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ABSTRACT Although most conventional methods of preserving data privacy focus on static datasets, which
remain unchanged after processing, real-world datasets may be dynamically modified often. Therefore,
privacy-preservation methods must maintain data privacy after dataset modification. Re-anonymization
of entire datasets is inefficient when large datasets are frequently modified. Although several previous
studies have addressed data privacy for incremental data updates (i.e., record insertions), they have not
adequately it for dynamic changes made to existing datasets (i.e., record updates and deletions). Therefore,
we identified limitations of data-privacy preservation for dynamically evolving datasets and used anatomy
instead of generalization and suppression to develop a more efficient l-diversity algorithm for preserving
privacy of such datasets. We also used a Cuckoo filter, a new probabilistic data structure for approximate
set-membership tests, to improve data-processing efficiency. Experimental results demonstrated that our
proposed data-anonymization algorithm processed data more efficiently than other conventional algorithms,
requiring much less running time than conventional re-anonymization of entire datasets. The Cuckoo-filtered
algorithm was especially efficient, dramatically reducing operation execution times while maintaining
privacy of dynamically evolving datasets.

INDEX TERMS Anonymization, Cuckoo filter, dynamic data publishing, l-diversity, privacy-preservation.

I. INTRODUCTION
Privacy-preservation issues have emerged with the increas-
ing volumes of published data including sensitive, private
information belonging to individuals and organizations. To
address such issues, various methods of reducing risks
associated with published data have been developed. Data
anonymization is a widely used method of ensuring data
privacy. Several anonymization models have also been devel-
oped for preserving privacy in data publishing. Existing
anonymization models are commonly developed using tabu-
lar data structures (e.g., k-anonymity and l-diversity) wherein
each row of the table is a tuple and each column is an
attribute, which comes in several types such as: explicit
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identifiers, quasi-identifiers, sensitive attributes (SAs), and
non-sensitive attributes. Explicit identifiers explicitly identify
individuals (e.g., name and personal ID). Quasi-identifiers
are sets of attributes that can potentially identify individuals.
SAs describe some sensitive information about individuals.
In the anonymity model, quasi-identifiers are anonymized
for publishing because they cannot be distinguished. A set
of tuples that cannot be distinguished by its quasi-identifiers,
is called an equivalence class (EC).

Themost well-known anonymitymodel is k-anonymity [1],
which provides privacy protection by rendering data indis-
tinguishable from at least k-1 other data. Numerous algo-
rithms have been developed for k-anonymity and used in
practice [2]–[7]. However, sensitive information anonymized
using k-anonymity is not entirely secure and is vulnerable
to some attacks. L-diversity [8] overcomes limitations of
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FIGURE 1. Proposed data-anonymization method.

k-anonymity and guarantees stronger privacy preservation
than k-anonymity. An l-diverse dataset requires a least l dis-
tinct values for a SA in each EC. Suppression, which removes
or replaces one or more values in a dataset with a special
value, and generalization, which transforms values into more
general ones, are widely used anonymization operations in
the k-anonymity and l-diversity models.
Anatomy [9] is the most widely used privacy preserving

algorithm for the l-diversity model because it can achieve
anonymity without using generalization or suppression.
Instead, it releases two separate quasi-identifier tables (QITs)
and a sensitive-value table (ST), thereby preserving privacy
because QITs do not indicate SAs of any tuple(s). However,
most l-diverse anonymity algorithms are applied only to static
datasets, which remain unchanged after initial processing.

In real-world applications, however, many datasets may be
changed, meaning that new data may be added to datasets
while old data may be updated and/or deleted. Therefore,
guaranteeing privacy is reduced to the problem of determin-
ing how to preserve privacy after such modifications. The
main operations resulting in such data-modification prob-
lems are insert, delete and update. Although the simplest
solution to such problems would be to re-anonymize entire
modified datasets, larger datasets are frequently modified;
therefore, re-anonymizing entire datasets would be ineffi-
cient. Although several previous studies have addressing
problems associated with dynamically changing datasets are
described more detail in Section 2, most such studies only
have addressed incremental data releases and have inade-
quately addressed data deletion and updates. To address these
shortcomings, we developed an efficient l-diversity method
of preserving privacy of dynamically evolving datasets. Our
method is based on the l-diversity anonymization model, and
we used anatomy to preserve privacy, as shown in Fig. 1.
Therefore, our method does not consider information quality

of released(anonymized) data. Furthermore, we used prob-
abilistic data structures, which compactly store low-memory
data and provide approximate answers to queries about stored
data, to improve data-processing efficiency. Main contri-
butions of this paper to the literature are summarized as
follows:
• We identified limitations of privacy preservation for
dynamically evolving datasets.

• We developed a method of preserving privacy of dynam-
ically evolving datasets, which surpasses defined lim-
itations and focuses on the l-diversity anonymization
model.

• We also used a Cuckoo filter [10], a new probabilistic
data structure for approximate set-membership tests,
to improve data-processing efficiency.

• We compared data-processing times of our method to
those of conventional ones. Experimental results demon-
strated that our method showed superior efficiency.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes basic
concepts such as the l-diversity model and algorithm, and
limitations on privacy preservation of dynamically changing
datasets. In Section 4, we propose our method of preserving
privacy of dynamically evolving datasets. Section 5 presents
experimental results comparing data-processing times of
our method to those of conventional methods. Finally,
Section 6 summarizes the current work andmain findings and
suggests a direction of future research based on the findings
of this study.

II. RELATED WORK
This section provides a brief review of conventional
privacy-preservation models for data publishing. We also
review previous methods of preserving privacy of dynami-
cally evolving datasets and data streams.

VOLUME 7, 2019 122879



O. Temuujin et al.: Efficient L-Diversity Algorithm for Preserving Privacy of Dynamically Published Datasets

TABLE 1. Original table.

TABLE 2. Anonymized table of table I.

A. K-ANONYMITY
K-anonymity, originally proposed by Sweeney [1], has
received the most research attention among models aimed
at preserving data privacy and numerous algorithms have
been developed for k-anonymity and are used in practice
[2]–[7]. Furthermore, several studies have been performed
by applying such algorithms and large data platforms such
as Apache Hadoop and Apache Spark to preserve privacy
of large datasets [11]–[14]. A dataset satisfies k-anonymity
when every record in the dataset is indistinguishable from
at least k-1 other records with respect to quasi-identifier
attributes. Datasets that satisfy k-anonymity are referred to
as k-anonymous datasets. For example, Table 2 shows a
2-anonymous table with respect quasi-identifiers. Suppres-
sion, which removes or replaces one or more values in
a dataset with a special value, and generalization, which
transforms values into more general ones, are widely used
anonymization operations in the k-anonymity model. A set
of tuples that cannot be distinguished by its quasi-identifiers,
is called an EC. For example, Table 2 shows three distinct
ECs.

B. L-DIVERSITY
Although k-anonymity has gained popularity for the data
privacy because of its simplicity, and numerous algorithms
have been developed and applied to real-world datasets,
sensitive information anonymized using k-anonymity is not
entirely secure and is vulnerable to some attacks, as shown
by Machanavajjhala et al. [8] and proved by examples in
their research. They defined a novel privacy preservation
model called the l-diversity anonymity wherein anonymized
l-diverse datasets require at least l distinct values for the SAs
in each EC. For example, Table 2 is 2-diverse with respect
to SAs. Likewise, l-diversity has been well studied in the
literature [9], [15].

C. T-CLOSENESS
Although l-diversity guarantees stronger privacy preservation
than k-anonymity, l-diversity alone is insufficient to prevent
attribute disclosure because it does not protect against a num-
ber of attacks identified by Li et al. [16]. Therefore, the con-
cept of t-closeness has been proposed to address limitations
of l-diversity. An EC is said to have t-closeness if distance
between distribution of a SA therein and that of the attribute
in the whole dataset is no more than threshold t. A dataset is
said to have t-closeness if all ECs have t-closeness.

Stronger privacy preservation of t-closeness is beyond the
scope of the present study, which focuses instead on the
t-diversity model.

D. PRIVACY-PRESERVATION OF DYNAMICALLY EVOLVING
DATASETS AND DATA STREAMS
A few studies have been performed on preserving privacy
of dynamically published data. The first such study [17]
proposed an algorithm based on dynamically changing
k-anonymous datasets, thereby guaranteeing k-anonymity in
databases wherein data were frequently added, deleted, and
updated. However, k-anonymity does not protect sensitive
information vulnerable to some attacks. Wang and Wang
[18] proposed an l-diversity algorithm for incremental data
publishing by considering inference attacks, which destroy
the privacy guarantee of k-anonymity. Unfortunately, their
algorithm was applied only to incremental data publication
and did not consider record deletions and updates. Like-
wise, Byun et al. [19] presented an anonymization method
for dynamically published data. However, they also consid-
ered only insertion operations. Additionally, Sun et al. [20]
investigated maintaining l-diversity for dynamic data pub-
lishing and proposed a solution for data additions and
deletions. Their algorithm used a generalization operation
to ensure anonymization and focused on information loss
thereby maintaining efficiency. We describe their work in
more detailed in Section 3 and compare results obtained in
their study to those obtained in ours in Section 5. Further-
more, Xiao presented m-invariance [21], a generalization-
based principle, Wei et al. proposed e-inclusion [22] using
a permutation-based method and substitution to anonymize
microdata.

Preserving privacy of data streams is one of the practi-
cal areas in data privacy, wherein significant research has
been conducted. Kim et al. [23] presented a framework
for preserving privacy of electronic health data streams.
Although most prior studies on preserving data-stream pri-
vacy have generated accumulation delay. Their proposed
method immediately anonymized input streams with coun-
terfeit values. Cao et al. [24] presented a novel frame-
work called SABRE1 for microdata anonymization based on
the t-closeness principle. They developed two instantiations:
SABRE-AK and SABRE-KNN, focusing on efficiency and

1Sensitive Attribute Bucketization and REdistribution framework
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FIGURE 2. Classification of privacy-preservation data publishing.

information quality, respectively. They also extended SABRE
to streaming data.

Classification of privacy-preservation data publishing is
shown in Fig 2. The most attention-gaining anonymization
models(i.e., k-anonymity, l-diversity, t-closeness) have been
classified according to preserving privacy of released static
data. This study considers classification of preserving pri-
vacy of incrementally released data dynamically updated or
deleted as outlined in red in Fig 2.

III. BASIC CONCEPTS
Herein, we present an l-diversity anonymization model
for data publishing and a corresponding l-diversity-based
anatomy algorithm. We also describe various problems
associated with preserving privacy in dynamically evolving
datasets.

A. L-DIVERSITY
L-diversity is a privacy concept stronger than that introduced
by Machanavajjhala et al. [8].
Definition 1 (L-DiversityModel): Let T be the initial micro-

data table to be published. T contains d quasi-identifier (QI)
attributes QA1,QA2, . . . ,QAd and a sensitive attribute (SA).
Although each QAi (1 ≤ i ≤ d) can be either numerical
or categorical, SA should be only categorical, following the
assumption of l-diversity [8].
Definition 2 (L-Diversity Principle): An EC satisfies

l-diversity when there are at least l ‘‘well-represented’’ values
for SAs. A dataset satisfying l-diversity satisfies l-diversity for
EC of the dataset.

TABLE 3. Equivalence classes corresponding to data in table I.

To clarify, ‘‘l well-represented’’ means that each EC con-
tains at least l different values for the SA.

Anatomy is one of the widely used l-diversity algorithms
for preserving privacy in data publication, and was proposed
by Xiao and Tao [9]. Anatomy can achieve anonymity with-
out using generalization or suppression. Instead, it releases
two separate QITs and an ST. First, anatomy computes
l-diversity ECs of given datasets and assigns a unique ID,
called an attribute Group-ID, to each EC. Then, it generates a
QIT containing all QIs in the dataset alongwith theGroup-ID.
After that, anatomy generates an ST containing SAs of the
dataset along with the Group-ID and a new attribute, Count,
which the number of tuples in the QIT that have the same SA.
For example, assume that we divide tuples in Table 1 into
three ECs according to Group-ID, as shown in Table 3. Given
these ECs, corresponding QIT and ST produced by anatomy
are shown in Tables 4 and Table 5, respectively.

Anatomy preserves privacy because QIT does not indicate
SAs of any tuples. For instance, suppose an adversary has
information about a person aged 45 whose zip code 35124.
Following this information, although the adversary knows
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TABLE 4. Quasi-identifier table (QIT) corresponding to data in table III.

TABLE 5. Sensitive table (ST) corresponding to data in table III.

tuple 1 belongs to Table 4, it cannot obtain any sensitive
information about the person belonging to tuple 1. Instead,
the adversary can obtain only Group-ID of tuple 1. Using
the obtained Group-ID, the adversary can know sensitive
information contained in the current group. In this example,
two different diseases are contained in the group belonging to
tuple 1. Hence, the adversary cannot directly access sensitive
information. The person belonging to tuple 1 could have
pneumonia or bronchitis with 50% probability each.

B. CONVENTIONAL L-DIVERSITY-BASED ALGORITHM FOR
PRESERVING PRIVACY OF DYNAMICALLY
EVOLVING DATASETS
Herein, we describe the conventional l-diversity-based
method of preserving privacy of dynamically evolving
datasets. To the best of our knowledge, this method [20] is
the only one described in the literature for preserving privacy
of dynamically evolving datasets undergoing record, dele-
tions and insertions. Thus, we compared experimental results
obtained using our proposed method to results obtained for
the published one. Byun et al. applied clustering [25] to pre-
serve data privacy. Furthermore, their cluster-based method
(i.e., ECs) was developed such that only minimal information
was lost and total information loss of all clusters could be
compute. They described two different problems in their
work: how to efficiently update released clusters, thereby
ensuring l-diversity when dataset 1T+ is added to or dataset
1T− is deleted from the original dataset. The solution to
the first problem is that each tuple in 1T+ is added to a
cluster, thereby increasing the minimum information loss to
total information loss. If a cluster has more than l distinct
tuples, it is split into two equal sub-clusters, as shown in Fig 3.

The solution to the second problem is that when each tuple
in 1T− is deleted from it host cluster, if the resulting cluster
has fewer than l remaining distinct tuples for SAs, all the
remaining tuples are dispersed into other clusters, as shown
in Fig 4.

FIGURE 3. Record insertion by basic algorithm.

FIGURE 4. Record deletion by basic algorithm.

In this case, the algorithm finds a cluster wherein informa-
tion loss is minimized after the tuple has been added to the
dispersed cluster of tuples.

C. LIMITATIONS OF BASIC L-DIVERSITY ALGORITHM FOR
PRESERVING PRIVACY OF DYNAMICALLY
EVOLVING DATASETS
As previously mentioned, the basic method focuses on infor-
mation loss. The algorithm calculates the minimum increase
in total information loss when each tuple in dataset 1T+

(i.e., tuples added to the original dataset) has been added
to a cluster. Furthermore, when records are deleted, each
tuple in the cluster will be dispersed to another cluster if the
remaining cluster has fewer than l distinct tuples for SAs,
whereby the algorithm follows the same iterative process for
calculating the minimum increase in information loss and
total information loss for each tuple in dataset 1T+ and
each tuple in the dispersed cluster. Therefore, the algorithm
should determine information loss of all existing clusters in
each iteration. If released anonymized datasets have many
clusters and modified datasets consisting of numerous tuples,
the algorithm can be inefficient. Furthermore, this study does
not adequately describe how the algorithm was applied and
does not include any specific information about algorithm
implementation.

Considering these issues, we used anatomy instead of
generalization and suppression to develop a more efficient
algorithm for preserving privacy of dynamically evolving
datasets. Therefore, we did not need to consider information
loss and did not compare information quality in experimental
evaluation.
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IV. PRIVACY PRESERVATION FOR DYNAMICALLY
EVOLVING DATASETS
As noted in Section 1, most l-diverse anonymity algorithms
are only applied to static datasets. However, real-world
datasets may be frequently modified by adding, updating, and
deleting records. Preserving data privacy after such modifi-
cations is a significant issue, and these three operations in
particular present corresponding unique problems. However,
we assume we can directly solve problems associated with
record additions and deletions, and we can solve the problem
associated with record updates by combining record addition
and deletion operations. To clarify, an update operation can be
substituted by a combination of deletion and insertion ones.
The following section describes how our proposed method
performs insertion and deletion operations and how data pri-
vacy is preserved after each. It also introduces a probabilis-
tic data structure for approximate set-membership tests and
explains how we used the data structure in our method.

A. PROPOSED DATA-ANONYMIZATION METHOD
1) RECORD INSERTION
Wefirst assume l-diversity ECs have been computed from the
original dataset. Let the ECs be defined as follows:

ECs = {ec1, ec2, . . . ecn}

Definition 3: Let l be the specified anonymity requirement.
A satisfied EC has more than l distinct SAs.

We also assume a set of tuples is added to the dataset.
Definition 4: Given the original dataset Ti let Ti+1 be the

revised dataset and1T+ = {t1, t2, . . . tn} be the set of tuples
added to Ti. Then Ti+1 can be represented as follows:

Ti+1 = Ti +1T+

An overview of maintaining data privacy after record inser-
tion is shown in Fig. 5. If 1T+ contains more than l distinct
tuples for an SA, we will compute new ECs from 1T+ and
merge the ECs.
Theorem 1: If datasets A and B both satisfy the same

l-diversity requirement, then the union of A and B (A ∪ B)
also satisfies l-diversity.

Proof: Let SAa = {a1, a2, . . . , an} and SAb =
{b1, b2, . . . bn} be sets of distinct tuples for an SA belonging
to datasets A and B respectively, |SAa| = Ca and |SAb| = Cb,
where |SAi| represents cardinalities of SAa and SAb, respec-
tively, and Ca ≥ l,Cb ≥ l. Let cardinality of union of the A
and B be |SAa ∪ SAb| = CU .
• If the intersection of SAa and SAb (i.e., SAa ∩ SAb 6= ∅)
exists then CU ≥ Ca, hence; CU ≥ l.

• If the intersection of SAa and SAb (i.e., SAa ∩ SAb = ∅)
does not exist then CU = Ca + Cb; thus, CU ≥ l.

�
If 1T+ does not contain l distinct tuples for an SA, each

tuple t in T+ is added to the smallest EC in the cluster of ECs.
Theorem 2: If every EC in a dataset satisfies the l-diversity

requirement, then multiple record insertions into any EC also
satisfy l-diversity.

Algorithm 1 Insertion
Input data: ECs(equivalence classes from original data),

T+(added tuples)
l(l-diversity value)

1. cnt = distinct(T+)
2. //return count of distinct values for a sensitive value
3. if cnt >= l
4. ECs1 = anatomy(T+)
5. //return l-diverse equivalence classes
6. ECs = merge (ECs1)
7. return Done
8. else
9. for i = 0; i < sizeOf (T+) ; i++do
10. tuple = get tuple from T + [i]
11. EC = smallest sized equivalence class from ECs
12. add tuple to EC
13. returnDone

FIGURE 5. Maintaining data privacy after record insertion.

Proof: Let SA = {a1, a2, . . . an} be the set of distinct
tuples for an SA of EC A such that SA = {a1, a2, . . . an} ≥ l.
Furthermore, let multiple insertionMI = {m1,m2, . . .mn} be
the set of distinct tuples for an SA of MI. Then, there can be
two cases of MI as follows:

• If |MI | ≥ l, updated EC A satisfies l-diversity by
Theorem 1.

• If |MI | ≤ l, |SA∪MI | ≥ l because |SA| ≥ l. Therefore,
updated EC A satisfies l-diversity.

�
Algorithm 1 guarantees that if any record is inserted into

the original dataset, it can maintain anonymity by Theo-
rems 1 and 2. The algorithm first maintains anonymity of an
added dataset (1T+) containing more than l distinct tuples
for an SA (i.e., Lines 3-8 in Algorithm 1) and then maintains
anonymity of an added dataset (1T+) containing fewer than
l distinct tuples for an SA (i.e., Lines 9-13 in Algorithm 1).

2) RECORD DELETION
We first assume that a set of tuples has been deleted from a
dataset.
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FIGURE 6. Maintaining data privacy after record deletion (determination
step).

FIGURE 7. Maintaining data privacy after record deletion (relocation
step).

Definition 5: Given the original dataset Ti, let Ti+1 be the
revised dataset and1T− = {t1, t2, . . . tn} be the set of tuples
deleted from Ti. Then Ti+1 can be represented as follows

Ti+1 = Ti −1T−

Each tuple t in 1T− will be deleted from its host EC.
After record deletion, whether the revised EC still satisfies
the specified anonymity requirement will be determined. An
overview of maintaining data privacy after record deletion is
shown in Figs 6 and 7.
Definition 6: Let l be the specified anonymity requirement.

An EC having fewer than l distinct tuples remaining for the
SA in the cluster is called a nonsatisfied EC (i.e., NT), which
is defined as follows:

NT = {ec1, ec2, . . . ecn}

Theorem 3: If the entire dataset does not satisfy l-diversity,
there exists at least one nonsatisfied EC in the dataset.
Proof by contrapositive: Assume that a dataset does not

contain contain any nonsatisfied ECs.We prove that the entire
dataset satisfies l-diversity.

Algorithm 2 Deletion
Input data: ECs(equivalence classes from original data),

T-(deleted tuples)
l(l-diversity value)

1. NT = ∅
2. for i = 0; i < sizeOf (T−) ; i++ do
3. tuple = get tuple from T − [i]
4. EC = equivalence class currently containing tuple
5. remove tuple from EC
6. if EC having less than l remaining distinct tuple
7. add EC to NT
8. cnt = size of NT
9. if cnt == 0
10. return Done
11. while cnt > 1
12. EC = smallest equivalence class from NT
13. remove EC from NT and ECs
14. cnt −−
15. for each tuple in EC
16. ec = find equivalence class which is does not

contain the sensitive value of tuple fromNT
17. if is there possible ec
18. add tuple into ec
19. if ec satisfy l− diversity condition
20. remove ec from NT
21. cnt −−
22. else
23. EC = smallest equivalence class from ECs
24. add tuple to EC
25. EC = get last equivalence class from NT
26. remove EC from ECs
27. for i = 0; i < sizeOf (EC) ; i++ do
28. tuple = get tuple from EC[i]
29. EC = smallest equivalence class from ECs
30. add tuple to EC
31. return Done

Let EC1,EC2, . . .ECn be the EC and k1, k2, . . . kn be the
number of SAs. Because every ECi(ki ≥ l) has more than l
distinct tuples for an SA, the entire dataset satisfies l-diversity
by Theorem 1. �
Following Theorem 3, Algorithm 2 can maintain data

anonymity when any record(s) is/are deleted from the original
dataset. The algorithm first removes every tuple in1T− from
the host EC(Lines 2-5 in Algorithm 2), and then, determines
nonsatisfied ECs from among all the existing ECs(i.e., Lines
6-7 in Algorithm 2).

If more than one nonsatisfied EC exists in NT, we select
the smallest EC from NT and remove it from the ECs and
NT (i.e., Lines 12-13 in Algorithm 2). For each tuple t in a
selected EC, we find a new EC in NT that does not contain
the SA of the current tuple (i.e., Line 16 in Algorithm 2). If
an available EC is found, we insert tuple t into that EC (i.e.,
Line 18 in Algorithm 2).
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FIGURE 8. Record insertion performance at four different datasets.

Otherwise, if there is no EC available in NT, we insert
the tuple into the smallest EC of the ECs, which are not
considered in NT (i.e., Lines 23 and 24 in Algorithm 2). This
iteration repeats until at least one nonsatisfied EC remains
in NT.

If there is only one nonsatisfied EC or one EC remaining
in NT, each tuple in that class is added to the smallest EC in
ECs (i.e., Lines 25-30 in Algorithm 2).

B. FILTERED DATA-ANONYMIZATION METHOD
In our data-anonymization method, whether a selected tuple
of 1T+ or 1T− exist in an EC is frequently deter-
mined, which is an example of approximate set-membership
test. Set-membership tests determine whether a given item
belongs to a given set. Because probabilistic data structures
pass set-membership tests, improve data-processing effi-
ciency, and compactly store low-memory data, we used
such structures to improve data-processing efficiency of our
data-anonymization method method.

1) CUCKOO FILTER
A Cuckoo filter [10] is a space-efficient probabilistic data
structure used for approximate set-membership tests. Prob-
abilistic data structures are very useful, especially when
processing large datasets. Numerous probabilistic data struc-
tures are described detail in the literature. Although Standard
Bloom filters [26], which support record insertion and lookup
operations, are well understood and are the most widely
used in practice, they do not support record deletions. Thus,
Counting Bloom filters extend standard ones to allow for
record deletions. However, Counting Bloom filters requires
4x more space than standard ones in practice.

Cuckoo filters improve upon Bloom filters by supporting
dynamic insertion and deletion of dataset records and better
record lookup performance. Cuckoo filters also use less space
than Bloom filters and can determine whether a given record
is definitely not represented in a given dataset or might be rep-
resented in the dataset. That is, although negative responses

are absolutely certain, positive ones are associated with a
small false positive probability (FPP). Previous experimen-
tal results [10] have shown that Cuckoo filters outperform
conventional data structures in both data-processing time and
space requirements. Considering these beneficial properties,
we choose a Cuckoo filter for our work.

2) APPLICATION OF CUCKOO FILTERS TO OUR
DATA-ANONYMIZATION METHOD
We used Cuckoo filters in two ways when a set of tuples was
deleted from the original dataset.

• Before each tuple t is deleted from the 1T− dataset,
we must first determine its host EC from among all the
ECs by comparing the current tuple to all the tuples in
each EC. Assuming we have filters for each EC, we can
simply the search for the current tuple from among all
the filters to find the host EC. It meaning that when we
determine whether the current tuple is in a given EC,
we do not need to compare the tuple to all tuples in each
EC; we just search for the tuple from among filters of
each EC one at a time.

• After determining nonsatisfied ECs as NT, we collect
all the tuples of the smallest EC from NT and relocate
each tuple to a new candidate EC from NT that does
not contain the SA of the current tuple. To do this,
we compare each SA of each tuple to all SAs of all tuples
in each EC in NT. Assuming we have already filtered
SAs in each EC, we can simply search for the SA of the
current tuple from among SA filters in each EC to find
the candidate EC.

V. EXPERIMENTAL EVALUATION
The experiment was designed to investigate record inser-
tion and deletion performances and operation execution
(data processing) efficiency of our data-anonymization
method. In addition, we assume filters have already cre-
ated with the initial released original dataset. We reem-
phasize that our method did not consider information loss
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FIGURE 9. Record deletion performance at six different datasets.

because generalization or suppression was not used for data
anonymization. Instead, we used anatomy to ensure data
privacy.

A. EXPERIMENTAL SETTING
We utilized real census data from the Integrated Public
Use Micro-data Series1 (IPUMS, USA) containing personal
information collected from the American population. We
selected only distinct tuples by their quasi-identifier attributes
and removed all the tuples containing unknown SAs from
the dataset. The adjusted dataset consisted of 577 k tuples
and 8 attributes. Table 6 summarizes attributes of the data
used in the experiments as well as corresponding, type

1https://usa.ipums.org/usa/

and number of distinct values for each attribute. In all the
experiments, we considered Age a numerical quasi-identifier
attribute, while Gender, Quarter of Birth, Marital status,
Race, Birthplace, and Education were considered categorical
quasi-identifier attributes. Furthermore, Occupation was con-
sidered the SA. All the experiments were performed using
an Intel 2.7 GHz Core-i7 processor and 16 GB of random-
access-memory(RAM).

B. RECORD INSERTION PERFORMANCE
We evaluated record insertion performances achieved
using anatomy-based reanonymize-entire-dataset (RED)
algorithm; the existing reference (EAC) algorithm [20],
which examines all the clusters of released datasets and our
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TABLE 6. Summary of data attributes.

proposed unfiltered data-anonymization (ENC) algorithm,
which only examines nonsatisfied clusters. For record inser-
tion, we did not use a Cuckoo filter with our proposed
data-anonymization method. The experiment was conducted
on four different volumes of data, reduced by 1, 5, 10,
25% of the entire dataset volume and l-diversity 10 was
the anonymity requirement. Furthermore, inserted records
were 10% of respective original datasets. Fig. 8 shows
performance of record insertion executed on the different
data volumes, where the x-axis represents the data volume,
the y-axis represents execution time (ms), and chart column
represents algorithms used in the experiment. Clearly, our
proposed data-anonymization algorithm showed the best
performance; RED the worst. Furthermore, because EAC
considers information loss by examining all the clusters for
each record insertion, it executes more slowly and could
become inefficient with increasing volume of inserted data
and plural clustered released data. As noted in Section 4, for
record insertion, our proposed data-anonymization method
does not examine existing clusters (i.e., equivalence classes
(ECs)). If the number of distinct tuples for an SA exceeds
l-diversity of an inserted dataset(1T+), the method generates
new ECs and merges the existing ones. Otherwise, each tuple
in the inserted dataset (assuming fewer distinct tuples than
l-diversity) is inserted into an existing EC, which does not
require much data-processing time and so is very efficient.

C. RECORD DELETION PERFORMANCE
Herein, we compare record deletion performances achieved
using the existing EAC reference algorithm [20], anatomy-
based RED algorithm [9], our unfiltered ENC algorithm and
our ENC algorithm with an applied Cuckoo filter (ENCC).
The algorithms were executed on six different volumes of
data. To perform the experiments, we reduced data volume
by 1, 5, 10, 25, 50, and 100% containing approximately 10,
28, 57, 144, 288, and 577 k tuples, respectively, as shown
in Table 7. To delete records, we randomly selected 10% of
the tuples from respective datasets. Following data volume,
deleted records were also different sizes. In this experiment,
the l-diversity anonymity requirement was 10. Fig. 9 shows
execution times (ms) of the four record-deletion algorithms
obtained for the six different data volumes, where chart col-
umn represents the algorithms used, and the y-axis represents
execution time (ms).

Clearly, execution times of our ENC and ENCC algo-
rithms were dramatically shorter than those of RED and

TABLE 7. Dataset sizes.

FIGURE 10. Execution times of ‘‘ENCC’’ approach for 3 different l value.

EAC reference algorithms. Although the execution time of
ENCC algorithm (with the applied Cuckoo filter) includes
the updating time of Cuckoo filter, it showed the high-
est data-processing efficiency. As previously noted in
Section 4, probabilistic data structures such as Cuckoo fil-
ters can determine whether a given record is definitely
not represented in a given dataset or might be repre-
sented in the dataset. Although negative responses are abso-
lutely certain, positive ones are associated with a small
false-positive probability (FPP). Therefore, there can be
slight differences in probability between the ENCC algo-
rithm and other algorithms. Because the anatomy-based
RED algorithm [9] was applied, information loss of released
anonymized datasets was not considered. As previously
mentioned in Section 3, the EAC reference algorithm
[20] focused on information loss; therefore, it required
the most data-processing time in this experiment because
total information loss was calculated in every step of the
algorithm.

D. OVERALL ENCC PERFORMANCE
From results of the data-deletion performance experiments,
the Cuckoo-filtered (ENCC) showed the best data-processing
efficiency. Thus, we compared its data-processing effi-
ciency for different l-diversity anonymity requirements. The
experiment was conducted on three different volumes of
data, reduced by 1, 5, and 10% of the entire dataset and
l-diversity anonymity requirement of 10, 20, and 30. The
results are shown in Fig 10, where chart of column represents
l-diversity and y-axis represents execution time (ms). Clearly,
for increasing the l-diversity the ENCC algorithm increas-
ingly reduced execution time because, for increasing number
of tuples in an EC, the ENCC method executed fewer data
comparisons.
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VI. CONCLUSION
Method of preserving privacy of dynamically evolving data
sets are currently underdeveloped, especially for stronger pri-
vacy preservation requirements of l-diversity and t-closeness,
and thus are not significantly addressed in the literature.
Herein, we identified limitations of privacy-preservation
methods for dynamically evolving datasets. We also devel-
oped l-diversity data-anonymization algorithm.
In addition, we implemented a Cuckoo filter, which is

a probabilistic data structure that supports dynamic record
addition and deletion, in the proposed algorithm to overcome
aforementioned limitations and improve data-processing effi-
ciency. Experimental results demonstrated that our pro-
posed data-anonymization algorithm processed data more
efficiently than other conventional algorithms. The Cuckoo-
filtered algorithm was especially efficient, dramatically
reducing operation execution times while maintaining pri-
vacy of dynamically evolving datasets. In future studies,
we will focus on more stronger data-anonymization models,
such as t-closeness.
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