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ABSTRACT This paper aims to find the best variant of Cuckoo Search Algorithm that makes the step
size of Lévy flight adaptive. For this reason, we introduce a new variant of CSA called Damped Cuckoo
Search (DCS) in which the step size of Lévy flight is adaptive via the concept of damped oscillations that
exist in most second order control systems. Moreover, we propose two other methods that tune the step
size of Lévy flight based on chaotic maps. Then a deep comparative study is conducted among almost
all variants of CSA that appeared in the last decade that modifies the step size of Lévy flight. All these
variants are tested on CEC2017 benchmark functions. Statistical analyses are performed using the Friedman
test followed by four post-hoc procedures to hold paired comparisons between the proposed DCS and the
other CSA variants. Also, graphical statistical analyses are conducted on all variants via Box Plots. Finally,
convergence graphs for all the variants are illustrated as well to show the speed of solution improvement
over generations. Simulation results prove that the proposed DCS outperforms all other variants with a large
degree of significance. Moreover, DCS increases the speed of convergence in comparison with the other
variants. The box plot graphs prove that DCS has the most compact distribution for all results obtained in all
runs on most functions.

INDEX TERMS Adaptive step size, box plots, CEC2017 benchmark functions, damped cuckoo search,
damped oscillations, Friedman test, global optimization, Lévy flight, multiple chaotic cuckoo search,
post-hoc procedures.

I. INTRODUCTION
optimization is mainly concerned with finding the optimal
values for several decision variables to form a solution to
an optimization problem. It is widely used in different fields
such as energy, computer science, engineering, economics,
medical and Engineering. An optimization algorithm is a
set of steps used to solve the optimization problem and the
most common are those developed based on nature-inspired
ideas that deal with selecting the best alternative of the given
objective functions.

Optimization algorithms can be a heuristic or metaheuris-
tic approach [1]. Heuristic approaches are problem-based
approaches in which each optimization problem has its own
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heuristic methods that can deal with it but can’t deal with
other kinds of optimization problems.

The metaheuristic-based algorithm is a general solver
template that can manipulate various kinds of optimiza-
tion problems including NP-hard problems such as travel-
ing salesman problem [2], [3]. All metaheuristic algorithms
have two major characteristics: the first one is called inten-
sification (exploitation) which aims to search around the
current best solutions and select the best candidates in the
current search space as we get closer to the optimal solution.
The second one is called diversification (exploration) and it is
concerned with exploring the search space efficiently to avoid
getting stuck in a local minimum [4].

Metaheuristic will be successful in solving a given opti-
mization problem if it can provide a proper balance between
exploitation and exploration, which will guarantee to find
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a high-quality solution for a given problem without being
trapped in a local minimum.Metaheuristic optimization algo-
rithms can be categorized into three main types: evolu-
tionary algorithms (EAs), Trajectory-based algorithms, and
swarm-based algorithms [4].

Evolutionary algorithms imitate the principle of survival
of the fittest. It begins with a population of a set of individ-
uals. At each generation, the EA recombines the promising
characteristics of the current population in order to obtain a
new population with better characteristics than previous gen-
erations. EAs include genetic algorithms (GAs) [5], genetic
programming (GP) [6], differential evolution (DE) [7], and a
harmony search (HS) algorithm [8].

Trajectory-based algorithms begin with a single candidate
solution. At each iteration, this solution will move to its
neighboring solution, which exists in the same search space
region, using a specific neighborhood structure. Examples of
trajectory-based algorithms include tabu search (TS) [1],
simulated annealing (SA) [9], hill climbing [10], and β-hill
climbing [11].

Swarm-based algorithms, on the other hand, mimic the
behavior of a group of animals when searching for food.
At each iteration, the solutions are normally generated
based on information gained by previous generations [12].
Swarm-based algorithms include the artificial bee colony
(ABC) [13], the particle swarm optimization (PSO) [14],
the firefly algorithm (FA) [15], and the cuckoo search algo-
rithm (CSA) [2]. The classification of these meta-heuristic
algorithms is shown in Fig. 1.

FIGURE 1. Optimization Algorithms [3].

In this paper, we are interested in Cuckoo Search Algo-
rithm (CSA) which was developed by Yang and Deb
in 2009 to imitate the brood parasitism behavior which is
the primary mechanism of cuckoos. This bird lays its eggs in
another birds’ nest which is called the host nest. Cuckoo bird
carefully mimics the color and pattern of the hosts’ eggs to
make their eggs carefully matching the host bird’s eggs. If the
host recognizes the cuckoo eggs in its own nest, it can throw
the cuckoo eggs out of their nest or simply leave its nest and
build a new one. For this reason, a cuckoo must be careful and
accurate in mimicking the host eggs. From the optimization
point of view, each egg in the nest represents a solution, and
the cuckoo eggs represent a new candidate solution. The goal
is to replace a not-so-good solution that exists in the nest with

the new and potentially better solutions. The fraction Pa with
a probability [0,1] checks if a host discovers the cuckoo eggs
which are not it’s own [2], [16].

Cuckoo search has significant advantages over all other
meta-heuristic algorithms. The first one is that CSA has a
smaller number of parameters to be tuned than PSO and
GA, this makes it more generic to adopt more classes of
optimization problems and also inexperienced users can eas-
ily deal with it. CSA combines two concepts where, it is
a population-based similar to GA and PSO, and it also
uses some sort of elitism similar to harmony search. The
most important merit is that CSA has the strength of
Trajectory-based Algorithms (TAs) in exploitation via a ran-
dom walk and the strength of Evolutionary Algorithms (EAs)
in exploration via Lévy Flight. Therefore, it has the ability of
an efficient balance between local search strategy (exploita-
tion) and the whole space search strategy (exploration).
Another advantage of CSA is the randomization which is
more effective because the step size of Lévy Flight is heavy-
tailed, and any large step is possible [17].

Due to these merits, CSA has been successfully
applied to various optimization problems such as image
processing [18], [19], in the medical field [20], [21], data
mining and clustering [22], economic dispatch problems
[23], [24], engineering design [25], [26], and power and
energy field [27], [28]. Taking into consideration the step
size of Lévy Flight, which is heavy-tailed (any large step
is possible), making the randomization in the exploration
phase more effective. For the sake of improving the step
size of Lévy Flight, many pieces of research aim to make
Lévy Flight’s step size adaptive such that it is inversely
proportional to the generation number. At the beginning of
iterations, the step size will be large enough to explore the
search space (exploration), while when moving near to last
iterations, the step size gets smaller to increase the efficiency
of searching around the best solution (exploitation) [29]. The
adaptive step size of Lévy Flight introduces a new source of
balance between exploration and exploitation.

The first trial for the adaptivity was conducted by [30] by
introducing a Modified Cuckoo Search (MCS) in which the
step is inversely proportional to the square root of the iteration
number. In the same year, Valian et al. proposed a new impor-
tant variant of the adaptive cuckoo search called Improved
Cuckoo Search ICS where the step size is exponentially
decreasing with the iteration number [31]. After three years,
Zhang and Chen proposed a new Improved Cuckoo Search
ICS2 in which the step size is decreased exponentially with
the fourth root of the iteration number [32]. Chaos Theory
was first introduced into Cuckoo Search by Wang et al. [33],
they used the chaotic sequence to make the step size of
Lévy Flight adaptive. Wang et al. proposed a new variant of
Cuckoo Search with a variable scaling factor called VSF [34].
Another study by Ong et al. introduced adaptive cuckoo
search with two-parent cross over where the step size depends
on the best solution obtained so far and is inversely propor-
tional to the square root of iteration number [35]. In 2016,
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Wang et al. proposed the formal Chaotic Cuckoo search CCS
that uses the chaotic sequence for the adaptive step size [36].
Chi et al. proposed another variant of an Adaptive Cuckoo
search ACS where the step size is exponentially decreasing
with the iteration number [37]. A recent study by Cheng et al.
involved a cuckoo search algorithm with dynamic feedback
information [38].

The main contributions of this research are as follows:
• A novel variant of a cuckoo search algorithm is pro-
posed named as the Damped Cuckoo Search (DCS).
The Damped Cuckoo Search adapts the step size of
Lévy Flight based on a proposed equation based on the
concept of damped oscillations. This equation can be
controlled by two parameters in order to change the
speed of convergence and the decay speed of the step
size as required.

• Introducing another variant of Cuckoo Search Algo-
rithm that uses 10 chaotic maps to adapt the step size
of Lévy Flight instead of using only one chaotic map.
This method is inspired by multiple chaotic cuckoo
search introduced in [39], however, we reuse this con-
cept in adapting the step size of Lévy Flight instead
of the chaotic search radius parameter in the chaotic
local search equation. These 10 chaotic maps are applied
to the step size of the Lévy Flight by two different
methods. The first one is based on a parallel manner and
the second one is based on the success rate for each map.

• A comparative analysis of 12 different variants of CSA
which are using the concept of adaptive step size of
Lévy Flight and our proposed algorithms is conducted
as well. Our concern is spotted on the adaptive step size
modification only, keeping the rest of the CSA parame-
ters fixed to the standard CSA for all of the 12 variants
presented in this paper. All of these algorithms are tested
on CEC2017 benchmark functions with 30 dimensions.

• Statistical analysis is performed using the Friedman
test followed by paired comparisons between DCS and
the other variants using 4 different post-hoc procedures
(Bonferroni procedure - Holm procedure - Holland pro-
cedure - Finner procedure).

• A graphical statistical analysis via Box plot graphs is
performed to show the distribution of results for all
algorithms on all functions for all runs.

• Convergence graphs are also supported in this paper for
all 30 benchmark functions for all 12 algorithms to show
graphically the evolution of the population overall the
generations.

The rest of this paper is organized as follows: the
next section covers the standard cuckoo search algorithm.
Section III discusses various CSA variants through a liter-
ature review. Section IV is concerned with our proposed
damped cuckoo search and the multiple chaotic cuckoo
search applied to the step size of a Lévy Flight. Section V
is about the parameter setting for all the algorithm and
CEC2017 benchmark functions. Section VI contains all
the simulation results, statistical analysis, box plots and

convergence graphs for all the results. Finally, the conclusion
gives a summary of our results and the recommendations
based on our results and future work.

II. STANDARD CUCKOO SEARCH
A. INSPIRATION
1) CUCKOO BEHAVIOR
More than 1,000 species of birds exist in nature [16]. All
mother birds for most of these species lay eggs in their nest
that is built by them in secure places to keep their eggs
safe from predators [40]. Some species that are called brood
parasites birds. These kinds of birds do not build their own
nests, but they lay their eggs in another species’ nest, leaving
the host bird to care for its eggs. The most famous species
of the brood parasites is the cuckoo [41]. There are three
types of brood parasitism, the first type is intraspecific brood
parasitism, the second one is cooperative breeding and the last
one is called nest takeover [2]. The Cuckoo strategy has some
amazing characteristics, it starts by replacing one egg laid by
the host bird with her own to increase the hatching probability
of their egg in the nest of the host bird. Next, it mimics the
color and pattern of the host eggs to reduce the probability of
their eggs being discovered and abandoned. Also, the timing
of egg-laying is amazing that it selects a nest in which the
host bird just laid its eggs, so the cuckoo egg will hatch before
the host eggs. The first action taken by the young cuckoo is
to evict the host eggs out of the nest by blind propelling to
increase its chance of food provided by the host bird [41].
Also, the young cuckoos mimic the call of host chicks to gain
more access to the food [42]. On the other hand, if the host
recognizes the cuckoo’s egg in its nest, they throw the strange
egg out of its nest or simply build a new nest and abandon the
old one.

2) LÉVY FLIGHT
Many studies have proved that the flight behavior of a lot of
animals and insects can be demonstrated by what so-called
Lévy Flight [43]–[46]. Lévy Flight can be noticed when some
animals and insects follow a long path with sudden turns
combined with random, short movements [46]. A possible
path of Lévy Flight can be shown in Fig. 2. Lévy Flight
has been applied to optimization field, and results show its
promising capability [44], [46]–[48]. Lévy Flight is a type of
random walk that has a power law step length distribution
with a heavy tail.

B. CUCKOO SEARCH ALGORITHM
Cuckoo Search Algorithm CSA is a recent meta-heuristic
swarm-based optimization algorithm proposed by Yang and
Deb in 2009. This algorithm combines the obligate brood par-
asitic behavior which is found in some cuckoo species with
the Lévy Flight that exists in some birds and fruit flies [2].
CSA shows its efficiency and balances between the exploita-
tion represented in the local search strategy and exploration
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FIGURE 2. Possible Lévy flight path.

represented in the whole space search, in the search space of
the problem [17].

CSA is based on three idealized rules as follows [2]:

• A cuckoo lays only one egg at a time and put it in a nest
chosen randomly.

• The eggs that will pass to the next generation are the eggs
with high quality.

• The number of available host nests is constant, and a
cuckoo egg can be discovered by the host bird with
probability Pa ∈ [0, 1]. If the cuckoo egg is discovered
by the host, the host bird can throw it out of the nest or
it simply leaves it and build another nest. For simplicity,
this assumption is approximated by a fraction of the n
nests are replaced by new random nests.

Based on the above three rules, the steps of CSA are illus-
trated in the pseudo code shown in Algorithm 1.

C. MATHEMATICAL REPRESENTATION OF STANDARD
CUCKOO SEARCH
Based on Algorithm 1, CSA has three main components
[34], [49]:

1) Exploitation using Lévy Flight RandomWalk (LFRW).
2) Exploration using Biased/Selective Random Walk

(BSRW).
3) Elitism scheme via Greedy Selection.

1) EXPLOITATION USING LÉVY FLIGHT RANDOM WALK
(LFRW)
In the exploitation phase, new solutions are generated around
the best solution obtained so far and this will increase the
speed of local search. The exploitation in CSA is done via
Lévy Flight Random Walk (LFRW) which is described as a
general form in (1) in which the step size is drawn from the
Lévy distribution.

Xi,G+1 = Xi,G + α ⊕ Lévy(β) (1)

where Xi,G is the ith nest in the Gth generation and Xi,G+1 is
the new nest generated by Lévy flight. The product ⊕ means
entry-wise multiplications. α is the step size where α > 0
and is obtained by (2). This formula ensures that the newly
generated solution will be close to the best-obtained solution

Algorithm 1 Standard Cuckoo Search Algorithm (CSA)

1 initialize Pa = 0.25;
2 Objective function f(x), x = (x1, . . . , xd )d where d is
number of dimensions;

3 Generate initial population of n hosts Xi (i =
1,2,. . . ,n);

4 while g ≤ gmax or stopping criteria do
5 Get a new cuckoo via Lévy flight;
6 Evaluate its fitness Fi;
7 Choose a nest randomly among n (say j );
8 if Fi > Fj then
9 Replace j by the new solution ;
10 end
11 A fraction Pa of worst nests are abandoned and

new ones are generated;
12 Keep the best solutions (or nests with quality

solutions);
13 Rank the solutions and keep the current best;
14 end
15 Display the results;

so far.

α = α0 × (Xi,G − Xbest ) (2)

where Xbest represents the best-obtained solution so far.α0 is
a scaling factor and it is set to 0.01 in standard CSA [2], [50].

The term Lévy(β) is a random number, which is generated
from a Lévy distribution and it is calculated from (3).

Lévy(β) ∼
φ × µ

|υ|
1
β

(3)

where β is constant and is set at 1.5 as preferred by Yang and
Deb [2] in standard CSA.µ and ν are random numbers drawn
from a normal distribution with a mean of zero and standard
deviation equals 1. The parameter φ is calculated as follows
in (4).

φ =

(
0(1+ β)× sin(π×β2 )

0
(
1+β
2 × β × 2

β−1
2

)) 1
β

(4)

where0 is a gamma function. To sum up, the above equations
can be combined to obtain the final form for LFRW as shown
in (5).

Xi,G+1 = Xi,G + α0
φ × µ

|υ|
1
β

(Xi,G − Xbest ) (5)

2) EXPLORATION USING BIASED/SELECTIVE
RANDOM WALK (BSRW)
In the exploration phase, new solutions should be generated
randomly in locations far from the current best solution, this
will ensure the system will not be trapped in a local optimum
and provide good diversity and exploration in the whole
search space. The exploration step in CSA is performed using
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Biased/Selective Random Walk (BSRW) which is more effi-
cient in exploring the whole search space especially when it is
large because the step size in Lévy Flight ismuch longer in the
long run [49]. BSRW is used to find new solutions far from
the current best solution. First, a trial solution is generated
using the mutation of the current solution and a differential
step size from two randomly selected solutions. Then the new
solution is generated by a crossover operator from the current
and the trial solutions. BSRW can be formulated as follows
in (6) [34].

xi,G+1 =

{
xi,G + r × (xm,j,G − xn,j,G) with Pa
xi,G with remaining pa

(6)

where m and n are random indexes, r is a random num-
ber on the range [0,1], is the probability of discovery (best
value = 0.25) [2].

3) ELITISM SCHEME VIA GREEDY SELECTION
After each random walk process, CS selects the solutions
with better fitness value using the greedy strategy to pass
to the next generation. This will ensure that good solutions
will not be lost. Any algorithm that has a good compro-
mise of the above three components can lead to an efficient
algorithm. Cuckoo search has a very good balance between
the above three components. As previously explained, our
main objective of this paper is to make the step size of Lévy
Flight adaptive and hold a comparative study among all the
modifications made on that aspect. The main parameter that
controls the step size of Lévy Flight in (5) is the scaling
factor α0. The next section will discuss in details various
modification that has been made on the scaling factor α0 over
the past decade.

III. RELATED WORK
This section explores all variants of cuckoo search that focus
on adapting the step size in flight. Various pieces of research
that are studying the concept of adaptive step size are con-
cerned with making the value of α adaptive. This can be
done by making the scaling factor α0 inversely proportional
to the current iteration (generation) number. So, in the early
generations, the value of α will be large to explore more
areas in search space. While, when the number of iterations
increases, the value of the step size will be smaller and this
will allow more exploitation in the search space as we get
closer to the global optimal value. Through making the step
size adaptive, this will introduce a suitable additional balance
between exploration and exploitation. Over the past decade,
most of the research on cuckoo search aims to make the
step size of Lévy flight adaptive using different methods.
This section will discuss these variants focusing on how they
modify the step size of Lévy flight to be adaptive. This paper
focuses only on various modifications concerning the step
size. For a fair comparison, other modifications are ignored
keeping all other parameters the same as the standard cuckoo

search. This is due to our objective of tracking the optimal
method for making an effective and powerful adaptive step
size. Initially, Yang and Deb introduced the standard CSA
in 2009 setting the step size of Lévy flight as a constant of
α0 = 0.01 based on a study in 2014 [2], [50]. In 2011,Walton
et al. modified the standard CSA and proposed a variant
called Modified Cuckoo Search (MCS) [30]. They made two
modifications, the first one was making the Lévy flight step
size adaptive and the second modification was the addition of
information exchange between eggs. We will focus on how to
make the step size adaptive using (7).

α0 = A/
√
G (7)

where G is the generation number and A is the initial value
of Lévy step size and is set to 1. In 2013, Nasa-ngium et al.
combined the MCS by Walton with a chaotic sequence and
introduced an improved MCS with Chaotic Sequence algo-
rithm (ICMCS). In this algorithm, the step size in a Lévy
flight was adaptive using (7) [51]. One study by Valian et al.
introduced a new variant of Cuckoo search called Improved
Cuckoo search (ICS) in which the parameters α and Pa are
adaptive and change their values with the current iteration
number [31]. Valian made the Lévy flight step size adaptive
using (8) and (9).

α0 = αmax exp(c.gn) (8)

c =
1
NI

Ln
( αmin
αmax

)
(9)

where αmin and αmax were the lower and the upper bounds
of α respectively, NI was the maximum number of iterations
and gn was the current iteration number. Zhang and Chen
proposed a new Improved Cuckoo Search Algorithm with
an adaptive method [32]. It is also called Improved Cuckoo
Search (ICS2). They made one modification to the value of
α0 which is calculated from (10).

α0 =
exp
( lnαmin−lnαmax

Nmax
× N

)
4
√
N

(10)

where N is the current iteration number and it initially equals
1. Nmax is the maximum number of iterations (generations).

Wang et al. proposed Cuckoo Search with varied scaling
factor (VSF) [34]. VSF sets the value of α0 to a random
number drawn from the uniform distribution on the range
[0,U] and they preferred to setU to 1. This random number is
generated in each time a new nest is obtained via Lévy flight.
This method can be formulated as shown in (11).

α0 = rand (11)

In 2015, Ong et al. proposed an adaptive cuckoo search
algorithm with two-parent crossover (ACSAC) [35]. They
made two modifications, the first one was using two-parent
cross over operator to allow the exchange of information
between good solutions. While the second one was making
the step size adaptive using (12).

α0 = αL(1+ αi tanh(γ /F tbest )/
√
t) (12)
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where αL is the predefinedminimum step size. α0 is the initial
step size. t the current iteration number. γ is the best fitness
value in the initial population. Fbest is the best fitness in the
current iteration.

In 2016, Chi et al. proposed an Adaptive cuckoo search
(ACS) [37]. They made two modifications. The first one
was making the discovery probability adaptive. The second
one was making the step size of Lévy Flight adaptive based
on (13).

α0 = (αup − αlow)× exp
[ t
T
Ln
(αlow
αup

)]
+ αlow (13)

where αlow and αup were the lower and the upper bounds
of α0 respectively. T was the maximum number of itera-
tions (generations) and t was the current iteration number.
In the analysis of adaptive cuckoo search, Wang et al. pro-
posed a novel cuckoo search with Chaos Theory and Elitism
Scheme (CCS) [36]. They introduced chaotic maps to adapt
the value of α0.They used 12 chaotic maps and they proposed
12 variants of CCS which is illustrated in Table 1.

TABLE 1. Twelve chaotic cuckoo search variants with 12 chaotic map.

Each map will be normalized and their variations are
always in the range [0,2], then it will be able to tune the step
size α0. CCS uses an Elitism scheme to protect the best-found
solution. The experimental results in that research showed
that M11 (Sinusoidal map) performed more effectively than
the others. In 2016, Haung et al. enhanced the CCS by intro-
ducing the chaotic maps in three positions inside standard
cuckoo search [52]. The first one was using chaotic maps in
the initial population, the second one was using chaotic maps
in handling the boundary and the third one was using chaotic
maps to make the step size of Lévy flight adaptive in a similar
manner like [36]. In 2017, Pandey et al. made a new variant
based on the ICS which is called Hybrid Step Size Based
Cuckoo Search (HSCS) [53]. In this algorithm, they used the
property of Lévy flight and Gaussian distribution and they
made the step size adaptive using (8) and (9).

In a recent study by Cheng et al., they proposed a new vari-
ant of Cuckoo Search called Cuckoo Search Algorithm with
dynamic feedback Information (DFCS) [38]. They intro-
duced two modifications to the standard cuckoo search. The
first one was a dynamic selection between two selection
schemes based on dynamic switching probability. The second

one was a dynamic step size of Lévy flight in which the
value of α0 was dynamically tuned using the randomness
and stability trend of the cloud model which is described in
Algorithm 2.

Algorithm 2 Procedure of Obtaining α0 in DFCS

1 for t ← 1 to maxIterations do
2 calculate f tavg1, f

t
avg2 and f

t
best ;

3 for i← 1 to N do
4 if f ti < f tavg1 then
5 α0 = αmin;
6 end
7 else if f tavg1 < f ti < f tavg2 then
8 α0 is obtained from (14);
9 end
10 else
11 α0 = αmax ;
12 end
13 end
14 end

As indicated in Algorithm 2,N denotes the population size,
f ti is the fitness value of the i

th individual in the t th generation.
f tbest is the best fitness value obtained so far. f tavg is the mean
fitness of the entire population, f tavg1 is the mean fitness of
solutions with fitness better than f tavg. f

t
avg2 is the mean fitness

of solutions with fitness worse than f tavg. Equations (14-18)
are used to calculate α0 as follows.

α0 = αmax − (αmax − αmin)× exp
(
(f ti − Ex)

2

2(E ,n)2

)
(14)

Ex = f tbest (15)

En = (f tavg1 − f
t
best )/c1 (16)

He = En/c2 (17)

E ,n = normrnd(En,He) (18)

where Ex , En, and He are called Expectation, Entropy, and
Hyper Entropy respectively.C1 and C2 are adjustment param-
eters which are set to 6 and 2 respectively. As previously
pointed, our concern is focused on different variants of adap-
tive step size for CSA. Therefore, we implement only the
modifications made to α0 for each of the variants illustrated
before, then a comparative study is conducted against our
propped methods. The modifications done on the step size
can be summarized in Table 2.

IV. THE PROPOSED VARIANTS OF CUCKOO SEARCH
A. DAMPED CUCKOO SEARCH
The main objective of this paper is to search for the most
promising strategy of making an adaptive step size in Lévy
flight. This can be achieved by decreasing the value of α0
when the number of generations (iterations) increases. In the
early generations, it is preferable for the step size to be large
to explore more areas of the search space which allows more
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TABLE 2. Summary of all the modifications done on Step Size of Lévy
flight.

exploration. However, by moving on through generations,
the solutions inside the population are improving and become
near to the optimal solution. Therefore, it is preferred to
make the step size small in order to exploit the search space.
This concept introduces a simple and good balance between
exploration and exploitation. The proposed variant of CSA
is inspired by the concept of damped oscillations having
amplitude decreasing with time. The commonMass-Damper-
Spring system motivates the initiation of the new variant
of CSA through the solution of its differential equation as
represented in (19).

x = e−ζωnt
[
ẋ0 + ζωnx0

ωd
sinωd t + x0 cosωd t

]
(19)

where ζ is the damping ratio, ωn is the natural undamped
frequency, x0 is the initial displacement, ẋ0 is the initial
velocity of the mass and ωd = ωn.

√
1− ζ 2.

If the value of ζ equals zero it is called the undamped case,
when the value of ζ lies between 0 and 1 this is called the
underdamped case, and when ζ = 1 it is called the critically
damped case, when ζ > 1 this is called the overdamped
case. We adopt the concept of the damped oscillations to
the parameter α0 by introducing the proposed equation (20).
Where αmin, αmax in (20) are the lower and upper bounds
of α0 respectively, τ represents the time constant, ω is the
damped frequency, g is the current generation (iteration),
and gmax is the maximum number of generations (iterations).
Equation (21) introduces another equivalent form of (20).

α0 = αmin + (αmax − αmin)e
−

(
τ g
gmax

)[
cos
( ω g
gmax

)
+αmin sin

( ω g
gmax

)]
(20)

α0 = αmin + (αmax − αmin)e
−

(
τ g
gmax

)[
cos
( ω g
gmax

)
− tan−1(αmin)

]
(21)

Different behaviors for the damped α0 can be obtained by
varying the values of τ and, ω. Setting the value of τ = 5 and
the values of ω as 1, 2, 3, 4, 5, 30 results in different curves
of α0 as shown in Fig. 3 for gmax = 6000.

FIGURE 3. Variation of α0 for 6000 generations under different values of
ω using the proposed equation (20).

As shown in Fig. 3 the value of ω has a great effect on
the behavior of the proposed equation. When the value of
ω is very large (i.e 30), the value of α0 is changed in an
under-damped oscillation manner. For small values of ω (i.e
1, 2, . . . , 5) the value of α0 is gradually decreasing in a smooth
manner without oscillations, and the larger the value of ω
the faster decay of the value of α0. In the proposed DCS
algorithm, we set the value of τ = 5 and the value of ω =
3 to avoid any possibility of oscillating behavior as well as a
possible fast decay in the value of α0. Algorithm 3 illustrates
the proposed DCS Algorithm. The values of αmin and αmax

Algorithm 3 Damped Cuckoo Search

1 initialize αmin = 0.01, αmax = 0.5, Pa = 0.25, τ = 5, ω
= 3 ;

2 Objective function f(x), x = (x1, . . . , xd )d where d is
number of dimensions;

3 Generate initial population of n hosts Xi (i =
1,2,. . . ,n);

4 while g ≤ gmax or stopping criteria do
5 obtain value of α0 using the proposed

equation(20);
6 Get a new cuckoo via Lévy flight using the

calculated α0 using (5);
7 Evaluate its fitness Fi;
8 Choose a nest randomly among n (say j );
9 if Fi > Fj then
10 Replace j by the new solution ;
11 end
12 Pa of worst nests are abandoned and new ones are

generated using (6);
13 Keep best solution;
14 end
15 Display results;
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TABLE 3. Maps that are used in the proposed MCCSA-P and MCCSA-S.

are recommended to be at 0.01 and 0.5 respectively [31]. The
value of Pa is preferred to be 0.25 [2].

B. MULTIPLE CHAOTIC CUCKOO SEARCH FOR ADAPTIVE
STEP SIZE (PARALLEL-BASED) (MCCSA-P)
Ten chaotic maps as shown in Table 3 are used to get 10 dif-
ferent values of α0, then Lévy Flight is used to generate
10 candidate solutions. Thereafter we will choose the best
one of these 10 candidate solutions with the best fitness value.
This can be formulated in (22) and (23).

X ji,G+1 = Xi,G + α
j
0
φ × µ

|υ|
1
β

(Xi,G − Xbest ),

where j = 1, 2, . . . , 10. (22)

Xi,G+1 = argmin{f (X ji,G+1)} (23)

X ji,G+1 in (22) is the candidate solution generated by Lévy

flight via jth chaotic map, αj0 is the value of α0 generated
by the jth chaotic map. Xi,G+1 in (23) is the best candidate
solution with the best fitness value. This variant is inspired
by [39]. However, it is adapted to the α0 parameter instead of
the chaotic search radius parameter in the chaotic local search
equation.

C. MULTIPLE CHAOTIC CUCKOO SEARCH FOR ADAPTIVE
STEP SIZE (SUCCESS RATE-BASED) (MCCSA-S)
Based on the previous chaotic maps illustrated in Table 3,
only one chaotic map from the 10maps is to be selected based
on the success and failure rates. The steps of MCCSA-S are
illustrated in pseudo-code in Algorithm 4. The probability
of selecting the chaotic map in the generation is calculated
from (24). The success rate of the ith chaotic map in the gth

generation is obtained from (25) in which ε is set to 0.01 to
avoid the possible null success rates.

pg,i =
Sg,i∑10
i=1 Sg,i

(24)

Sg,i =

∑t=g−1
t=g−LP ns(g, i)∑t=g−1

t=g−LP ns(g, i)+
∑t=g−1

t=g−LP nf (g, i)
+ ε (25)

where i = 1, 2, .., 10; g > LP

Algorithm 4 Multiple Chaotic Cuckoo Search Algo-
rithm - Success Rate Based MCCSA-S
1 initialize LP = 50, Pa = 0.25;
2 Objective function f(x), x = (x1, . . . , xd )d where d is
number of dimensions;

3 Generate initial population of n hosts Xi (i =
1,2,. . . ,n);

4 define two arrays nsLP∗10 and nfLP∗10;
5 while g ≤ gmax or stopping criteria do
6 if g ≤ LP then
7 for i← 1 to 10 do
8 generate a new population of n solutions

using the ith chaotic map using (22);
9 find the best fitness fnew of the new n

solutions generated in the previous step;
10 if fnew < fmin then
11 ns(g,i) = 1;
12 nf(g,i) = 0;
13 end
14 else
15 ns(g,i) = 0;
16 nf(g,i) = 1;
17 end
18 end
19 end
20 else
21 calculate the success rate for each chaotic map

using (25);
22 calculate the selection probability for each

chaotic map using (24);
23 select one of the 10 maps based on the

calculated probability, say map k;
24 generate n solutions using the k th selected map

using (22);
25 find the best fitness fnew of the new n solutions

generated in the previous step;
26 if fnew < fmin then
27 ns(g % LP,k) = 1;
28 nf(g % LP,k) = 0;
29 end
30 else
31 ns(g % LP,k) = 0;
32 nf(g % LP,k) = 1;
33 end
34 end
35 Pa of worst nests are abandoned and new ones are

generated from (6);
36 Keep best solution and best fitness fmin;
37 end
38 Display results;

V. PERFORMANCE MEASUREMENT AND PARAMETER
SETTINGS
A. PARAMETER SETTING FOR ALGORITHMS
As previously illustrated, our objective is to track the most
promising variant of the CSA based on different adaptive step
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size strategies. Keeping other parameters of the CSA variants
fixed to the standard while varying only the step size of Lévy
flight is our main idea. Nine different variants of CSA are
evaluated and compared to the three proposed variants of
CSA discussed previously in section IV. For all algorithms,
the population size (n) is set to 25 and the probability of
discovery Pa is set to 0.25. The other parameters for each
algorithm are set according to the recommendations made by
the authors for each algorithm as summarized in Table 4.

TABLE 4. The parameter settings for all algorithms.

B. BENCHMARK FUNCTIONS CEC2017
All the algorithms in Table 4 are tested on CEC2017 bench-
mark functions. According to [54], CEC2017 contains
30 minimization problems which consist of 3 unimodal
functions (F1-F3), 7 simple multimodal functions (F4-F10),
10 hybrid functions (F11-F20), and 10 composition functions
(F21-F30). These functions can be summarized in Table 5.
The objective function can be formulated as a minimization
problem in which the error function is calculated from (26).

error = fi(x)− fi(x∗) (26)

where fi(x) is the value of the ith function obtained by the
algorithm and fi(x∗) is the optimal value of the ith function.
The number of dimensions nd for these functions can be
10, 30, 50 and 100. The dimensions are set at 30 in all of
the implemented analysis. The algorithms are conducted for
51 runs. All problems have the global optimum in the bounds
[−100, 100]nd of and there is no need to search outside this
given range The algorithm terminates when it reaches the
maximum function evaluations or the error value (fitness
value) is smaller than 1.0E − 08. Maximum function eval-
uations (MaxFEs) = 10000 ∗ nd (i.e. MaxFEs = 300000.).
The parameter settings for these functions are illustrated
in Table 6.

C. PERFORMANCE METRICS
We calculate the mean, standard deviation, best, worst,
median values for the best fitness obtained in the 51 runs.
Error values smaller than 1.0E−08will be considered as zero.
Then the Friedman test is performed on the obtained results
to compare all algorithms and to decide which one is the
most promising in the adaptation of the step size. Then four
post-hoc procedures are applied to find the adjusted p-values
and perform paired comparisons between the proposed DCS
and all other algorithms. The Box Plots for each function are
illustrated aswell to observe the distribution of the best fitness

TABLE 5. Summary of CEC2017 benchmark functions [54].

TABLE 6. Summary of parameter settings for CEC2017 benchmark
functions.

values obtained for the 51 runs. Finally, the convergence
graphs for each function are plotted. All these statistical tests
and graphs are described in detail in the following sections.

VI. SIMULATION RESULTS AND STATISTICAL ANALYSIS
A. SIMULATION RESULTS
As previously mentioned, 51 runs are conducted on each of
the 30 functions of CEC2017 for each algorithm to record
the best fitness value in each run. Table 7 shows the results
after performing the 13 variants of CSA that modify α0
with different strategies including the proposed methods.
We notice that all algorithms reach a total number of gen-
erations of 6000, this is because two function evaluations
are performed for each nest in each iteration (one in Lévy
’s flight phase and the other in the biased random walk
phase). Therefore, for the assumption of our population size
(25 nests), the total number of function evaluations in each
run equals 50, dividing the 300000 maximum function eval-
uations by 50 we obtain 6000 generations (iterations). This
is true for all algorithms except MCCSA-P which performs
10 function evaluations for each nest in Lévy’s flight phase
and only one function evaluation in the biased random walk
so each nest face 11 function evaluations in each iteration.
Therefore, the total number of function evaluations for all the
nests equals 25 * 11 = 275, resulting in the number of total
generations generated in MCCSA-P equals 300000/275 =
1090 generations which is much lower compared to the other
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TABLE 7. Best, worst, median, mean, and standard deviation results of all algorithms for 51 runs for all CEC2017 benchmark functions.
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TABLE 7. (Continued.) Best, worst, median, mean, and standard deviation results of all algorithms for 51 runs for all CEC2017 benchmark functions.
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TABLE 7. (Continued.) Best, worst, median, mean, and standard deviation results of all algorithms for 51 runs for all CEC2017 benchmark functions.
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TABLE 7. (Continued.) Best, worst, median, mean, and standard deviation results of all algorithms for 51 runs for all CEC2017 benchmark functions.
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TABLE 7. (Continued.) Best, worst, median, mean, and standard deviation results of all algorithms for 51 runs for all CEC2017 benchmark functions.

VOLUME 7, 2019 119285



M. Reda et al.: Innovative DCS Algorithm With a Comparative Study Against Other Adaptive Variants

TABLE 7. (Continued.) Best, worst, median, mean, and standard deviation results of all algorithms for 51 runs for all CEC2017 benchmark functions.
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algorithms. From this perspective this algorithm is executed
twice, one terminates when the algorithm reaches the max-
imum function evaluations (300000) marked in Table 7 as
MCCSA-P1, and the other terminates when the algorithm
reaches 6000 iterations (generations), which is represented
in Tables 7 as MCCSA-P2.
For each algorithm, the mean value of the best fitness

obtained in 51 runs is recorded as well as the standard devi-
ation, best, worst and the median value for all runs. The
best result for each metric in each function is marked in
bold. As seen from Table 7, mean, standard deviation, best,
worst, and median values for the functions F1 and F2 are
the same for all the algorithms, and these values are similar
to the results obtained by a variant of CSA which was also
applied on 30 dimensions CEC2017 Benchmark functions
under the same conditions [55]. Considering the mean value
results shown in Table 7, the proposed DCS gives the best
results on 9 benchmark functions (F5, F7, F8, F10, F11,
F21, F22, F23, and F24), while the other proposed MCCSA-
P2 gives the best results in 6 benchmark functions (F3, F4,
F6, F12, F17, and F20). MCS algorithm gives the best results
in 3 functions (F15, F18, and F28). The ICS algorithm has
the advantage only on 2 functions (F14 and F29), moreover,
the ACS algorithm has the best mean value on 2 functions as
well (F9 and F19). Considering the standard deviation results
shown in Table 7, DCS gives the best results on 5 benchmark
functions ( F7, F8, F11, F18, and F23), while the other
proposed MCCSA-P2 gives the best results in 5 benchmark
functions as well (F3, F4, F6, F12, and F22). Also, the ICS
algorithm gives the best results in 5 functions (F5, F17, F21,
F24, and F29). ACS gives the best results in 4 functions (F9,
F14, F25, and F26).

B. STATISTICAL ANALYSIS (SIGN TEST)
Table 8 shows paired sign test comparisons between DCS and
all the other algorithms considering the mean value results.
The ‘‘+’’ sign in Table 8 indicates that the DCS has better
performance than the other algorithm, while the ‘‘−’’ sign
indicates that DCS has worse mean value than the other
algorithm, the ‘‘=’’ sign shows a draw between the two algo-
rithms. As shown in Table 8, DCS outperforms all other algo-
rithms as it has the largest number of wins, and the P-value in
most cases is less than a level of significance of 0.05. How-
ever, the p-value for the ICS case equals 0.17 and this value is
more than 0.05 but DCS still has the best performance as it has
17 wins, while ICS has only 9 wins. Generally, DCS has the
best performance based on the sign test results. However, this
is not sufficient to judge the performance between algorithms
based only on the best-obtained value and counting how
many times the algorithm wins. Therefore, a deep statistical
analysis is performed using the Friedman test to show which
algorithm gives the best performance using its average rank,
followed by 4 post-hoc procedures to compare the paired
results of the proposed algorithms with all other variants.
Also, graphical statistical analysis is performed via Box plots
to show the distribution of the best fitness values all over the

TABLE 8. paired sign test for DCS vs all other algorithms considering the
mean value.

51 runs. All the statistical analysis is described in details in
the next section.

C. STATISTICAL ANALYSIS (FRIEDMAN TEST AND
POST-HOC PROCEDURES)
This section aims to find which algorithm gives the best
results as well as the degree of significance of these results.
The statistical analysis is conducted in two stages. A Fried-
man test will be performed in the first stage followed by
a post-hoc paired test in the second stage. For both stages,
the null hypothesis H0 is assumed such that there is no
significant difference between the algorithms under the com-
parison, and we will assume the alternative hypothesis H1
that represents the fact that there is a significant difference
between the algorithms we are comparing. In the first stage
(Friedman test), a level of significance of α = 0.05 is set and
the degree of freedom df = k − 1, where k is the number
of algorithms in the comparison so the degree of freedom is
13 − 1 = 12. From the chi-square distribution, the decision
rule threshold is obtained using df = 12 and α = 0.05, hence
we get 21.03 where this value is used to judge our hypotheses
by comparing it with the Friedman statistic value Fr obtained
from (27).

Fr =
12

nk(k + 1)

k∑
j=1

R2j − 3n(k + 1) (27)

where k is the number of algorithms and n is the number of
benchmark problems and Rj is the summation of all ranks for
the jth algorithm. If Fr > 21.03, The null hypothesis is to be
rejected due to the significant difference between the algo-
rithms. In case of the rejection of the null hypothesis in the
first stage, a post-hoc paired test is performed in the second
stage to compare the best algorithm with the minimum rank
with each one of the other 12 algorithms. Hence 12 paired
comparisons are conducted for the 13 algorithms. For each
comparison, Z -value is calculated as in (28).

z =
Ri − Rj√
k(k+1)
6n

(28)

where Ri and Rj are the average rank of the ith and jth

algorithms. The value of z represents the difference between
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TABLE 9. The average rank for each algorithm and the APV for paired comparisons between DCS and all other algorithms on mean value results using
4 post-hoc procedures.

the ranks. Next, the two-tailed p-value is calculated using
this z value from a normal distribution with mean zero and
a standard deviation equals 1. But this p-value is called the
unadjusted p-value because it considers only the probability
error of a certain single comparison but it doesn’t take into
account the remaining comparisons. So if a level of signifi-
cance α = 0.05 is used for each single paired comparison,
then the family-wise error rate for the 12 comparisons is
computed as the following αFW = 1 − (1 − α)k−1 which
will be 0.4596 and this is a very large value. So to deal with
this problem the adjusted p-value (APV) is calculated using
4 different methods as follows:
• The first simplest method is the Bonferroni-Dunn pro-
cedure that is given in (29) in which pi is the unadjusted
p-value for the ith comparison, and k is the number
of algorithms. Where all the unadjusted p-values are
multiplied by k − 1.

• The second method is called Holm procedure that
depends on ordering the p-values in ascending order so
that (p1 ≤ p2 ≤ P3 ≤. . . ..≤ pk − 1), and the adjusted p
values are calculated as in (30).

• The third method is called Holland procedure that orders
the p-values in ascending order like Holm method and
the adjusted p values are obtained by (31).

• The fourth method is called Finner procedure that also
orders the p-values in ascending order and calculate the
adjusted p values by (32).

BonferroniAPVi = min(υ, 1),

where υ = (k − 1)pi (29)

HolmAPVi = min(υ, 1),

where υ = max{(k − 1)pj : 1 ≤ j ≤ i} (30)

HollandAPVi = min(υ, 1),

where υ = max{1− (1− pj)(k−j) : 1 ≤ j ≤ i} (31)

FinnerAPVi = min(υ, 1),

where υ = max
{
1− (1− pj)

(k−1)
j : 1 ≤ j ≤ i

}
(32)

Hence, if APV is less than α, the null hypothesis is rejected
and the difference between the two algorithms is significant.
If the opposite, the null hypothesis is accepted and we can

say that the two algorithms have almost the same perfor-
mance with a slight advantage to the one with the higher
average rank [56]. These two stages are performed on the
mean and standard deviation obtained for the 13 algorithms
for 30 benchmark functions in Table 7.

1) MEAN VALUE ANALYSIS
For each function, all algorithms are ranked based on the
mean fitness value such that the algorithm which has the
smallest mean value will take rank equals 1 and the one
with the largest mean value will take rank equals 13. If two
algorithms have the same mean value, both of them will take
the same rank which will be the average rank between them.
The first column in Table 9 shows the average ranks for the
13 algorithms considering the mean value of the 51 runs for
the 30 functions. By applying (27) on the summation of the
ranks (average rank multiplied by 30), Fr = 135.8923 which
is greater than 21.03, so the null hypothesis is rejected and
we can say that there is a significant difference between the
mean values of the 13 algorithms. The proposed MCCSA-P
gives the worst results among all the algorithms when it
terminates at MaxFEs (300000) as it has the largest average
rank. However, it comes at the fourth place when it is given
enough time and terminates after 6000 iterations. The results
of the proposedMCCSA-S also are not promising as it comes
at the 10th place. The proposed algorithm DCS outperforms
all the other algorithms as it has the lowest average rank.
In spite of the promising results of DCS, a post-hoc paired
test needs to be performed between DCS and each one of the
other algorithms to validate the significant performance of
DCS overall other algorithms. It is clear that from Table 9 that
the Finner procedure exhibits the most powerful behavior,
by reaching the lowest p-values among the comparisons. the
results can be summarized by the following, the proposed
algorithm (DCS) has a better significant performance than the
standard CSA, MCS, CCS, VSF, ACSAC, DFCS, MCCSA-
P1, and MCCSA-S. However, compared to ICS, ICS2, ACS,
and MCCSA-P2 the null hypothesis can’t be rejected, where
these algorithms have similar performance considering the
mean fitness values but with a slight advantage to the pro-
posed DCS as it has the best average rank in the Friedman
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FIGURE 4. Box plots for best fitness values over 51 runs obtained by CSA, MCS, CCS, ICS, VSF, ICS2, ACSAC, ACS, DFCS, MCCSA-P1, MCCSA-P2, MCCSA-S and
DCS (F4, F5,F7, F8, F10, F14, F15, F16, F17, F19, F21, F22, F23, F24, F25, F29, F30).
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FIGURE 5. Convergence graphs that show the improvement of mean fitness values for the 51 runs against function evaluations for all algorithms
(F4, F5, F8, F10, F14, F15, F16, F17, F19, F21, F22, F23, F24, F25, F29).
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TABLE 10. The average rank for each algorithm and the APV for paired comparisons between DCS and all other algorithms on STD value results using
4 post-hoc procedures.

test. In other words, based on the Finner APV, DCS has
better performance than ACS by 71.28% considering the
mean fitness calculations. Also, DCS is better than ICS by
53.42% and is similar to MCCSA-P1 by 20.5%. Also, DCS
has an advantage over ICS2 by 71.28%. Although DCS gives
the best results over these algorithms by a specific percentage,
we can’t admit that the difference in results is significant
because these percentages do not meet the 5% significance
level which is very small.

2) STANDARD DEVIATION ANALYSIS
The average rank for each algorithm based on the standard
deviation is calculated in the same manner performed for the
mean value. Table 10 shows the average rank for the standard
deviation of all algorithms applied to the 30 benchmark func-
tions of 51 runs. When applying (27) on the summation of the
ranks (average rank multiplied by 30), Fr = 75.5429 which is
greater than 21.03. Therefore, the null hypothesis is rejected
to admit the significant difference between the standard devi-
ation of the fitness values of the 13 algorithms. As seen from
Table 10, The proposed MCCSA-P has the largest average
rank among all the algorithms when it terminates at MaxFEs
(300000). However, it comes at the fourth place when it
is given enough time and terminates after 6000 iterations.
From Table 10, It is clear that the proposed algorithm DCS
has the lowest average rank which seems to be the best one
of all other algorithms (minimum STD), however, a post-
hoc paired test needs to be performed to ensure the sig-
nificant performance of the DCS overall other algorithms.
From Table 10, it can be seen that the Finner procedure
gives the lowest p-values among comparisons. the results are
summarized as following, the proposed algorithm DCS has a
better significant performance than the standard CSA, MCS,
CCS, VSF, ACSAC, DFCS, MCCSA-P1, and MCCSA-S.
However, compared to ICS, ICS2, ACS, MCCSA-P2 the
null hypothesis is accepted and these algorithms have similar
performance considering the STD in fitness values but with
a slight advantage to the proposed DCS based on the average
rank from the Friedman test where DCS has the best rank
in STD. In other words, based on the Finner APV, DCS and
ACS have similar performances by 10.83% considering the

STD fitness calculations. Also, DCS is similar to ICS by
55.07% and is similar to MCCSA-P1 by 10.83%. Also, DCS
and ICS2 have similar performances by 27.97%.

D. BOX PLOTS GRAPHS
Box plot is a graphical representation that shows the distri-
bution of results for each algorithm. The box plots for each
function in CEC2017 are shown in Fig. 4. The horizontal
axis represents the algorithm and the vertical axis represents
the fitness value on a logarithmic scale. The best fitness value
for each run is collected to sketch the box plot for these best
values over the 51 runs for each algorithm. The aim is to
visualize the distribution of the best fitness values all over
the 51 runs for each algorithm on each function. The length
of the box represents the variance. When the length is shorter
and compact this indicates that the deviation between results
is small. When the plot is lower, this means that the results
are near to the optimal fitness value which is zero according
to (26). The red line inside the box represents the median of
the 51 results which is identical to the median obtained in
Table 7. Therefore, the best box plot among all the algorithms
is the most compact and lower one. The proposed DCS shows
the best distribution in all the functions represented in Fig. 4
except for F4, F22, and F25 where the distribution of the
results is equivalent for all algorithms. In summary, DCS
shows a very consistent and compact distribution for most
benchmark functions.

E. CONVERGENCE GRAPHS
Convergence graphs are plotted as well for some functions
to compare the average convergence speed for all algo-
rithms against each other. In each run, the best fitness val-
ues obtained are stored after reaching certain percentages of
the MaxFEs (0.01 MaxFEs, 0.02 MaxFEs,. . . , 0.1 MaxFEs,
0.2MaxFEs, . . . , MaxFEs). These values are recommended
by CEC2017 in collecting the results [54]. Then the average
value is calculated for each percentage of the MaxFEs over
the 51 runs. These calculated average values are used to
construct the average convergence graphs for each algorithm.
As shown in Fig.5, the proposed DCS shows an amazing con-
vergence behavior in almost all functions. In early function
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evaluations, DCS has large fitness values compared to other
algorithms. But in the final function evaluations, DCS reaches
the smallest fitness values among other algorithms. Starting
from a large value of α0 increases the step size to allow
more exploration in the search space in the early genera-
tions. Through generations’ progression, the value of α0 is
decreased in order to allow more exploitation of the search
space. It is obvious that the DCS succeeded in achieving the
previously proposed concept of a damped step size of Lévy
Flight in the CSA represented in the α0 value. It is important
to notice that MCCSA-P1 is the same as MCCSA-P2 but
at different termination conditions, the first one terminates
at MaxFEs of 300000 and the second one terminates at
MaxFEs of 1650000. Therefore, we only sketch the con-
vergence graphs of MCCSA-P1. MCCSA-P2 has the same
convergence graphs however, it is too slow compared to
MCCSA-P1 and all other algorithms.

VII. CONCLUSION AND FUTURE WORK
In this paper, three different variants of CSA are proposed,
analyzed, and statistically validated. The proposed variants
are based on making the α0 parameter of the step size adap-
tive. One variant is using ten chaotic maps to adapt the
step size in a parallel way. The other variant uses a success
rate measure for each map to decide the best choice. The
third and the most promising variant is the Damped Cuckoo
Search (DCS) as a new adaptive variant of Cuckoo Search
Algorithm which is based on the damped oscillation concept
that exists in the second order systems. DCS makes the step
size of Lévy flight adaptive as well which improves the
convergence rate and accuracy. The performance of the DCS
is investigated on 30 benchmark functions of CEC2017 with
30 dimensions and then it is compared against almost all
other variants that also modify Lévy flight’s step size. Then
a nonparametric statistical Friedman test is executed to show
the superiority of DCS. Moreover, 4 post-hoc procedures are
performed to hold paired comparisons between DCS and all
other variants to prove the significant performance of DCS
against each one of the other variants. Box plots are presented
as well to show the distribution of the results overall the
51 runs for all the variants. Convergence graphs are also
supported to show how fast each algorithm can improve
over the generations. The numerical results clearly prove the
superiority of the proposed DCS where it outperforms all
other variants in terms of accuracy. Also, convergence graphs
illustrate the improvement of the quality of solutions in DCS
away faster than other variants for most benchmark problems.
In the future, we will continue studying the other parameters
of CSA to discover the best way of setting these parameters.
Also, DCS can be combined with other modifications to
produce new efficient variants of CSA to solve real-world
problems.
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