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ABSTRACT This paper proposes TOD-MUSIC algorithm to improve the Direction of Arrival (DOA)
estimation accuracy under low Signal-to-Noise Ratio (SNR) in transmit-only diversity bistatic Multiple-
Input Multiple-Output (MIMO) radar. Firstly, the TOD-MUSIC algorithm uses Toeplitz matrix reconstruc-
tion to make it possible to process the correlated sources. Then it uses the linear operation to reduce
the computational complexity. Finally, the physical properties of spectral peak (which are not continuous
functions and approach a larger value at the DOAs) is utilized to make the spectral peak more obvious. It is
proved that the TOD-MUSIC algorithm can effectively improve the DOA estimation accuracy.We reveal that
the TOD-MUSIC algorithm can not only process correlated sources, but also reduce calculation amount by
solving the DOA estimation ambiguity problem under the under-sampling. The simulation results show that:
the TOD-MUSIC algorithm makes the DOA estimation accuracy improved by 2◦ at low SNR, approaching
to MUSIC algorithm at high SNR.

INDEX TERMS Bistatic MIMO radar, DOA, TOD-MUSIC, MUSIC.

I. INTRODUCTION
Transmit-only diversity bistatic MIMO radar uses emitter
to transmit multiple signals, as well as the backscattered
signals of targets are received by receiver, which has received
extensive attention in recent years [1]–[5]. The Direction of
Arrival (DOA), Direction of Departure (DOD) estimation and
Doppler frequency are the core issues ofMIMO radar [6], [7].
Many methods have been proposed for DOA estimation,
which can be divided into traditional methods, subspace
decomposition methods, and compressive sensing methods.
Traditional methods include Conventional Beam Forming
(CBF) Method [8], Maximum Entropy Method (MEM) [9],
and Minimum Variance Method (MVM) [10], etc.

The associate editor coordinating the review of this article and approving
it for publication was Chow-Yen-Desmond Sim.

The compressive sensing methods for DOA estimation
accuracy have a high performance at low SNR. It is a sparse
representation problem over a redundant dictionary, which
is also a Non-deterministic Polynomial-time hard (NP hard)
problem [11]. In order to solve this problem, some effec-
tive algorithms are proposed, including Matching Tracking
(MP) [11], Orthogonal Matching Tracking (OMP) [12], and
Compressed Sample Matching Tracking (CSMP) [13], etc.
However, the performance of these algorithms is greatly
reduced in dealing with adjacent signal sources. Thus the
reference [14] proposes the Focused Orthogonal Matching
Tracking (FOMP) algorithm based on the OMP algorithm,
which can effectively distinguish two adjacent signal sources.
In addition, the FOMP algorithm was extended to the three-
dimensional algorithm by the reference [15] to propose the
Three Dimensional Focused Orthogonal Matching Tracking
(3D-FOMP) algorithm.
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FIGURE 1. Bistatic MIMO radar model.

The subspace decomposition has been widely used due
to its high accuracy [16]–[18]. The subspace decomposition
method can be divided into Estimation of Signal Param-
eters via Rotational Invariance Technique (ESPRIT) algo-
rithm [19]–[21] and Multiple Signal Classification (MUSIC)
algorithm [22]–[25]. ESPRIT algorithm does not need peak
search. The amount of calculation is reduced, while more
space resources or time resources are consumed [19], [21].
MUSIC algorithm does not cause a decrease in the freedom
degree of receiving array, but it has the disadvantage of lower-
ing the DOA estimation accuracy at low SNR [1], [23], [25].

Therefore, the TOD-MUSIC algorithm is proposed to
solve the problem in the transmit-only diversity bistatic
MIMO radar. The algorithm principle is organized as follows:
firstly, Toeplitz matrix reconstruction is used to pre-processes
the covariance matrix and make it possible to process the
correlated sources. Secondly, in the far-field narrow-band
condition, the incident signal sources are statistically inde-
pendent, so the columns of direction matrix are full rank and
the N rows of the direction matrix are linearly independent.
Thus linear operations can be used instead of eigenvalue
decomposition to reduce the computational complexity of
the algorithm. Finally, the physical properties of spectral
peak (which are not continuous functions and approach a
larger value at the DOAs) are utilized to improve the DOA
estimation accuracy.

The remaining of the paper is organized as follows: the
transmit-only diversity bistatic MIMO radar channel model
is introduced in Section 2.In Section 3, the principle of
TOD-MUSIC is introduced, and it is proved that it can effec-
tively improve the DOA estimation accuracy. The flow of the
algorithm is introduced in Section 4. In Section 5, five com-
parative simulation were done on the MUSIC algorithm and
the TOD-MUSIC algorithm, including de-correlating simu-
lation, angle accuracy simulation, sampling simulation, and
SNR simulation and complexity analysis. Some conclusions
are provided in Section 6.

II. THE TRANSMIT-ONLY DIVERSITY BISTATIC MIMO
RADAR CHANNEL MODEL
In Fig. 1, the emitter and receiver array elements spacing are
dt and dr respectively; The number of emitter and receiver

array elements are Mt and Mr respectively; the number of
targets areN ; The direction vectors of the emitter and receiver
array are At (θ) and Ar (θ) respectively.

At (θ) = [at (θ1) at (θ2) · · · at (θN )]T , (1)

Ar (θ) = [ar (θ1) ar (θ2) · · ·ar (θN )]T , (2)

where,

at (θt) = [1e−j2π
dt
λ
sinθ t · · · e−j2π (Mt−1)

dt
λ
sinθ t ]

T
, (3)

ar (θr ) = [1e−j2π
dr
λ
sinθ r · · · e−j2π (Mr−1)

dr
λ
sinθ r ]

T
. (4)

The targets are assumed to consist of multiple small scat-
terers distributed in a one-dimensional region and considered
by a MIMO radar model that transmit-only diversity. The
targets haveN independent isotropic scatterers, each scatterer
is modeled as a zero mean, unit variance, independent and
identically distributed circular symmetric complex Gaussian
random variable [26]–[29]. Thus, the targets reflection can be
expressed as a diagonal array (Equation 5).

λ =
1
√
N
diag {λ0, λ1, · · · , λN−1} , (5)

the response vector from the signal emitted by the k th emitter
element to the independent scatterer is expressed as

gk =
[
e−j2π fcτ

t
k,1e−j2π fcτ

t
k,2 · · · e−j2π fcτ

t
k,N

]
, (6)

where τ tk,n represents the transmission delay between the k th

emitter element and the nth scatterer, and the response vector
of the nth scatterer to the receiver array is expressed as

kn =
[
e−j2π fcτ

r
1,ne−j2π fcτ

r
2,n · · ·e−j2π fcτ

r
r,n

]
, (7)

where τ ri,n represents the transmission delay between the nth

scatterer and the ith receive element. The direction matrix of
emitter is defined as

Ht =
[
g1 g2 · · ·gk · · · gMt

]
∈CN×Mt , (8)

the direction matrix of receiver is defined as

Hr = [k1 k2 · · ·ki · · · kN ] C∈Mr×N , (9)

therefore, the statistical MIMO radar channel matrix is
defined as [30]–[33]

H = HrλH tC ∈
Mr×Mt . (10)

In order to make the targets irradiated from different direc-
tions, the column vectors of emission direction matrix should
satisfy the orthogonality condition (Equation 11).

〈gk , gl〉 = 0, k 6= l; k, l = 1, · · · ,Mt . (11)

Equation (11) shows that any two unequal gk should satisfy
the orthogonal relationship. Thus, in order to reduce the
complexity of model, the orthogonality between the response
vectors introduced by adjacent emitter elements is considered
as [28], [34].

〈gk , gk+1〉 = 0, k = 1, · · · ,Mt . (12)
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The target scatterers are assumed to be a uniform array that
is parallel to the emitter and receiver arrays [31]–[33]. In this
case, the response vector of scatterer array by the k th array
element transmitting is expressed as

gk =
[
1 e−j2π1/λcsinθ

t
k · · ·e−j2π (N−1)1/λcsinθ

t
k

]T
, (13)

where θ tk represents the angle of arrival from the k th emitter
element to the target, and1 is the element spacing of scatterer
array. Thus the equation (12) can be expressed as

〈gk , gk+1〉 =
∑N−1

i=0
ej2π

(
sinθ tk+1−sinθ

t
k

) i1
λc
= 0, (14)

N →∞, equation (14) can be expressed as

dt1
λcRt

≥
1
N
, (15)

where Rt represents the distance between the emitter array
and the target. The receiving array is assumed to be a uniform
linear array of dr = λc

/
2. Moreover, the echo signals from

the target scatterers are assumed to be unresolved by the
receiving array. Thus the receiving direction matrix can be
expressed as

Hr = ar (θr ) 1TN , (16)

where 1TN epresents an all-one vector of N×1 dimensions.
Thus the channel matrix of a MIMO radar that only transmits
diversity can be expressed as [32], [33]

Hr = ar (θr ) αT , (17)

where α = (1TNλH )
T
∈ CMt×1 is random fading vector.

From the orthogonality of the emission vector gk , α is zero-
mean, unit-variant, independent and identically distributed
circularly symmetric complex Gaussian random variables
[27], [28].

Equation (17) is proved by reference [34] that is extreme
situation without angular expansion at the receiving array
elements. Thus the transmit-only diversity bistatic MIMO
radar model is shown in Fig. 2.

III. THE PRINCIPLE OF TOD-MUSIC ALGORITHM
Under additive white Gaussian noise, the spatial covariance
matrix of receiver elements of transmit-only diversity bistatic
MIMO radar can be expressed as

Ryy = E
{
y (n) yH (n)

}
= APAH + σ 2

v IMr , (18)

the (k, l)th element of matrix P is expressed as

Pk,l = E
{
αHl Rssαk

}
, (19)

where Rss is the covariance matrix of emitter signal s (n) ,

Rss = E
{
s (n) sH (n)

}
, (20)

the emitter signal is assumed to be a quadrature signal, so

Rss = σ 2
s IMt , (21)

FIGURE 2. Transmit-only diversity bistatic MIMO radar model.

and the target fading should satisfies the independent condi-
tion of equation (22) and equation (23).

E
{
α∗k,pαl,q

}
= 0, l 6= k, (22)

E
{
αHl αk

}
=

{
E
{
‖αl‖

2} , l = k
0, l 6= k,

(23)

therefore,

Pk,l = E
{
αHl 3αk

}
=

{
σ 2
s Mt , l = k

0, l 6= k,
(24)

P = σ 2
s Mt IL , (25)

equation (25) was brought into equation (18), the covariance
matrix of receiver elements is expressed as

Ryy = Aσ 2
s Mt ILAH + σ 2

v IMr . (26)

The Toeplitz matrix RT is defined to approximate the
covariance matrix Ryy,

min
RT∈ST

∥∥RT − Ryy∥∥ , (27)

where ST is the Toeplitz matrix set, ‖·‖ is the measure dis-
tance. Equation (27) is found to be the minimum and the
optimal solution Rt of RT can be expressed as

Rt = Toep
[
Z1T ,Z2T · · · Z(2N−1)T

]
, (28)

ZiT = (N − i+ 1)−1
∑N−i+1

j=1
r(j(j+i−1))T , i=1, · · · ,N ,

(29)

where r(j(j+i−1))T represents the jth row and (j+ i− 1)th

column of RT [35].
The incident signal sources are far-field narrow-band and

statistically independent, so the columns of direction matrix
are full rank and the N rows of the direction matrix are
linearly independent. In engineering applications, since the
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direction matrix of the antenna array is unknown, the covari-
ance matrix is generally used instead of the direction matrix,
and the matrix Rt can be divided into R1 and R2 [36]–[39].

Rt =
[
R1
R2

]
, (30)

where R1 is N × Mr dimension, R2 is (M r − N ) × Mr
dimension. The M rows of R1 are linearly independent, So
a N × (M r − N ) dimensional propagation operator matrix P
is defined to satisfy equation (31),

R2 = PHR1, (31)

considering the influence of noise, the minimum value of
equation (32) is generally solved, and an estimated value P̂
of P is obtained [36], [37]

ξ (P) =
∥∥∥R2 − PHR1∥∥∥

F
, (32)

P̂ =
(
R1RH1

)−1
R1RH2 . (33)

A new matrix Q̂H is defined as

Q̂H =
[
P̂H ,−IMr−N

]
, (34)

according to equations (30), (33), and (34), equation (35) can
be expressed as [37]

Q̂HAr (θ) = 0, (35)

the column vectors of the matrix Q̂H are not mutually orthog-
onal. In order to improve the DOA estimation performance,
the standard orthogonal matrix Q0 can be used instead of
Q̂H ,which is defined as [36], [37]

Q0 = Q̂
(
Q̂H Q̂

)−1/2
. (36)

Therefore, an important equation can be expressed as

QH0 Ar (θ) = 0, (37)

a new spatial spectrum function is defined by equation (37),

PMUSIC (θ) =
1

AHr (θ)Q0QH0 Ar (θ)
, (38)

the first derivative of PMUSIC (θ) is defined as

d (θ) = lim
1θ→0

PMUSIC (θ +1θ)− PMUSIC (θ)
1θ

, (39)

for the convenience of calculation, taking1θ a smaller value,
y (θ) is defined to replace d (θ),

y (θ) =
PMUSIC (θ+1θ)− PMUSIC (θ)

1θ
. (40)

When θ0 is the DOA of the source, It can be known
from equation (37) and (38) that PMUSIC (θ0) approaches a
very larger value, PMUSIC (θ0 +1θ) and PMUSIC (θ0 −1θ)
are much smaller than PMUSIC (θ0), thus equation (41)
approaches a very larger value, equation (42) approaches a
larger negative value.

y (θ0−1θ) =
PMUSIC (θ0)− PMUSIC (θ0−1θ)

1θ
, (41)

y (θ0) =
PMUSIC (θ0+1θ)− PMUSIC (θ0)

1θ
. (42)

Thus it is possible to determine the DOA of the source
according to whether the y (θ) function is abruptly positive
changed, and then abruptly negative changed (breakpoint).
Similarly, if the PMUSIC (θ) function is also a breakpoint
at a minimum value, the minimum value can be judged
based on the first abruptly negative changed and the post
abruptly positive changed. However, observing the waveform
of the spatial spectral function PMUSIC (θ), it is found that the
PMUSIC (θ) will only generate breakpoint in the DOA, and
will not occur at other angles. In addition, PMUSIC (θ) only
produces abruptly changed in the DOA, which is proved by
the physical meaning of PMUSIC (θ) and equation (37), (38)
and (40).Therefore, the DOA can be judged only based on the
y (θ) function abruptly changed.

When θ1 and θ2 are twoDOAs, the TOD-MUSIC algorithm
whether increasing the estimate angular accuracy of DOA is
theoretically analyzed. The MUSIC algorithm DOA estima-
tion accuracy is defined as

ϕMUSIC (θ) =
P (θ2)− P (θ1)

180
. (43)

Similarly, the TOD-MUSIC algorithm is

ϕTOD−MUSIC (θ) =
y (θ2)− y (θ1)

180
. (44)

Equation (40) was brought into equation (44), we can get

ϕTOD−MUSIC (θ)

=

PMUSIC (θ2+1θ)−PMUSIC (θ2)
1θ

−
PMUSIC (θ1+1θ)−PMUSIC (θ1)

1θ

180

=

PMUSIC (θ2+1θ)−PMUSIC (θ1+1θ)
1θ

−
PMUSIC (θ2)−PMUSIC (θ1)

1θ

180

=

ϕMUSIC (θ2)−ϕMUSIC (θ1)
1θ

180
≈ ϕ

′

MUSIC (θ) . (45)

It can be known from (45) that the angular accuracy of
TOD-MUSIC algorithm is approximately equivalent to the
first derivative of MUSIC algorithm. In addition, the physical
property of spatial spectrum function (which are not contin-
uous functions and approach a larger value at the DOAs)
are utilized by the TOD-MUSIC algorithm. Which makes
the peaks at DOA more obvious and improves the angular
accuracy of DOA.

IV. THE TOD-MUSIC ALGORITHM
Step1: Calculating covariance matrix Ryy according to the

transmit-only diversity bistatic MIMO radar channel
model and equation (26).

Step2: Calculating the Toeplitz matrixRt according to equa-
tion (28) and (29).

Step3: Defining the propagation operator matrix P, then
calculating the estimated value P̂ of P according to
equation (33).

Step4: Defining an orthogonal propagation operator matrix
Q0 according to equation (34) and (36).
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FIGURE 3. MUSIC algorithm for correlated sources (PMUSIC (θ) (dB)
represents the spatial spectrum function, unit is dB).

FIGURE 4. TOD-MUSIC algorithm for correlated sources (y (θ) (dB/degree)
represents the first derivative of spatial spectrum function, unit is
dB/degree ).

Step5: Defining new spatial spectrum function PMUSIC (θ)
according to equation (37) and (38).

Step6: Defining the approximate first derivative y (θ) of the
PMUSIC (θ) according to equation (40), where the
abrupt change of y (θ) is the DOA.

V. SIMULATION ANALYSIS
A. SIMULATION 1: DE-CORRELATION
Mr = 10, dr = λ

/
2,L = 1024, SNR=5dB, the noise is Gaus-

sian white noise. The signals reflected by the scatterers in the
transmit-only diversity bistatic MIMO radar were simulated
by the correlated far-field narrowband signals, the DOAs is
20◦, 25◦, and 30◦. The simulation is performed by MUSIC
[17] and TOD-MUSIC algorithm respectively, and the results
are shown in Fig. 2 and Fig. 3.

Fig. 3 shows that the DOA of correlated sources cannot
be detected by the MUSIC algorithm. Because the sources
are correlate, the vector of the signal subspace diverges into
the noise subspace, causing the loss of the covariance matrix
rank. Fig. 4 shows that the DOA of correlated sources can be
accurately detected by the TOD-MUSIC algorithm, because

FIGURE 5. MUSIC with angular differences (PMUSIC (θ) (dB) represents
the spatial spectrum function, unit is dB).

FIGURE 6. TOD-MUSIC with angular differences (y (θ) (dB/degree)
represents the first derivative of spatial spectrum function, unit is
dB/degree ).

the TOD-MUSIC algorithm uses Toeplitz preprocessing on
the covariance matrix. That is, the diagonal elements on the
covariance matrix are averaged to obtain a new covariance
matrix. The rank of the new matrix is independent of the
correlate of the source, and the decorrelation of the source
is achieved. Thus, the correlated sources can be processed
by the TOD-MUSIC algorithm in the transmit-only diversity
bistatic MIMO radar.

B. SIMULATION 2: ANGLE ACCURACY
Mr = 10,dr = λ

/
2, L=1024, SNR=0dB, the signals

reflected by the scatterers in the transmit-only diversity
bistatic MIMO radar were simulated by the uncorrelated
far-field narrowband signals, Respectively MUSIC algorithm
and TOD-MUSIC algorithm experiment three times, the
DOAs are (20◦, 21◦), (30◦, 33◦) and (40◦, 45◦). The angle
differences are 1◦, 3◦, and 5◦, respectively, and the results are
shown in Fig. 5 and Fig. 6.

Fig. 5 shows the MUSIC algorithm completely fails when
the angle difference is equal to 1◦ and 3◦ at SNR=0dB and
L = 1024,only one source can be estimated. When the angle
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FIGURE 7. MUSIC algorithm for different snapshots (PMUSIC (θ) (dB)
represents the spatial spectrum function, unit is dB).

FIGURE 8. TOD-MUSIC algorithm for different snapshots
(y (θ) (dB/degree) represents the first derivative of spatial spectrum
function, unit is /degree ).

difference is equal to 5◦, two sources can be estimated, but
the peaks are not very obvious. As can be seen from Fig. 6,
under the same conditions, the TOD-MUSIC algorithm also
completely fails when the angle difference is 1◦, but for the
angle difference of 3◦ and 5◦, two peaks are found. The
reason is that the spatial correlation of sources are strong
when the DOA of sources are close to each other. However,
the TOD-MUSIC algorithm first uses Toeplitz matrix recon-
struction and then peak is evaluated first derivative, so that
the peak is more obvious and the DOA estimation accuracy
is improved. Comparing Fig. 5 with Fig. 6, The TOD-MUSIC
algorithm is applied to the transmit-only diversity bistatic
MIMO radar, which makes the DOA estimation accuracy is
improved by 2◦.

C. SIMULATION 3: SAMPLING SIMULATION
DOAs are 20◦ and 60◦, SNR=5dB, and snapshots L are equal
to 10, 20, and 30 respectively. Other simulation conditions
are the same as those of simulation 2. The simulation is
performed by the MUSIC and TOD-MUSIC algorithm, and
the results are shown in Fig. 7 and Fig. 8.

As can be seen from Fig. 7 and Fig.8, when the snapshots
L are 10, 20 and 30, the DOA can be estimated by the
MUSIC algorithm, and as the L increases, the estimation
accuracy also increases. The DOA also can be estimated by
the TOD-MUSIC algorithm, and the accuracy of the estima-
tion is also higher than theMUSIC algorithm. As L increases,
the accuracy of the estimation does not substantially change
(the three curves in Fig. 8 coincide). The reason is that the
Toeplitz structure of the covariance matrix of the receiving
array is destroyed when the number of sampling snapshots
is low. However, The TOD-MUSIC algorithm first restores
the Toeplitz structure of the covariance matrix, and full uses
of the physical properties of the spatial spectrum (which
are not continuous functions and approach a larger value at
the DOAs). Thus comparing Fig. 7 with Fig. 8, the DOA
estimation ambiguity problem caused by under-sampling is
solved by the TOD-MUSIC algorithm.

D. SIMULATION 4: SNR SIMULATION
The Root Mean Square Error (RMSE) of the DOA estimate
is defined as

RMSE =
1
M

∑M

j=1

√
1
N

∑N

i=1
(θi,j − βi,j)2, (46)

whereM is the number of Monte Carlo experiments, N is the
number of sources, and θi,j is the estimated value of βi,j in the
jth Monte Carlo experiment. The Normalized Probability of
Success (NPS) of the DOA estimate is defined as

NPS =
Ts
Tt
, (47)

where Ts is the number of successful simulations, and Tt is
the total number of Monte Carlo experiments.

∣∣θi,j − βi,j∣∣≤ ε
represents the success of DOA estimation.

DOAs are 20◦ and 30◦, other simulation conditions are the
same as those of simulation 2. For NPS, SNR from -10dB to
10dB, step is 2dB, ε is 0.8 based on experiences, and Tt is 500.
For RMSE, SNR from 0dB to 30dB, step is 5dB andM is 500.
In order to better compare the performance of each algorithm,
the CRB algorithm proposed in reference [40] was added. The
performance of NPS and RMSE were experimented and the
results are shown in Fig. 9 and Fig. 10. Moreover, in order to
verify the performance of TOD-MUSIC algorithm in terms of
the effect of correlation of signals, in Fig. 10, it is especially
compared with the FOMD algorithm in the reference [13].

In Fig.9, the NPS of MUSIC and TOD-MUSIC algorithm
gradually increases and finally approaches 1 with the increase
of SNR, but The NPS of TOD-MUSIC algorithm is higher
than the MUSIC algorithm at less than 0dB. The NPS of
TOD-MUSIC algorithm is approached to 1 at -2dB, while the
MUSIC algorithm is approached to 1 at 0dB. Which shows
that the performance of TOD-MUSIC algorithm is higher
than the MUSIC algorithm.

In Fig.10, the RMSE ofMUSIC, FOMD and TOD-MUSIC
algorithm gradually decreases with the increase of SNR and
all higher than the CRB in reference [40]. The RMSE of
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FIGURE 9. NPS vs. SNR for angular differences (NPS represents the
normalized probability of success of the DOA estimate).

FIGURE 10. RMSE vs. SNR for angular difference (RMSE(degree)
represents the root mean square error of the DOA estimate, unit is
degree).

TOD-MUSIC and FOMD algorithms are similar, which is
lower than MUSIC algorithm when SNR is lower than 10dB,
approaching to MUSIC algorithm when SNR is higher than
10dB. The reason is that the covariance matrix of the MUSIC
algorithm does not satisfy the Toeplitz structure at low SNR,
resulting in low estimation accuracy for DOA. However,
TOD-MUSIC algorithm can effectively improve the DOA
estimation accuracy at low SNR by using the Toeplitz matrix
reconstruction and the first derivative of spatial spectral func-
tion. Similarly, the FOMP algorithm based on the OMP algo-
rithm can effectively distinguish two adjacent signal sources
and also have a high performance at low SNR for DOA
estimation accuracy.

In Fig.9, MUSIC algorithm and TOD-MUSIC algorithm
performance are similar at SNR=0dB, while the Fig.10 is
SNR=10dB. Because from 0dB to 10 dB, the value of ε
is less than 0.8, but is closer to 0.8. It is closer to 0 at
more than 10dB. In order to more accurately evaluate the
performance of two algorithms, the results in Fig. 10 should
be focused. By simulation 2 and simulation 4, we can get the
conclusion that the TOD-MUSIC algorithm is applied to the

TABLE 1. Music algorithm computational analysis.

TABLE 2. TOD-music algorithm computational analysis.

transmit-only diversity bistatic MIMO radar, which makes
the DOA estimation accuracy is improved by 2◦ at low SNR,
approaching to the MUSIC algorithm at high SNR.

E. SIMULATION 5: COMPLEXITY ANALYSIS
The computational complexity of the MUSIC algorithm
mainly includes the construction ofMr ×Mr dimension cov-
ariance matrix, the eigenvalue decomposition of covariance
matrix and the one dimension spectral peak search. The
computational complexity of TOD-MUSIC algorithmmainly
includes the construction of Mr ×Mr dimension covariance
matrix, the preprocessing of Toeplitz matrix, linear process-
ing and one dimension spectral peak search. The calcula-
tions of MUSIC and TOD-MUSIC are shown in Table 1 and
Table 2, where N is the number of sources, L is the number
of snapshots, and 1θ is the angular scan interval.

Comparing Tables 1 with 2, the calculations of MUSIC
algorithm is approximatelyMr times that of the TOD-MUSIC
algorithm under the same N, L and 1θ . Because linear pro-
cessing is used by the TOD-MUSIC algorithm to instead
of eigenvalue decomposition, and the amount of calcula-
tion is effectively reduced. Under the same Mr , N and
1θ , the calculations of MUSIC and TOD-MUSIC algorithm
increase linearly with L, but N < Mr , the calculations
of MUSIC algorithm is higher than the TOD-MUSIC algo-
rithm. Although the amount of calculation is greatly reduced
by the TOD-MUSIC algorithm, the spatial complexity is
improved. Because the covariance matrix Rt is introduced
by the Toeplitz process, the propagation operator matrix P
is introduced by the linear processing and the first derivation
increases the spatial complexity of 180/1θ . With the rapid
development of integrated circuits, the computational compl-
exity is generally considered first, and the spatial complexity
is considered then. Thus TOD-MUSIC algorithm is low com-
plexity algorithm.

VI. CONCLUSION
In this paper, The TOD-MUSIC algorithm is proposed to the
transmit-only diversity bistatic MIMO radar, improving the
DOA estimation accuracy by 2◦ at low SNR, approaching
to MUSIC algorithm at high SNR. The DOA estimation
ambiguity problem caused by under-sampling is solved by
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the TOD-MUSIC algorithm, which not only can process
correlated sources, but also reduces calculated amount.
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