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ABSTRACT In this paper, an active modeling and control scheme is developed for Shape Memory Alloy
(SMA) actuators to eliminate the negative influences caused by the uncertainties in its dynamics. First, a
nonlinear SMA dynamic model based on Liang model and the empirical models is built and linearized, and
all the uncertainties due to time-varying parameters, external disturbances, as well as the linearization, are
considered as model error of the linearized model. Secondly, an active modeling based on Kalman filter is
constructed to estimate the model error in real time, which intends to improve the model accuracy actively.
Finally, an active modeling based control method is proposed to compensate the model error in order to
improve control performance of SMA actuators. Experiments are conducted on a one degree-of-freedom
(DOF) testbed actuated by a SMA wire. The experimental results of the active model error estimation, and
the control performance with and without the active model based compensation are presented and compared
to demonstrate the improvements of the proposed scheme.

INDEX TERMS Shape memory alloy (SMA), model error, active modeling, active compensation control.

I. INTRODUCTION
The shape memory alloy (SMA) wire can decrease in actuat-
ing length through a resistive heating from an electrical cur-
rent due to a crystalline phase transformation frommartensite
(the low temperature phase) to austenite (the high tempera-
ture phase) [1]. Compared to conventional motors, hydraulic
actuators, gas cylinders, and new nano-actuators [2], [3],
SMA actuators have intrinsic compliance, large force-to-
mass ratio, biocompatibility, compact size, light weight,
and quiet operation that makes it feasible for soft robotics,
exoskeletal robotics, and biomimetic robotics [4]–[8].
However, the phase transformation dynamics of SMA
involves nonlinearity, hysteresis and time-varying parame-
ters, which make it difficult to design high-performance con-
trollers [9], [10]. Generally, there are two ways to improve
the performance of a SMA actuator, namely: 1) trying to con-
struct a more accurate model that meets the SMA dynamics
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in all of its working conditions; and 2) designing a controller
that could reject the modeling errors well.

Currently, there are three main types of models that have
been proposed to describe the SMA dynamics, namely,
the phenomenological model, the physical model, and the
neural network (NN) based model. The phenomenological
models, such as Preisach model [11], [12], Krasnoselskii-
Pokrovskii model [13], Prandtl-Ishlinskii model [14], etc.,
describe the hysteresis by a collection of weighted elemen-
tary functions. The complex and generally multidimensional
structure of this method makes it difficult to tune the param-
eters in real time to meet the change of the operating envi-
ronment of SMA actuators [15], [16]. The physical models,
on the other hand, including Duhem model [17], Bouc-Wen
model [18], Liang model [19], [20], and other empirical
models [21], [22], describe the SMA behavior based on its
physical properties. However, the parameters inside the phys-
ical models are usually identified offline, which may lead
to large modeling error while the SMA actually working in
a condition different from that the model were identified.
Multilayer neural network [23], hysteretic recurrent neural
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network [24], [25], neuro-fuzzy network [26], etc., are also
proposed to model SMA dynamics. The main difficulty of
this NN-based way is how to acquire an ‘enough’ dataset
to train the neural network offline so that the model could
present good performance in all of the working conditions of
SMA actuators.

Besides the proposed models, control schemes were also
studied in order to improve the performance of SMA actu-
ators. A self-tuning fuzzy PID controller was applied to
compensate the SMA hysteresis phenomena [27]. Slide mode
control (SMC) was utilized to reject the model uncertainties.
Fuzzy logic [28] and neural network [25], [29] enhanced
SMC were further proposed to avoid the frequent mode
switches, which might excite the resonance vibrations of
SMA actuators. Adaptive control algorithms, such as output
feedback direct adaptive control [30], model reference active
control [31], and robust indirect adaptive control [32], etc.,
were proposed to control SMA actuators. Moreover, neural
network model prodictive control [33], neural network feed-
forward control with RISE feedback [34] and neural network
direct control with online learning [35] were also used to
control the modeling error of SMA actuators. However, how
to reject the modeling error effectively in a wide working
condition of SMA actuators is still an open problem.

In this paper, we proposed a new active control sheme for
SMA acuators. The proposed scheme consists of a feedback
linearization for nonlinear SMA dynamics, an active estima-
tor for joint estimation, and a compensation controller for
high precision tracking. Here, we use some existing algo-
rithms, e.g. Kalman filter and state feedback control, which
have low computational burden and are easily implemented
on real system, to construct and verify the new active scheme.
Indeed, these existing algorithms themselves do not have
some special new and they are not the focus of this paper
as well. However, the constructed active control scheme,
rather than these existing algorithms themselves, is actually
the main contribution of our work, and it is the first of its
kind to be evaluated through experimental trails involving
SMA actuators. In order to demonstrate the effectiveness of
the proposed scheme, control experiments with and with-
out active model based compensation were conducted and
compared on a one-DOF testbed actuated by a SMA wire.
Experimental results show, compared to conventional state
feedback control, the proposed control demonstrates signif-
icant improvement under different frequency trajectories and
different loads.

The rest of this paper is organized as follows: Section II
introduces the nonlinear model of SMA as pre-knowledge.
Then, the proposed active modeling and control techniques
are presented in Section III, followed by the experimental
studies and comparisons in Section IV. Finally, Section V
draws the conclusion.

II. PRE-KNOWLEDGE: NONLINEAR MODEL OF SMA
As mentioned above, many SMA models have been pro-
posed, and we have summarized them into tree categories.

FIGURE 1. A typical SMA actuated system.

The focus of this paper is to propose an active modeling
approach, which can be built on an existingmodel. Themodel
developed in this work is based on Liangmodel [19], [20] and
the empirical models [21], [22]. Thus, here we only briefly
describe the modeling process of SMA.

Fig. 1 shows the typical structure of a SMA actuated
mechanism, where: F is the force acting on the SMA wire;
d is the displacement of the load; and ML is the mass of the
load; i is the electric current applied to the SMAwire; R is the
electrical resistance per unity length of the wire; T is the wire
temperature. By using a linear spring analogy, The traction
of the SMA wire is given by F = K (ξ) (1− d), where
K (ξ) is the stiffness of the wire, ξ is the martensite fraction;
1 = 0.04lwire, and lwire is the maximum length of the SMA
wire in martensite phase. By the use of the basic laws of
mechanics, the dynamics of the system can be described
as [19]:

I d̈ + cḋ + K (ξ) d = −MLg+ K (ξ)1 (1)

where the inertia item is defined as I =
(
J
/
r2 +ML

)
, J is

the moment of inertia, r is the radius of the pulley; c is the
damping coefficient; and g is the gravitational acceleration.

A. WIRE TEMPERATURE T
The heat transfer process, which consists of electrical heating
and nature convection, is formulated as [10]:

mcp
dT
dt
= i2R− hcA (T − Tamb) (2)

where T is the wire temperature;m is themass per unit length;
cp is the specific heat of the wire; i is the electric current
applied to the wire; R is the electrical resistance per unity
length; hc is the heat convection coefficient; A is external area
per unity length; and Tamb is the ambient temperature.

B. MARTENSITE FRACTION ξ

To eliminate the jump of the martensite fraction during
the switches between heating and cooling processes, the

162550 VOLUME 7, 2019



D. Zhang et al.: Active Modeling and Control for SMA Actuators

martensite fraction ξ can be modified and given as [36]:

ξ=


ξM

1+exp
[

6.2
Af−As

(
T− Af+As

2

)] + kM , Ṫ >0

1−ξA

1+ exp
[

6.2
Ms−Mf

(
T−Mf+Ms

2

)] + kA, Ṫ <0
(3)

where

kM = ξM −
ξM

1+ exp
[

6.2
Af−As

(
Tt −

Af+As
2

)] ,
kA = ξA −

1− ξA

1+ exp
[

6.2
Ms−Mf

(
Tt −

Mf+Ms
2

)] ;
ξM and ξA are the initial martensite fraction during heating
and cooling, respectively; As and Af are the initial and final
temperature of austenite transformation, respectively;Ms and
Mf are the initial and final temperature of martensite trans-
formation, respectively; and Tt is the wire temperature at the
switch point.

C. STIFFNESS K (ξ)
Due to elastic phenomenon, the stress-strain relationship of
the SMA wire can be presented as [22]:

σ = [ξEM + (1− ξ)EA] ε

or

F
Awire

= [ξEM + (1− ξ)EA]
1l
l0

(4)

Then the wire stiffness can be obtained:

K (ξ) = [(1− ξ)EA + ξEM ]
Awire
l0

(5)

where σ and ε are the stress and strain of the SMA wire,
respectively; EM and EA are the martensite and austenite
Young’s Modulus, respectively; Awire is the cross-sectional
area of the wire;1l is the elongation of the wire, and l0 is the
length of the wire in the austenite phase.

III. ACTIVE MODELING AND CONTROL FOR SMA
Due to the complexity of the SMA dynamics like (1-5),
it is difficult to obtain an accurate model that could describe
the SMA behavior in high fidelity. In order to reject the
uncertainties involved in the SMA model, we propose the
active modeling and also the relative control techniques in
this paper. Shown as Fig. 2, the scheme consists of three main
techniques, namely, feedback linearization, active modeling,
and outer-loop controller.

A. FEEDBACK LINEARIZATION OF SMA DYNAMICS
According to (1-5), the SMA dynamics can be rewritten as

ẋ = a (x)+ b (x) u (6)

FIGURE 2. Structure of the active modeling and control scheme.

where

a (x) =

 A1x1
x3

−
c
I
x3 −

K (ξ)
I

x2 +
K (ξ)
I

1−
MLg
I

,
b (x) =

B10
0

, A1 = −
hcA
mcp

, B1 =
R
mcp

.

The state vector x and control u are respectively defined as
x =

(
x1 x2 x3

)T
=
(
T − Tamb d ḋ

)T
∈ <

3, u = i2 ∈ <.
The nonlinearities in the SMAdynamicsmainly exist in a (x),
especially K (ξ) involving (2-5) contains strong nonlinearity
and hysteresis.

The output function of the system is given by:

y = c (x) = x2 (7)

According to [37], the SMA dynamics of (6) can be feed-
back linearized if and only if c (x) satisfies

Lbc (x) = 0, LbLac (x) = 0, LbL2ac (x) 6= 0 (8)

where Lbc (x) = ∂c
∂xb (x) is called the Lie Derivative of cwith

respect to b or along b.
When satisfying the constraints ξM 6= 0∩ξA 6= 1∩x2 6= 1,

the linearized state-space equation be given as{
Ż (t) = AcZ (t)+ Bcv
Y (t) = CcZ (t)

(9)

where

Ac =

 0 1 1
0 0 1
0 0 0

, Bc =

 0
0
1

,
Cc =

 1 0 0
0 1 0
0 0 1

.
The state vector Z (t), output vector Y (t), and control v are
respectively defined as follow:

Z (t) =
(
z1 z2 z3

)T
=
(
x2 x3 ẋ3

)T
∈ <

3
;

Y (t) =
(
x2 x3 ẋ3

)T
∈ <

3
;

v = γ (x) [u− α (x)] ∈ <,
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with

α (x) = −
L3ac (x)
LbL2ac (x)

, γ (x) = LbL2ac (x).

B. ACTIVE ESTIMATION OF MODELING ERRORS
Let f (t) present all of the modeling errors of (9), including
the disturbances, unmodeled uncertainties, as well as those
caused by the linearization, then we can describe the model-
ing errors as [38], [39]:{

Bf f (t) =
˙̃Z (t)− Ż (t)+W (t)

ḟ (t) = h (t)
(10)

where f (t) =
[
f1 f2 f3

]T
∈ <

3 represents the modeling
errors, and f1, f2 and f3 are the errors with respect to position,
velocity, and acceleration respectively;Bf ∈ <3×3 is a param-
eter matrix; Z (t) ∈ <3 is the model state of (9); Z̃ (t) ∈ <3 is
the real state of the SMA system; W (t) ∈ <3 is the process
noise; and h (t) ∈ <3 is the process noises that actuate the
modeling errors.

According to (9) and (10), the actual dynamics of the
SMA actuated system can be represented as

˙̃Z (t) = AcZ (t)+ Bcv+ Bf f (t)+W (t)
ḟ (t) = h (t)
Ỹ (t) = CcZ̃ (t)+ V (t)

(11)

where Ỹ (t) ∈ <3 is the output of the actual system, and
V (t) ∈ <3 is the measurement noise. Based on the state after
modeling error compensation and the measurement noise,
the third relation of (11), namely the output function, was
obtained to more accurately describe the dynamic behavior
of the system.

In order to estimate the state Z (t) and the modeling errors
f (t) simultaneously, we propose to use the ‘‘joint estimation’’
technique. To do this, we need to define the extended state as

Zak =
(
Z̃Tk f

T
k

)T
where Z̃k , fk are the sampling values of Z̃ (t) and f (t)
at time k , respectively; and the superscript a indicates
‘extended’.

Thus, the discrete equation of (11) can be obtained as{
Zak+1 = AadZ

a
k + B

a
dvk +W

a
k

Yk = Ca
dZ

a
k + Vk

(12)

where Aad =
(
Ad Bfd
03×3 I3×3

)
; Bad =

(
Bd
03×1

)
; W a

k =

(
Wk
hk

)
;

Ca
d = (Cd 03×3); Bfd = TsBf , and Ts is the sampling time;

0m×n is an m × n zero matrix; Im×n is an m × n unit matrix;
{Ad ,Bd ,Cd } is the discrete expression of {Ac,Bc,Cc}; vk ,
Yk , and Vk are the sampling values of v, Ỹ (t), and V (t),
respectively.

Then, we propose to use Kalman filter to estimate in real-
time the extended state Zak while using (12) as the reference
model. The estimation process includes two steps: 1) predict

the extended state Ẑak+1|k and the covariance matrix Pk+1|k
by using the state-space equation of (12); and 2) update the
gain matrix Kk , the extended state Ẑak|k and the covariance
matrix Pk|k by the measurement output Yk . Finally, we can
build the Kalman filter as follow:

Ẑak+1|k = Aad Ẑ
a
k|k + B

a
dv

a
k

Pk+1|k = AadPk|kA
aT
d + Qk

Kk = Pk|k−1CaT
d

(
Ca
dP
−1
k|k−1C

aT
d + Rk

)−1
Ẑak|k = Ẑak|k−1 + Kk

(
Yk − Ca

d Ẑ
a
k|k−1

)
Pk|k =

[
I − KkCa

d

]
Pk|k−1

(13)

where Qk is the covariance matrix of the process noise W a
k ,

Rk is the covariance matrix of the measurement noise Vk ,
Ẑak|k is the estimation of the extended state Ẑak , Ẑ

a
k+1|k is the

estimation of the extended state Ẑak+1, Pk|k is the estimation
of the covariance matrix Pk , and Pk+1|k is the estimation
of the covariance matrix Pk+1. Thus, we can get both the
estimations of the modeling errors f̂k and the actual state ˆ̃Zk
from Ẑak+1|k =

(
ˆ̃Zk , f̂k

)
of (13).

C. COMPENSATION CONTROL
A compensation control can be designed while using the
estimated modeling errors to improve control performance of
SMA actuators. In this paper, we proposed to use the state
feedback control (SFC), i.e.,

v = −Ke (14)

where K =
[
k1 k2 k3

]
is designed such that Ac − BcK

is Hurwitz; e =
[
z1 − rd z2 − ṙd z3 − r̈d

]T is the error
vector; rd is the reference trajectory; and z1, z2, and z3 are
the states of the reference model.

According to (9), the actual control u of the SFC can be
obtained:

u = α (x)+ γ−1 (x) v (15)

where γ−1 (x) is the inverse of the matrix γ (x).
For compensation control, the active updated states and

modeling errors were used to calculate the control. According
to (9) and (11), the control law of the proposed control is given
as:

v = −K ẽ (16)

u = α̂ (x)+ γ̂−1 (x)
(
v+ f̂3

)
(17)

where ẽ =
[
z̃1 − rd z̃2 − ṙd z̃3 − r̈d

]T is the error vector;
and z̃1, z̃2, and z̃3 are the states of the active model; f̂3 is the
estimation of f3; α̂ (x) and γ̂ (x) are the estimation of α (x)
and γ (x), respectively, which are updated actively with the
states of the active model.

IV. EXPERIMENTAL STUDIES
Experiments were conducted to verify the performance
of the proposed active modeling and control scheme.
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FIGURE 3. Photo of the experimental setup.

FIGURE 4. The multi-frequency current signals for identification
experiment.

FIGURE 5. Result of position comparison between the model output and
real measurement; left: Low-frequency domain, right: High-frequency
domain; solid blue: Measurement, dotted red: Model output.

Shown in Fig. 3, the experimental setup consists of a
SMA wire, an absolute encoder, a V/I (voltage to current)
converter, and payload weights. The SMA wire we used
is the Nitinol FlexinolTM wire, manufactured by Dynal-
loy, Inc., with 340mm length and 0.25mm diameter. The
V/I converter of Wonder Box Device Controller Kit (LORD,
RD-3002-03) was used to electrically heat the wire. The
wire displacement was measured by the absolute encoder of
CHA38B10-12B-G24RS232. The controller was built on
Beckhoff TwinCAT 3, and the sampling time was set to 5ms
in all the experiments in this paper.

A. MODEL IDENTIFICATION AND MODEL ERROR
In order to identify the parameters of the nonlinear
SMA dynamic model of (2-6), the multi-frequency current
signals, shown in Fig. 4, were designed. And the identifica-
tion experiment were carried out in two phases. In the first
step, the 1/800Hz triangle-wave current signal was applied
on the SMA wire to obtain the quasi-static response for
the estimation of the static parameters, including the phase

FIGURE 6. Comparisons among the actual measurement (solid blue),
the model output (dashed red), and the ModelOutput+ ActiveEstimation
(dash-doted green) at three frequencies of (a) 1/50Hz, (b) 1/20Hz,
and (c) 1/15Hz.

transition temperature parametersAs,Af ,Ms,Mf , and the heat
convection coefficient hc. In the second phase, the sinusoidal
signals under the frequencies of 1/100Hz, 1/50Hz, 1/20Hz,
and 1/10Hz were sequentially applied on the SMA wire to
excite the dynamic response for the estimation of the dynamic
parameters, including the specific heat cp, the damping coef-
ficient c, and the inertia I .

Here the cost function was firstly defined as:

Errest =
∑

(x − xest)2 (18)

where x and xest are the position measured by the encoder and
that from the model calculation, respectively.

When the input current and the output position signals
were acquired, the Levenberg-Marquardt algorithm (LMA),
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FIGURE 7. Position tracking (top in each figure) and the cor-responding
error (bottom) controlled by SFC and AM-SFC for sinusoidal trajectories at
three different frequencies of (a) 1/10Hz, (b) 1/20Hz, and (c) 1/30Hz.

which is often used to solve nonlinear least squares problems
and can be called from MATLAB/Simulink toolbox, was
adopted to minimize the cost function Errest of (18). The
LMA interpolates between the Gauss-Newton algorithm and
the method of gradient descent by adjusting a damping factor
adaptively in iterative process. If the reduction of Errest is
rapid, a smaller value of the factor can be used, bringing
the algorithm closer to Gauss-Newton algorithm to converge
quickly to the optimal solution; whereas if the reduction of

FIGURE 8. Five different loads (from left to right: 0.1kg, 0.3kg, 0.5kg,
0.8kg, 1.0kg) applied on the SMA wire.

Errest is slow, the value can be increased, bringing it closer
to the method of gradient descent to find a global minimun.
After the two-step identification by using the LMA method,
the parameters of the nonlinear SMA model were finally
obtained: As = 84.864, Af = 144.02, Ms = 59.692,
Mf = 41.891, hc = 19.815, cp = 102.9, c = 100.02, and
I = 0.5.
Substituting these obtained parameters into (6), we obtain

the identified SMA model as:

ẋ = a (x)+ b (x) u (19)

where

a (x) =

 −0.48x1
x3

−200.04x3 + (0.08− 2x2)K (ξ)− 9.8

,
b (x) =

 567.85
0
0

.
Fig. 5 shows the comparison between the model output
of (19) and the real measurement. We can see that the identi-
fied model presents the SMA behavior well in low frequency
domain, but it becomes worse and worse as the frequency
increases. This indicates that the fixed parameter model can-
not describe the SMA behavior well in the whole frequency
range due to strong nonlinearity, hysteresis and time-varying
characteristics of SMA dynamics.

B. ACTIVE ESTIMATION OF MODELING ERRORS
The modeling errors were introduced into the linear state-
space model as the extended state of (12), and we used the
Kalman filter of (13) to synchronously estimate the system
states and the modeling errors in real-time. The modeling
errors estimated actively were used to compensate the refer-
ence model output. In order to demonstrate quantitatively the
role of active estimation, we define the following index:

Errmodel/estm =
1
N

N∑
i=1

∣∣∣x imodel/estm − x
i
actual

∣∣∣ (20)

where xactual indicates the real output measured by the
encoder; the subscript model indicates the output calculated
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FIGURE 9. Position tracking (top in each figure) and the corr-esponding error (bottom) controlled by SFC and AM-SFC for tracking a 1/20Hz sinusoidal
trajectory under the five different loads of (a) 0.1kg, (b) 0.3kg, (c) 0.5kg, (d) 0.8kg, and (e) 1.0kg.

by the reference model, and the subscript estm represents
that calculated by the reference model plus the estimated
modeling errors; and N is the number of sampling points.
The experiments were conducted with respect to the sinu-
soidal input current signals at three different frequencies, of
1/50Hz, 1//20Hz and 1/15Hz. And Fig. 6 shows the result,
from which we can see that, compared to ModelOutput,
ModelOutput+ActiveEstimationmeets the encodermeasure-
ment much better with respect to all of the three frequencies.

Table 1 presents the index of (20) with respect to the three
frequencies, which further demonstrates that the active esti-
mation reduced more than 96% of the model error.

C. ACTIVE MODEL BASED CONTROL
The gain parameters of the state feedback control (SFC)
were manually adjusted many times until achieving a satis-
factory tradeoff between tracking precision and control input.
And the gain vector of the SFC was finally determined as:
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TABLE 1. Errmodel/estm of Fig. 6.

TABLE 2. Errtrack of Fig. 7.

K = [8000 500 160]. To conduct a fair comparison, the SFC
gain of the proposed active model based SFC (AM-SFC)
remained the same as that of the conventional SFC.
Two groups of experiments were carried out to demonstrate
the improvement of the proposed AM-SFC comparing to the
conventional SFC. One group was to test the tracking perfor-
mance of the controller with respect to different frequency
trajectories, and the other one was to check the adaptive
capability of the controller with respect to different loads.

The tracking errors for the two groups of experiments were
calculated as

Errtrack =
1
N

N∑
i=1

∣∣∣x iact − x iref ∣∣∣ (21)

where xref and xact are the desired reference trajectory and
the actual position measured by the encoder, respectively;
N is the number of sampling points.
For the first group of experiments, sinusoidal trajectories

at three different frequencies, i.e., f = 1/10Hz, 1/20Hz, and
1/30Hz in (22) were set as the reference trajectories.

The tracking errors for the two groups of experiments were
calculated as

xref = 4 sin (2π f − π/2)+ 6 (22)

where xref is the reference trajectory, f is the frequency.
The load was fixed to 0.5kg. The performance of the SMA

actuated system under the SFC and the AM-SFC is shown
in Fig. 7, where the black dash-dotted curves represent the
manually given reference trajoctories, the red dotted curves
represents the tracking results under SFC, and the green solid
curves represent the tracking results under AM-SFC. From
Fig. 7 we can see that the tracking errors of the proposed
AM-SFC have been significantly reduced while comparing
to that of the conventional SFC. Table 2 further shows the
improvements in quantification. The tracking errors were
reduced more than 58% by the active-model-based com-
pensation control, while comparing to those by the normal
control only. The tracking errors of AM-SFC became larger
as the frequency increased. This result is corresponding with

TABLE 3. Errtrack of Fig. 9.

the model error in Fig. 5. We can see that when f = 1/10Hz
the model error of the identified SMA model in Fig. 5 is
poor, and the tracking error of AM-SFC in Fig. 7(a) is poor as
well. Hence, the poor control performance in high frequency
domain is mainly related to the low model accuracy in high
frequency domain.

For the second group of experiments, shown as Fig. 8, five
different loads, i.e., 0.1kg, 0.3kg, 0.5kg, 0.8kg, and 1.0kg,
were sequentially applied to the SMA wire. The frequency
of the reference trajectory was fixed at f = 1/20Hz in (22).
The SFC gain parameters remained the same with those of
the first group experiments.

The performances of the SMA wire under the SFC and
AM-SFC are shown in Fig. 9, from which we can see that
the tracking performance of AM-SFC has been significantly
improved under the five different loads while comparing to
that of SFC. Table 3 further shows that the Errtrack of (21)
has been reduced by more than 89% for all of the five loads.

V. CONCLUSION
In this paper, an active model based control scheme was pro-
posed for SMA actuators, which intended to compensate the
modeling errors and improve control performance. Extensive
experiments were conducted on a one-DOF SMA testbed,
and the experimental results demonstrated the improvement
of the proposed scheme with respect to different frequency
trajectories and different loads. Compared to the conventional
SFC, the proposed AM-SFC has reduced the absolute track-
ing error by more than 58% with respect to the three different
frequency trajectories, and by more than 89% with respect to
the five different loads.

In future work, the proposed method will be further
improved, for example, a nonlinear estimator can be directly
used to handle complex the nonlinear model of SMA actuated
system, rather than taking a lot of effort to linearize the
model first. Moreover, the proposed method will be applied
to control SMA-actuacted robots, such as bionic prosthesis
and wearable exoskeleton, etc.
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