned to
local host 1 because this reassignment is able to decrease
system cost. Due to task A2,8’s reassignment, task A1,9 moves
from local host 1 to local host 2 to guarantee the executing
efficiency. After the reassignment, the system cost drops to
15.37 and the completed time of both applications increases
slightly. This indicates task reassignment can efficiently bring
down the system cost and result in the growth of com-
pleted time, which is still satisfying the time constraint.
In addition, reassignment also influences the sequence of
task execution. Task A2,9 and A1,9 are from different appli-
cations and A1,9 has higher priority. After task reassignment,
task A2,9 is assigned before A1,9. Although the task with
lower priority is scheduled first, there is no confusion on
offloading because the tasks from different applications are
independent.

In conclusion, our proposed algorithm is applied to not
only single application but also multiple applications. If there

is only one application, all tasks of this application will be
sequentially assigned based on their latest allowable begin-
ning moments. If there are multiple applications, it is compli-
cated. To improve the executing efficiency, tasks cannot be
sequentially assigned following the latest allowable begin-
ning moments. Each application is independent on other
applications, resulting in each task of one application is inde-
pendent on other tasks of other applications. Hence, as shown
in the example, task A2,9 of application 2 has lower priority
than task A1,9 of application 1 while there is no relationship
between these two tasks. At a time point, the predecessors of
task A2,9 with lower priority are completed, while the prede-
cessors of task A1,9 with higher priority are not completed.
In this case, task A2,9 does not wait for task A1,9. Instead, it is
assigned before A1,9 to improve efficiency. Although the task
with lower priority is scheduled first, there is no confusion
on offloading because the tasks from different applications
are independent.

B. ANALYSIS OF COMPLEXITY
The complexity of proposed MRO algorithm is computed
as follows. The MRO consists of three steps. In the first
step, the computation complexity is O(jin) where j denotes
the number of applications, i denotes the number of tasks
in each application and n denotes the number of mobile
devices.

In the second step, we do not immediately assign task
Aji to a suitable device even if its predecessors have been
completed since Aji’s assignment influences the tasks in the
backup queue and may lead to these tasks exceeding their
latest allowable completed moment. Instead, we calculate the
completed moment of each task in the backup queue as if Aji
is actually assigned. This process dominates the complexity
of the second step. Hence, the computation complexity is
O(jin2).
At last, tasks are reassigned to decrease system cost. When

we move a task from one device to another, it results in
a new assignment. Hence, the computation complexity is
O(ji(n− 1)n2).
Therefore, the computation complexity of the whole algo-

rithm is O((n− 1)n2ji).

V. SIMULATIONS
In this section, our proposed algorithm (MRO) is eval-
uated by extensive simulations. We use the simula-
tor proposed in [34] to model tasks. Compared with
ITAGS algorithm [24], MAUI+ECS algorithm [29] and
MAUI+Random algorithm [11], our algorithm can reduce
the system cost efficiently. The system has four mobile
devices, two local edge hosts and a remote cloud server. Each
local host can execute three tasks in parallel while a remote
server is able to execute infinite tasks in parallel. For four
mobile devices, we set the initial energy as 1.0, 0.92, 0.88 and
0.96. The energy threshold is 0.1 for all mobile devices. They
possess the same computing capacity and their parameters
are the same with Nexus 5X smartphone. Two local hosts
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possess the same computing capacity, and the executing time
of a same task is 0.9 times as long as that of a mobile device.
The remote server has the highest computing capacity and
the executing time is 0.75 times for the same task. We set
b1 = 0.2, b2 = 0.4 and b3 = 0.3.

The size of task load and that of task results follows
Gaussian distribution N (200KB, 2500) and N (20KB, 25),
respectively. The transmission rate is 1Mbps. We understand
that transmission rate of wireless communication is up to
54Mbps in Wi-Fi, while the transmission rate of mobile
communication network is lower than that of Wi-Fi and it
is not stable, influenced by shadowing, multiple fading and
other issues. Hence, we use 1 Mbps as transmission rate
between mobile devices and local edge hosts. This is the gen-
eral assumption which is more realistic. The processor cycle
number of executing tasks also follows Gaussian distribution
N (2000M, 200). Here, we use TGFF to generate the task
relationship in each application [28]. The task relationship of
an application determines completed time constraint, and the
default value of time constraint equals the total executing time
of an application in a mobile device. Here, each application
consists of the content creation tasks, and all parameters are
the same with [33].

We use two metrics, success rate and system cost, to evalu-
ate MRO and other algorithms. Success rate is defined as the
percentage that the whole applications are completed within
their completion time constraints. System cost is defined as
in Equation (4).

A. SUCCESS RATE
Fig. 4 shows the success rate of different algorithms under
different completion time constraints. The default baseline is
set as the total executing time of an application in a mobile
device. The completion time constraint is represented by
multiplying a factor (i.e., [0.5, 2.0]) to the baseline. Each
application consists of 20 tasks. As shown in Fig. 4(a),
with only one application, the success rate reaches 100% for
ITAGS, MAUI+ECS and MRO, while MAUI+Random can-
not reach. This is because MAUI+Random randomly assigns
tasks to mobile devices without considering completion time
constraints, which results in timeout and the lower success
rate. ITAGS, MAUI+ECS andMRO consider the completion
time constraint during assigning tasks, leading to their higher
success rate. As the completion time constraint increases,
it is easier to assign total tasks within completion time con-
straint. Therefore, the success rate of MAUI+Random also
increases to 100% in the final. When the number of applica-
tions increases, two applications in Fig. 4(b), several tasks in
different applications can be launched at the same time. Since
the number of devices does not change, tasks need to compete
the devices to satisfy their time constraints, leading to lower
success rate for MAUI+ECS, ITAGS and MAUI+Random.
However, our algorithm (MRO) takes the time constraint
into consideration during both task initial assignment and
task reassignment. Thus, our algorithm always has the higher
success rate.

FIGURE 4. Success rate with different number of applications.

B. SYSTEM COST
For one application with fixed number of tasks, different task
connectionswill result in various system cost even if each task
does not change. Fig. 5 shows six kinds of task connections
for an application consisting of ten tasks. As shown in Fig. 5,
each task does not changewhile the task relationship changes.
Fig. 6 illustrates the change of system cost corresponding
to different task connections. MRO realizes lower system
cost than other algorithms. As the task connection changes,
the system cost also changes since task-dependency rela-
tionship influences the executed sequence of tasks. For the
sixth connection, less tasks can be executed in parallel and
most of them must wait for the completion of predecessors.
Hence, the executing efficiency is lower than other connec-
tions, which results in a longer completed time. To satisfy the
time constraint, some tasks have to be assigned to high-cost
devices.

Fig.7 shows two applications (app 1 and app 2) consisting
of 20 tasks, and their task connections. There are only differ-
ent task connections between these two applications. As the
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FIGURE 5. Six kinds of task connections.

number of mobile devices changes from 4 to 8, Fig. 8 illus-
trates the system cost for app 1 and app 2, respectively.
As shown in Fig. 8, the system cost gradually decreases when

FIGURE 6. System cost with different connections.

FIGURE 7. Two kinds of task connections.

the number of mobile devices increases. As the number of
mobile devices increases, tasks have more choices and can
be assigned to those low-cost devices which decrease the
total system cost. In addition, the cost of app 2 is higher than
app 1 nomatter which algorithm is used. The reason is that the
relationship of app 2 results in less tasks that can be executed
in parallel. Hence, the executing time is longer than that of
app 1, which may break the time constraint. To satisfy the
time constraint, some tasks have to be assigned to high-cost
devices, leading to a higher cost of app 2.

For the application with task connection shown in Fig. 5(a),
Fig. 9 shows the change of the system cost when the initial
energy of mobile devices changes. Since other algorithms
do not consider the impact of initial energy, their system
cost will not change with the increment of initial energy.
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FIGURE 8. System cost with changed mobile devices.

FIGURE 9. System cost with various initial energy.

In MRO, the system cost is related to both energy consump-
tion and the initial energy. For the four mobile devices, we use
the energy values, such as 1.0, 0.92, 0.88 and 0.96, as the
initial baseline. To evaluate the influence of initial energy,
we analyze the system cost as initial baseline of four mobile
devicesmultiplies a factor (i.e., [0.6, 1.0]). As shown in Fig. 9,
the higher initial energy is, the lower system cost is. Even if
there is energy consumption during task execution, a mobile
device with higher initial energy will not drop to energy
threshold. Therefore, the total cost, which is related to the
ratio between the energy consumption and the total available
energy, is lower when the initial energy is higher.

For one application shown in Fig. 7(a), Fig. 10 shows
the change of system cost when the sending time increases.
The sending time is the duration of sending a task, which
is determined by network load. When there is so much data
transmitted in the network, the network load is high, leading
to large sending time. For a task, we use its executing time to
evaluate the sending time, which is expressed as the execution
time multiplied by a factor (i.e., [0.2, 1.0]). As the sending

FIGURE 10. System cost with different sending time

FIGURE 11. System cost with the completion time constraint.

time increases, the mobile devices will consume more energy
and the system cost increases.

.
The MRO algorithm adopts the method of reassignment

to reduce the system cost while other two algorithms do not
reassign tasks. When the sending time is small, it is easier to
reassign tasks to other devices and the sending cost is small.
When the sending time is large, the sending process consumes
more energy. Therefore, compared to other algorithms, MRO
algorithm has a great advantage when the sending time is
small, while its advantage will decline when the sending time
is large.Moreover, the curve does not go up all the time. There
is a drop around the abscissa value 0.6 for MRO. Within this
range of sending time, the energy consumption of sending a
task to another device is higher than that of executing the task
in a busy mobile device which launches the task. Therefore,
the busy device does not assign the task to other devices.
Instead, it will execute the task itself and achieve the low
cost. Although there is some fluctuation, we can observe the
overall upward trend.
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For two applications shown in Fig. 2, Fig. 11 shows the
system cost with the completion time constraint. For each
application, the default value of completion time constraint is
the sum of the executing time on a mobile device. As shown
in Fig.11, the completion time constraint is expressed as
the default value multiplied by a factor (i.e., [0.55, 1.05]).
Fig. 11 illustrates the system cost for only application 1, only
application 2 and both of them. Besides, based on application
1’s cost and application 2’ cost, the sum cost is also described.
As shown in Fig. 11, the system cost decreases as the com-
pletion time increases. When the completion time constraint
becomes large, each task is more likely to be assigned to
a low-cost device. Thus, the total cost decreases. After the
completion time constraint exceeds certain range, the system
cost is stable, which means no device with lower cost can be
found.

In addition, the system cost for executing both applications
at the same time is bigger than the sum of application 1’s cost
and application 2’ cost. When two applications are executed
at the same time, there are more tasks and the time is not
enough. Some tasks have to choose high-cost devices to
satisfy the time constraint. That is why the cost of executing
both applications at the same time is higher than the sum cost.

VI. CONCLUSION
In this paper, offloading assignment is studied in a system
consisting of mobile intelligent devices, local edge hosts and
a remote cloud server. We define a more realistic system
architecture and introduce relative energy consumption as a
metric to reflect the real cost of mobile devices. Based on the
system architecture, the offloading problem is formulated to
minimize the system cost within each application completed
deadline. To solve this NP-hard problem, the heuristic algo-
rithm is proposed to offload total dependent tasks. At first,
our algorithm arranges all tasks from different applications
in a priority queue considering both completed time dead-
line and task-dependency requirements. Then, based on the
priority queue, tasks are initially assigned to devices with
higher energy under the time constraint. To obtain a better
schedule realizing lower system cost, based on the relative
remaining energy of mobile devices, we reassign tasks from
high-cost devices to low-cost devices to minimize the system
cost. Simulation results show that our proposed algorithm
reduces the system cost effectively.
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