
Received June 24, 2019, accepted August 8, 2019, date of publication August 19, 2019, date of current version August 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936254

Lévy Flight Shuffle Frog Leaping Algorithm
Based on Differential Perturbation and
Quasi-Newton Search
XINMING ZHANG 1, ZIHAO FU1, HAIYAN CHEN 2, WENTAO MAO1,
SHANGWANG LIU1, AND GUOQI LIU1
1College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
2Department of Gynecological Tumor, Hubei Cancer Hospital, Wuhan 430079, China

Corresponding author: Haiyan Chen (cleverbear88@126.com)

This work was supported by the Key Research Projects of Higher Education Institutions of Henan Province, China,
under Grant 19A520026.

ABSTRACT Lévy flight Shuffle Frog Leaping Algorithm (LSFLA) is a SFLA variant and enhances the
performance of SFLA largely, however, it still has some defects, such as poor convergence and low efficiency.
So an improved LSFLA, namely, LSFLA based on Differential perturbation and Quasi-Newton search
(DQLSFLA), is proposed in this paper. Firstly, the way of updating only one solution which is the worst one
at every sub-iteration in LSFLA is replaced with an all-solution updating way in the subgroup to improve
the probability of obtaining the best solution, to omit one sorting step at every sub-iteration and the sub-
iteration number parameter setting, to reduce the computational complexity and to enhance the optimization
efficiency. Secondly, a random differential perturbation approach and an improved Lévy flight updating one
are created and used in the subgroup updating to form DLSFLA, that is, the first half frogs in the subgroup
use the random differential perturbation updating approach to improve the global search ability, and the last
half adopt the improved Lévy flight updating method to keep the advantage of the Lévy flight updating
method and overcome its defects. Finally, quasi-Newton local search is integrated into DLSFLA near the
end of the algorithm to improve the convergence speed. Experimental results on the complex functions from
CEC-2014 show that DQLSFLA’s convergence quality and optimization efficiency are much better than
LSFLA’s and that compared with quite a few other state-of-the-art algorithms, DQLSFLA has better
performance. The results on medical image enhancement and Quadratic Assignment Problem (QAP) also
show that DQLSFLA can solve the real word optimization problems better than LSFLA can.

INDEX TERMS Intelligent optimization algorithm, shuffled frog leaping algorithm (SFLA), Lévy flight,
quasi-Newton search, image enhancement, quadratic assignment problem.

I. INTRODUCTION
The Intelligent OptimizationAlgorithm (IOA) is an important
research field of artificial intelligence, which is designed
by simulating the mechanism of natural phenomena or bio-
logical survival, competition and natural selection and so
forth to solve optimization problems [1], [2]. IOA is good at
solving many real-world optimization problems [3]. Shuffled
Frog Leaping Algorithm (SFLA) proposed by Eusuff et al.
in 2003 [4] is a popular IOA. It makes full use of the
advantages of both Memetic Algorithm (MA) and Particle

The associate editor coordinating the review of this article and approving
it for publication was Sotirios Goudos.

Swarm Optimization (PSO), so it has some good character-
istics such as simple concept and easy implementation [5],
and it has attracted much attention and is used widely in
many applications[5], [6], [7]. However, SFLA also has
some defects, such as easy entrapment into local optima,
slow convergence and high computational complexity [7].
Thus, many scholars have done a lot of work to cope with
the problems and applied SFLA and its variants to sci-
ence and engineering fields, which mainly focuses on three
aspects.

1) Integration with other strategies and operators.
Li et al. [8] proposed a Modified SFLA with Extremal
Optimization (MSFLA-EO), and it enhanced the global
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search ability of SFLA by the jump step and inertia
component and introduced EO to obtain good explo-
ration ability. Ahandani and Alavi-Rad [9] proposed a
SFLA based on the Opposition-Based Learning (OBL)
and OBL was used to initialize the population to
improve the quality of the candidate solutions and the
OBL strategy was also used to diversify search moves
of SFLA and accelerated SFLA without premature
convergence in the search process. Liu et al. [10]
combined the chaotic operator and OBL operator to
produce the initial population. In addition, an adaptive
nonlinear inertia weight and a perturbation strategy
based on Gaussian mutation for global (local) best frog
were performed to ensure the balance of exploration
and exploitation. Liu et al. [11] presented a contin-
uous optimization algorithm based on SFLA, which
combined with the excellent characteristics of cloud
model that enhanced the accuracy and convergence
speed of SFLA. Sharma et al. [12] embedded a centroid
mutation strategy into the leaping operator of SFLA to
increase the diversity of population.

2) Hybridizing SFLA with other algorithms.
Sun and Zhao [13] proposed a hybrid swarm leaping
optimization algorithm based on PSO. The algorithm
overcame the shortcomings of SFLA, such as easy
falling into local optima and premature convergence.
Roy et al. [14] proposed a variant of SFLA, it embed-
ded the crossover operation of Genetic Algorithm (GA)
in the updating process of SFLA’s subgroup to improve
the population diversity and avoid falling into local
optima. Tang et al. [15] summarized the advantages
and disadvantages of SFLA and MA, and proposed a
novel MA called memetic frog leaping algorithm based
on SFLA, and it was applied to the parameter selection
of SVM.

3) Applications of SFLA and its variants to real-world
problems. Jiang et al. [16] presented a Cauchy
oscillation SFLA for updating the premise param-
eters of the adaptive neuro-fuzzy inference system
to improve the learning ability and prediction accu-
racy of the algorithm for electrical resistivity imag-
ing inversion. Pérez-Delgado [17] propsed a SFLA for
color image quantization. Computational results indi-
cate that the method can generate a quantized image
with low computational cost. Moreover, the quality
of the image generated is better than that of the
images obtained by several well-known color quan-
tization methods. Jiang et al. [18] used a hybrid LC
(Lévy and Cauchy mutation) attractor to enhance the
exploitation ability and a differential updating rule
was used to enhance the exploration ability to form
a novel SFLA. Then the novel SFLA was adopted
for improving the learning ability and inversion qual-
ity of wavelet neural network. Zhang et al. [19]
proposed an improved SFLA for solving the local
backlight dimming problem and preserving the image

quality perception with a certain low backlight power
consumption.
Through unremitting efforts made by a lot of experts

and scholars in the past years, the optimization perfor-
mance of SFLA has been improved largely. With the
increasing scale of problems in the real life and the strict
real-time limitations, however, the requirement for IOAs
is getting higher and higher, and better algorithms are
needed to solve these practical problems, so it’s impor-
tant and meaningful to improve SFLA and its variants
further [20].

In 2016, Tang et al. [21] presented a new SFLA variant,
that is, SFLA based on Lévy flight Shuffled Frog Leaping
Algorithm (LSFLA). The subgroup search mode in LSFLA
is a random way of short distance search and occasional
long distance search, in which the random search path obeys
the Lévy distribution. The short distance search improved
the local search ability of SFLA, and the occasional long
distance search reduced the possibility of falling into local
optima. In order to further improve the global search ability
of SFLA, the differential mutation strategy was used after
global information exchange. Although LSFLA improved the
optimization performance of SFLA largely, it still has some
problems, such as slow convergence, low search efficiency,
and high computational complexity especially when it solves
many complex problems.

To deal with the above problems mentioned, this
paper presents an improved LSFLA, that is, LSFLA
based on Difference perturbation and Quasi-Newton search
(DQLSFLA). Firstly, an all-solution updating way in the
subgroup replaces the updating way of one solution at
each sub-iteration in SFLA. The new updating way reduces
the computational complexity, saves setting one parame-
ter, the sub-iteration number, to improve the operability of
LSFLA. Secondly, a random differential perturbation updat-
ing method is proposed and used in the first half frogs
in the subgroup. Thirdly the Lévy flight updating method
is improved to apply to the last half frogs in the sub-
group to form DLSFLA. In this way, the population diver-
sity and the global search ability of LSFLA are improved.
Finally, the quasi-Newton local search is merged into
DLSFLA, that is, the quasi-Newton local search is used
near the end of the algorithm to improve the conver-
gence quality and the search precision of DLSFLA, thus
DQLSFLA is obtained. The above improvements balance
exploration and exploitation to enhance the whole optimiza-
tion performance. The graphical summary of this paper is
shown in Fig.1.

The rest of this paper is organized as follows:
Section 2 reviews the related work. The proposed algo-
rithm (DQLSFLA) is explained in detail in Section 3.
A lot of experiments are presented to verify DQLSFLA in
Section 4. Sections 5 and 6 describe DQLSFLA’s appli-
cation to image enhancement and Quadratic Assignment
Problem (QAP). Section 7 gives conclusions and future
work.
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FIGURE 1. Graphical abstract of this paper.

II. RELATED WORK
A. SFLA
SFLA simulates the frog foraging process to search the best
solution. In the optimization process, SFLA adopts a unique
search way, and this way is the combination of intra-group
search and global information exchange. The procedure of
SFLA can be roughly divided into the following 4 steps.
Step 1: Parameter setting and population initialization
SFLA sets the parameters such as the number of sub-

groups m, the number of sub-iterations NE and so on, and
randomly generates N frogs to form a population, and then
calculate the fitness value of each frog.
Step 2: Grouping
According to the fitness values, all the frogs are sorted in

descending order and divided intom subgroups. The first frog
is assigned to the first group, the second frog to the second
group, . . . , the m-th frog to the m-th group, the m+1-th frog
to the first group, and so on. Each group has n frogs.
Step 3: Intra-group search
The best frog and the worst one are found in the subgroup,

denoted by Xb and Xw, respectively. According to Eqs. (1)
and (2), a new solution is generated and only one solution
which is the worst in the subgroup is updated at a sub-
iteration.

S = rand ∗ (Xb − Xw) (1)

X ′w = Xw + S, Smin ≤ S ≤ Smax (2)

where S represents the updating step size of the frog; rand
is a uniformly distributed random number in (0, 1); Smin and
Smax are the maximum and minimum step sizes of the frog,
respectively;X ′w represents the new position of theworst frog.
If the fitness value of X ′w is better than that of

Xw, Xwis replaced by X ′w; otherwise X ′w is generated

by Eqs. (3) and (4).

S = rand ∗
(
Xg − Xw

)
(3)

X ′w = Xw + S, Smin ≤ S ≤ Smax (4)

where Xg is the best frog in the current population.
If the fitness value of X ′w is still not better than that of

Xw, then a new frog is randomly generated by Eq. (5) to
replace Xw.

X ′w = a+rand(1,D)⊗ (b− a) (5)

where a and b represent the upper and lower boundary vectors
of the decisive variables, respectively, and D represents the
dimention of the optimization problem. rand(1, D) is a ran-
dom vector of D components with each component between
0 and 1. ⊗ means an entrywise multiplication.
The subgroup is sorted to determine the worst frog and the

best frog. The subgroup search is executed repeatedly until
the predefined number of sub-iterations in each subgroup.
Then the next subgroup search is executed. An intra-group
search stops when all the subgroups finish their searches.
Step 4: Global information exchange
The global information exchange is the reorganization of

all the subgroups into a population of N frogs. The reor-
ganized population is sorted and then divided into several
subgroups according to the previousmethod. The above intra-
group search and global information exchange execute alter-
nately until the termination criterion is reached, and the best
solution is obtained.
The pseudo code of SFLA is shown as in Algorithm 1.

In Algorithm 1, nfe represents the current number of func-
tion evaluations, the Maximum Number of Function Eval-
uations (MNFE) is denoted by MNFE. l is the number of
sub-iterations

116080 VOLUME 7, 2019



X. Zhang et al.: DQLSFLA

From Algorithm 1, SFLA has the following good charac-
teristics. On one hand, SFLA approaches the best position
under the guidance of Xb or Xg, so SFLA has some local
search ability. On the other hand, when the two updating
methods do not get a better solution, a random solution is
used to replace the worst solution in the subgroup so SFLA
has some global search ability. In the framework of SFLA,
the process of grouping and merging the subgroups makes
the combination of intra group search and global information
exchange. It makes SFLA obtain search ability. Compared
with PSO, the SFLA’s model has stronger global search abil-
ity owing to the good framework of SFLA [10].

But SFLA has the following problems. The worst frogs
of subgroups in SFLA are guided by the best frogs in the
current subgroup or the global best frog. The best frogs in
each subgroup can be seen as an ‘‘attractor’’ that speeds up
the search. But it also increases the possibility of falling into
local optima. Moreover, SFLA only one solution which is the
worst one in the subgroup is updated at a sub-iteration, so the
updating efficiency (the efficiency of one-solution updating
way) is not high. In addition, the 3 different updating methods
need to be selected by some conditions, and each sub-iteration
needs sorting, which increases the computational complexity
of SFLA. The number of iterations of subgroups needs to
do a lot of experiments for tuning, so that its operability is
not strong. The way in which the frog generated randomly
to replace the worst frog may degenerate the population. All
these problems largely affect the optimization performance
of SFLA.

Algorithm 1 SFLA
1: Set the parameters and initialize the population ran-

domly, then calculate the fitness value of each frog
2: Set nfe=0
3: while nfe<MNFE do
4: Group the population
5: for i = 1 to m do
6: for j = 1 to l do
7: Update according to the judgment conditions
8: using Eq.s (1) to (5)
9: nfe = nfe+ 1 at each function evaluation
10: Sort the subgroup to determine Xb and Xw
11: end for
12: end for
13: Reorganize all the subgroups and sort the population

by their fitness values
14: end while
15: return Xg

B. LSFLA
In order to deal with the problems of SFLA, LSFLA was pro-
posed [21]. LSFLA made the following main modifications
to SFLA: (1) a Lévy flight updating strategy was adopted to
enhance local search ability of SFLA, and also improved the

global search ability to a certain extent. The Lévy flight updat-
ing method adopted short distance search and occasional long
distance search to generate a new solution. The short distance
search was used with a large probability, which improved
the local search ability of the algorithm, and the occasional
long distance search reduced the possibility of falling into
local optima. (2) A differential mutation operation was used
to improve the global search ability. (3)LSFLA removed the
cumbersome condition updating steps to simplify the search
process.

The mathematical description of updating method in
LSFLA is as follows:

step = u/|v|1/beta (6)

LevyFlight = rand ∗ z⊗ step (7)

X ′w = Xw + rand ∗ (LevyFlight ⊗ Xb − Xw) (8)

where u, v and z all obeys normal distribution with an average
of 0 and a standard deviation of 1. step represents the step size
of the Lévy distribution and beta is a manual parameter.

In order to enhance the diversity of the population and
further improve the global information exchange intensity,
a differential mutation method is used after the global infor-
mation exchange in LSFLA. This method can be described
as Eq. (9).

X ′i = X i + scale ∗ (X r − X s) (9)

where X i is updated based on the interaction of two other
frogs randomly selected in the frog population. X ′i is the
updated solution of X i. X r and X s are two different frogs
which are selected randomly. scale is a parameter, namely,
scaling factor, which is set to a random value between 0
and 1.

The steps of LSFLA are as follows:
Step 1: Set the number of frogs in the population N,

the number of subgroups m, and the number of sub-iterations
and etc. Initialize a frog population randomly.
Step 2: Calculate the fitness value of each frog and sort the

population in descending order by their fitness values.
Step 3:Divide the population intom subgroups by the same

way as SFLA.
Step 3.1: Find the worst frog Xw and the best frog Xb in

the current subgroup and generate a new frog by Eq. (8).
Step 3.2: Calculate the fitness value of the new frog,

adopt greedy selection to update the worst frog, and then
sort the subgroup by their fitness values. If the number of
sub-iterations is reached, jump to the next subgroup search,
otherwise return Step 3.1.
Step 4:Reorganize the subgroups into a population, update

every frog of the population according to Eq. (9) and calculate
the fitness value of each frog. And the greedy selection is used
to keep the better frogs.
Step 5: If the termination condition is satisfied, the best

solution Xg is output; otherwise sort the population in
descending order according to the fitness values and jump
to Step 3.
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III. DQLSFLA
A. LSFLA’S DEFECTS
LSFLA improves the performance of SFLA largely. From
the above steps of LSFLA, however, LSFLA still has the
followingmain problems: (1) LSFLAonly updates a solution,
i.e. the worst solution, at a sub-iteration like SFLA, so the
updating method has low efficiency. (2) When the subgroups
update at one sub-iteration, they need to sort the subgroups,
thus it results in much time complexity. (3) The number
of sub-iterations (the predefined parameter) requires a lot
of experiments for tuning and the operability is very weak.
(4) The differential mutation method in LSFLA affects the
convergence speed.

Aiming at the defects of LSFLA, this paper proposes a
series of new approaches, such as all-solution updating, dif-
ferential perturbation, dynamic scaling factor, quasi-Newton
local search and so on, to improve LSFLA.

B. ALL-SOLUTION UPDATING WAY
In LSFLA, only the worst solution of subgroups is updated
at a time like SFLA. This may result in some frogs not being
updated. If every solution in a subgroup needs to be updated,
it is necessary to increase the sub-iteration number (the con-
trol parameter, needing careful tuning) in the subgroup and
that increases the computational complexity, too.

Inspired by the updating way of other IOAs such as PSO
and Differential Evolution (DE), the one-solution updating
way of SFLA or LSFLA is replaced by an all-solution updat-
ing way in the subgroup. The all-solution updating way has
the following advantages over those of LSFLA and SFLA:
(1) All the solutions in the all-solution way may be updated
to improve the solution updating efficiency and the probabil-
ity of obtaining the better solution. (2) This way omits the
sub-iteration parameter setting to improve the operability of
LSFLA. (3) It also omits one sorting step at each sub-iteration
to reduce the computational complexity and to improve the
optimization efficiency. (4) This waymay adopt parallel com-
puting to fasten the running speed.

C. IMPROVED LÉVY FLIGHT UPDATING METHOD
In LSFLA, a new solution is generated by Eq. (8) to update the
worst solution, but it is not good for the all-solution updating
way to use Eq. (8) to update all the solutions of the subgroup.

In Eq. (8), the new frog is only influenced by Xb. It is
not make full use of the information of other frogs in the
subgroup. Inspired by [22], an improved Lévy flight updating
method is that Xb is replaced by a frog selected randomly in a
new way. The new selection way can be described as follows.

b = ceil ((j−1) ∗ rand) (10)

where ceil is rounded-up operation and j is the index of the
current frog to be updated and j =1,2, . . . , n. Owing to the
sorted subgroups, Eq. (10) can select the better frogs than the
j-th frog. From Eq. (10), the maximum and minimum value
of b is j-1 and 1, respectively, that is, the range of b is between
1 and j-1. What’s more, the fitness value of Xb is not worse

than that of X j, thus Xb is called as a demonstrator of X j.
So the improved Lévy flight updating method is described as
in Eq. (11).

X ′j = X j + rand ∗ LevyFlight ⊗
(
Xb − X j

)
(11)

Compared with Eq. (8), the improved Lévy flight updat-
ing method has the following differences (see Eq. (11)): 1)
Although both Eqs. (8) and (11) adopt Xb to generate new
solutions, Xb in the former is the best frog of the subgroup,
while that of the latter is the better frog selected randomly,
and the new selection way used in Eq.(11) to generate new
solutions can raise the diversity of the population to avoid
falling into optima. 2) Owing to adoption of the all-updating
way, Eq. (11) is used for every frog of the subgroup to have a
high probability of obtaining better solutions.

D. DIFFERENTIAL PERTURBATION STRATEGY
Owing to the frogs sorted in descending order by their fit-
ness values, the front frogs in the sorted queue have rela-
tively better fitness values in each subgroup. According to
Eq. (11), the difference between Xb and X j (the frog to
be updated) is relatively small. If Eq. (11) is adopted for
the front frogs, the new frog may almost have the same
features as the original frog, and even the new frog may
remain unchanged. So that is not beneficial to exploration.
In addition, from Eq. (10), j cannot be 1 and the front frogs
have few demonstrators and the search efficiency is not high
for the front frogs. In addition, although the improved Lévy
flight updating method has improved the global search ability
to some extent, there is still the possibility of falling into local
optima. So a differential perturbation strategy is introduced to
further increase the diversity of the population and improve
the exploration ability.

Inspired by DE[23], a random differential perturbation is
embedded in LSFLA. In the process of updating the subgroup
solutions, the first half frogs in the subgroup use a random
differential perturbation updating method, while the last half
frogs adopt the improved Levy flight updating method.

Therefore, by using the random differential perturbation
method with better global ability, the diversity of the popu-
lation increases. Thus the global search ability of LSFAL is
improved. The differential perturbation operation is as shown
in Eq. (12).

X ′j = X j + w ∗ (X r − X s) (12)

where X ′j is a new individual. X r and X s are frogs selected
randomly. X r , X s and X j are different from each other. w is
the scaling factor, in this paper expressed as Eq.(13).

w = (0.5+ 0.5 ∗ rand) (13)

where w takes a random number between [0.5, 1]. From
Eq.(12), two individuals selected randomly from subgroups
get differential vectors through difference calculation. Then a
random w weight is given to the difference calculation, and it
is added to the individual to generate diversified information.
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In addition, the merits of the updating method of LSFLA
remained unchanged in the last half of the subgroup. Accord-
ing to Eq.(11), every frog in the last half of the subgroup
may approach Xb, so the updating direction is toward the
better solution. This allows the frogs in the subgroup to
converge quickly. The above strategy improves the whole
optimization ability of LSFLA. The corresponding pseudo
codes are shown in Algorithm 2
The random differential perturbation strategy and the

improved Lévy flight updating method increase exploration
ability and some exploitation of LSFLA. According to intel-
ligent optimization theory, the exploitation and exploration
must be balanced well. So a quasi-Newton local search
method is applied.

Algorithm 2 All-solution updating way
1: for i = 1 to m do
2: for j = 1 to n do
3: if j<n/2 then
4: Perform the random differential perturbation
5: else
6: Perform the improved Lévy flight
7: end if
8: end for
9: end for

E. QUASI-NEWTON LOCAL SEARCH
Quasi-Newton search is one of the most effective methods of
local search. It was proposed by Davidon in 1950s and has
been developed rapidly since that.

The Newton search uses the curvature information pro-
vided by the Hesse matrix to solve the nonlinear optimiza-
tion problem, but the computation complexity of the Hesse
matrix is high. Since the Hesse matrix of some objective
functions is difficult to calculate or even difficult to find out,
the quasi-Newton algorithm was proposed [24]. The quasi-
Newton method overcomes the defects of Newton’s method.
It constructs an approximate Hesse matrix without using
the second-order partial derivative, and increases the one-
dimentional search along the Newton direction and has the
characteristics of fast convergence. The steps of the quasi-
Newton search are as follows [25].
Step 1: Given initial value X0 and precision threshold ε,

and set D0 =I,k=0.
Step 2: Determine the search direction dk = −Dk ∗ gk .
Step 3:Calculate step length λk , and Sk = λk ∗dk , Xk+1 :=

Xk + Sk .
Step 4: if ||gk+1||<ε,the algorithm is ended.
Step 5: Calculate yk = gk+1 − gk .

Step 6: Calculate Dk+1 = Dk +
SkSTk
STk yk
−

DkykyTk Dk
yTk Dkyk

Step 7: Set k = k + 1 and jump to step 2
where gk represents gradient, λk is the step size of the one-
dimentional search, and I is the unit matrix.

The quasi-Newton method has been integrated with many
IOAs, for example, Chen et al. [26]combined it with PSO
to improve the local search ability of PSO. But in [26] the

Quasi-Newton method was used in PSO throughout the
search process, which increased the time complexity of the
algorithm. In this paper, the quasi-Newton method is used
near the end of DLSFLA which is the ninety-seven percent
of MNFE. Fast convergence is achieved on the basis of the
obtained high quality solutions, which improves the search
accuracy of the algorithm, too.

F. OTHER IMPROVEMENT
In addition to the improvements described above,the dif-
ferential mutation of LSFLA is modified to enhance the
performance. In this paper, the random differential mutation
in LSFLA is changed to a dynamic one so that the search
ability can be enhanced that is, the parameter scale is changed
from the random value to a dynamic value. The expression is
shown in Eq. (14).

scale = 1− nfe/MNFE (14)

The dynamic scaling factor strategy avoids the cumbersome
steps of parameter setting. The scaling factor is linearly
declined in Eq. (14), and scale is relatively large in the
early stage, which enhances the exploration ability of the
algorithm. In the later stage, scale is smaller and the exploita-
tion ability of the algorithm is improved so that the whole
performance of the algorithm is improved further.

G. DQLSFLA PROCESS
DQLSFLA adopts the all-solution updating method, the dif-
ferential perturbation strategy and the quasi-Newton local
search and so on. Thesemodifications balance the exploration
and exploitation better, and the better optimization perfor-
mance is obtained.

The steps of DQLSFLA are as follows:
Step 1: Set the parameters, and initialize a population

randomly.
Step 2: Calculate the fitness value of each frog, and the N

frogs are sorted in descending order according to their fitness
values.
Step 3:Divide the population intom subgroups by the same

way as SFLA, each subgroup is composed of n frogs.
Step 4: In each subgroup the first half frogs are updated by

the random differential perturbation strategy, and the last half
frogs of subgroup are updated by the improved Lévy flight
updating method. Calculate the fitness values of each frog in
parallel and the greedy selection is utilized to retain the better
solutions.
Step 5: Reorganize all the subgroups into a population,

the differential scaling factor is calculated by Eq. (14) and all
the individuals in the population adopt the differential muta-
tion with a dynamic scaling factor for information exchange.
Execute the boundary control, evaluate the fitness for each
frog and sort the population in descending order.
Step 6: If the termination condition is satisfied, the iteration

is stop; otherwise jump to Step 3.
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TABLE 1. Detail of the state-of-the-art comparison algorithms.

Step 7: Near the end of the algorithm, the quasi-Newton
method is used to improve the search accuracy and then
output the best solution.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT SETTING
In order to verify the optimization efficiency and convergence
quality of DQLSFLA, a lot of experiments has been con-
ducted on the complex functions from CEC2014 test set and
some real-word problems. These complex functions can be
classified into several different types. f1 − f3 are unimodal
functions, f4 − f16 are multimodal functions, f17 − f22 are
hybrid functions, and f23− f30 are composite functions. More
details of CEC2014 test set refer to [27]. All the experiments
are performed on the PC with 3.10GHZ CPU and 4GB RAM
memory under a Microsoft Windows 7 operating system.
The software for Wilcoxon signed rank test is IBM SPSS
Statistics 19, and the programming language for all the exper-
iments is MATLAB R2014a.

In this paper, some statistical methods are used to evalu-
ate the performance of an optimization algorithm. Through
some independent runs, the average values (Mean), standard
deviation (Std) and average running time (second/s) of the
algorithm are recorded. For a minimum problem, the less the
Mean value is, the better the performance of the algorithm
is, the less the Std value is, the stronger the stability of the
algorithm is, and the shorter the running time is, the faster
the running speed is. The best values are in bold font in all
the result tables.

DQLSFLA is compared with the comparison algorithms,
which are described in Table 1. POBL-ADE is a variant of
DE. MOMPSO, GLPSO, IILPSO and DNS-PSO are vari-
ants of PSO. RW-GWO and COGWO2D are variants of
Grey Wolf Optimization (GWO). cNrGA is a variant of
GA. LXBBO is a variant of Biogeography-Based Optimiza-
tion (BBO). The data of POBL-ADE, LX-BBO MOMPSO,
RW-GWO, COABC, COGWO2D, GLPSO, cNrGA, IILPSO,
and DNS-PSO are from [28]–[37] respectively.

B. EFFECT OF EACH IMPROVEMENT OF DQLSFLA
To demonstrate the contribution of each improvement to
the optimization performance of DQLSFLA, DQLSFLA is
compared with the 4 incomplete versions of DQLSFLA. The
comparison is made on the 10-dimentional CEC2014 test,
the parameters of DQLSFLA and its incomplete versions

FIGURE 2. Comparison results with the incomplete algorithms (D = 10).

are set the same: the number of frogs (N) is 50, MNEF =
10000*10, the number of subgroups(m) is 5. QLSFLA is
an incomplete DQLSFLA without differential perturbation
strategy. DQLSFLAuw is an incomplete DQLSFLA with-
out dynamic weight. DLSFLA is an incomplete DQLSFLA
without quasi-Newton local search. ILSFLA only uses the
improved Levyflight strategy. The comparison results are
shown in Fig.2.

From Fig. 2, DQLSFLA obtained 13 times ranking the
first, LSFLA obtains 2 times ranking the first, QLSFLA,
DQLSFLAuw, DLSFLA and ILSFLA obtain 6, 5, 5 and
4 times ranking the first, respectively. By calculation,
DQLSFLA reachs the smallest average ranking value which
is 1.93. The average ranking values of incomplete algorithms
are better than that of LSFLA but inferior to DQLSFLA’s.
Compare with LSFLA and, ILSFLA obtains the better aver-
age ranking values, it proves that the novel Levyflight strategy
of Subsection 3.3 is effective. Compared with the incomplete
versions of DQLSFLA, the comparison results indicate that
DQLSFLA has the best optimization performance and these
improvements are indispensable and effective.

C. COMPARISON OF DQLSFLA WITH LSFLA
To be fair for comparison, DQLSFLA and LSFLA adopt
the same values for the common parameters, such as
dimensions (D), independent runs (IR) and MNFE. Accord-
ing to [27], IR = 51 and MNFE = 10000*D. The
other parameters of DQLSFLA is set as follows. When
D is 30,N is 40.WhenD is 50,N is 50. Andm is 5. In addition,
the detailed settings of LSFLA refer to the corresponding
references [21].The experimental results of DQLSFLA and
LSFLA are listed in Tables 2 and 3.
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TABLE 2. Comparison results with LSFLA and the other state-of-the-art
IOAs (D = 30).

From Table 2, on the 30-dimentional functions,
DQLSFLA’s Mean values are better on most cases. Just on
f24 and f27, DQLSFLA’s Mean value is inferior to LSFLA’s.

TABLE 3. Comparison results with LSFLA and the other state-of-the-art
IOAs (D = 50).

LSFLA and DQLSFLA have the same Mean value and Std
value only on f23, f25 and f28. On the other cases, the Mean
values and Std values of DQLSFLA are less than those of
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FIGURE 3. Runtime chart of DQLSFLA and LSFLA.

LSFLA, it proves that DQLSFLA has much better optimiza-
tion performance than LSFLA has on these functions.

From Table 3, DQLSFLA also has better performance
on the 50-dimentional functions. LSFLA obtains the better
results on f28, and has the same Mean values and Std values
on f23, f25, and f27 as DQLSFLA.On the other cases, theMean
values and Std values of DQLSFLA are better than those
of LSFLA, indicating that DQLSFLA has better optimiza-
tion performance on these functions. From the experimental
results on the 30- and 50-dimentional functions, show that the
all-solution updating, differential perturbation, dynamic scal-
ing factor, quasi-Newton local search of DQLSFLA improves
the performance of LSFLA.

D. ANALYSIS OF TIME COMPLEXITY
In this section, the time complexity of DQLSFLA is analyzed.
In an algorithm, the evaluation of the objective function is the
most time-consuming part of the whole algorithm. In all the
experiments, MNFE is used as the termination condition for
DQLSFLA and LSFLA, so the part of the function evalua-
tion is not discussed. It should be pointed out that although
the evaluation of the objective function is the most time-
consuming operation, the time-consuming of other operations
also affects the speed of the whole algorithm.

Firstly, the subgroups need to be sorted after every sub-
iteration in LSFLA. Suppose that the number of sub-iterations
is l, N is the number of frogs in the population, m is the
number of subgroups. If the simple sorting is used for sub-
groups, and the subgroup is already sorted and at most one
element is updated, the computational complexity of simple
sorting is O

(
logn2

)
. Then the computational complexity of

sorting for all the subgroups is l*m*O
(
logn2

)
. So the totally

computational complexity of all the subgroups isMNEF/(l*m
+ N)* l*m*O

(
logn2

)
, DQLSFLA omits the sorting step of all

the subgroups, which reduces the computational complexity.
Secondly, the computational load of the Lévy flight updat-

ing method is much high, so the computational complexity
of the algorithm will increase if the Lévy flight updating
method is used frequently. Assume that the computational
complexity of the Lévy flight updating method is O (Lévy).

Then the computational complexity is MNFE/(l*m + N)*O
(Lévy) in LSFLA. In DQLSFLA only half of frogs use the
improved Lévy flight update methodwith high computational
complexity. The computational complexity of DQLSFLA is
MNFE/(2N)/2*O (Lévy) and less than that of LSFLA. This
improves the global search ability and reduces the computa-
tional complexity of LSFLA.

Finally, DQLSFLA uses quasi-Newton local search and it
will increase the computational complexity of DQLSFLA,
but quasi-Newton local search is used near the end of the algo-
rithm. The average runtime comparison is showed as Fig. 3.
From Fig. 3, DQLSFLA takes less runtime than LSFLA does,
Although the quasi-Newton local search increases the com-
putational complexity of DQLSFLA to a certain extent, this
increase is a little bit, and from the convergence analysis in
Section 4.5, the quasi-Newton local search greatly increases
the convergence speed in the later stage of DQLSFLA.

From Fig. 3, When D is 10, LSFLA’s average runtime
is 3.4 seconds, while DQLSFLA’s is 2.28 seconds. They
cost 13.4 and 9.56 seconds on the 30-dimentional func-
tions, respectively, and LSFLA’s (32.2 seconds) is larger than
DQLSFLA’s (22.1 seconds) on the 50-dimentional functions.
It indicates that DQLSFLA reduces the computational com-
plexity of LSFLA and fastens the running speed.

E. CONVERGENCE PERFORMANCE
To investigate the convergence quality of DQLSFLA,
the experiments for convergence are conducted to compare
DQLSFLA and LSFLA in this section. To speak concisely,
some representative 10-dimentional functions of different
types are selected to explain in detail. Fig. 4 shows the
comparison results. On f1-f4, f25 and f26, the convergence
speed of DQLSFLA is faster than that of LSFLA obviously.
The initial convergence speed on f5-f12 lags behind LSFLA’s,
but DQLSFLA converges quickly after quasi-Newton search
near the end of DQLSFLA, thus DQLSFLA obtains better
convergence performance than LSFLA does. DQLSFLA and
LSFLA have the same convergence speed on f23. On f28,
the convergence quality of LSFLA is better thanDQLSFLA’s.
Shown as in Fig. 4, owing to adoption of strategies such
as quasi-Newton search, the convergence performance of
DQLSFLA is better than that of LSFLA in general.

From the above analysis, DQLSFLA can solve the prob-
lems of low efficiency and high computational complexity of
LSFLA through the all-solution updating method, improved
Lévy flight updating way and differential perturbation
strategy.

F. COMPARISON WITH THE OTHER IOAS
In order to further verify the performance of DQLSFLA, it is
compared with the state-of-the-art algorithms in this section.
These state-of-art algorithms are described in Table 1. The
data of B-BBO are from [29].The parameters setting of
DQLSFLA is referred to Section 4.3. The detailed parameters
settings of the comparison algorithms are referred to the
corresponding reference. For these comparison algorithms,
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FIGURE 4. Convergence curves of DQLSFLA and LSFLA.

MNEF and IR are the same as the recommended experiment
settings in [27] for fair comparison. The comparison results
of these algorithms on the 30- and 50-dimentional functions
are shown in Tables 2 and 3, respectively.

To intuitively compare the optimization performance of
DQSFLA and the comparison algorithms, these algorithms
are ranked according to the results obtained. The ranking
criterion is that, these algorithms’ Mean values are compared
on each function, the less the Mean value is, the higher the
ranking is. If some algorithms obtain the same Mean values,
then their Std values are compared, the less the Std value is,
the higher the ranking is. If some algorithms obtain the same
Mean and Std values, their rankings are equal.

From Table 2, on the 30-dimentional functions, DQLSFLA
obtains ranking the first on f1 and f2 (unimodal functions).
The Mean values DQLSFLA obtains on f1 and f2 are

5.49E + 00 and 1.93E + 01 respectively, and they are
better than all the comparison algorithms’ obviously. On f3
POBL-ADE obtains the better Mean value than the other
algorithms do. On f4-f16 (multimodal functions), DQLSFLA
obtains ranking the first on f4, f7 and f14. It is the second
only to POBL-ADE on f6, f9 and f11. DQLSFLA still has
outstanding performance on f17-f30 (composite and hybrid
functions). On f17, f18, f21-f23, f25 and f28, DQLSFLA obtains
ranking the first, and the Mean values of LSFLA are equal to
those of DQLSFLA on f23, f25 and f28. On the 30-dimentional
functions, the results of AvgRank show that DQSLFAobtains
ranking the first(2.43) and the most significant optimiza-
tion performance among all the algorithms. From Tables 3,
DQLSFLA still performs better than the comparison algo-
rithms do on the 50-dimentional functions. From the com-
parison results on the 50-dimentional functions, the same
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FIGURE 5. Average ranking graph of DQSFLA and the comparison
algorithms.

FIGURE 6. Ranking statistics of DQSFLA and the comparison algorithms
on D = 50.

conclusion also can be obtained as on the 30-dimentional
functions.

Fig. 5 shows the average rank statistics on the
30-dimentional functions. It can be seen intuitively from
Fig. 5 DQLSFLA is ranking the first, with the best values
2.43 on the 30-dimentional functions. Fig. 6 shows ranking
statistics of DQSFLA and the comparison algorithms on the
50-dimentional functions. From Fig. 6, DQLSFLA obtains
13 times ranking the first, 3 times ranking the second, 3 times
ranking the third, 6 times ranking the fourth, 4 times ranking
the fifth, 1 time ranking the sixth and no ranking the seventh.
LSFLA obtains 4 times ranking the first, 2 times ranking the
second, 2 times ranking the third, 1 times ranking the fourth,
4 times ranking the fifth, 11 time ranking the sixth and 6 times
ranking the seventh and so on.

Speaking generally, DQLSFLA’s ranking results are bet-
ter than those of the comparison algorithms, indicating
that DQSFLA has better performance than the comparison
algorithms have on the 30- and 50-dimentional functions.

G. ANALYSIS OF PERFORMANCE
To intuitively compare the performance of all the algorithms,
the performance profiles are plotted for the 10-, 30- and
50-dimentional functions in Fig. 7. The performance profile

FIGURE 7. Performance profile on the 10 −, 30 − and 50-dimentional
functions.

was introduced as a tool for evaluating and comparing the
performance of the set of solvers S on a test set P [38]. In this
paper, the ratio of the Mean value and the minimum Mean
value of any solver in S is used as the performance metric.
The performance ratio can describe as follows:

rp,s =
tp,s

min{tp,s : s ∈ S}
(15)

The performance of solver s on any p ∈ Pmay be obtained,
but we would like to obtain an overall assessment of the
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performance of the solver. Then ps (τ ) is defined as:

ps (τ ) =
1
np
size

{
p ∈ P : rp,s ≤ τ

}
(16)

where ps (τ ) is the probability for solver s ∈ S that a
performance ratio rp,s is within a factor τ ∈ R of the best
possible ratio. The function ps is the (cumulative) distribution
function for the performance ratio. R→[0,1] for a solver
is a no decreasing, piecewise constant function, continuous
from the right at each breakpoint. The value of Ps (1) is
the probability that the solver will win over the rest of the
solvers. The robustness of the solver is measured by Ps (τ )
for τ sufficiently large [39]. If the number of wins is only
interested, thus we need only to compare the values of Ps (1)
for all of the solvers [38].

Form Fig. 7, DQLSFLA has the most wins compared with
the comparison algorithms. When D = 10 and D = 30,
the probability that DQLSFLA is the winner on the given
functions is about 0.65 for τ = 1. When D = 50, the proba-
bility that DQLSFLA is the winner on the given functions is
about 0.7 for τ = 1. For large values of τ , DQLSFLA can
solve a large percentage of the tested functions.

H. WILCOXON SIGNED RANK TEST
Wilcoxon signed rank test is a nonparametric test
method [40]. It is used to test whether the differences between
the two samples are significant. In this section, it is used to test
the performance of DQLSFLA, LSFLA and the other com-
parison algorithms. The data on the 30- and 50-dimentional
are from Tables 2 and 3. Where R+ refers to the sum of ranks
for the problems in which the first algorithm outperforms the
second, and R− refers to the sum of ranks for the opposite.
When the performance of the first algorithm is the same as
the second algorithm, the corresponding ranks are split evenly
to R+ and R−. The p values can be computed according to
the R+ and R− values. w/t/l means DQLSFLA wins on w
functions, ties on t functions and loses on l functions. The
results of the Wilcoxon signed rank test on the 10-, 30- and
50-dimentional functions are shown in Table 4.

From Table 4, DQLSFLA shows a significant performance
over LSFLAwith a level of significance α = 0.01. In general,
DQLSFLA shows a significant performance over the compar-
ison algorithms with a level of significance α = 0.05, except
for RW-GWOand cNrGA. The two algorithms provide strong
competition to DQLSFLA on the 30- and 50-dimentional
functions, respectively.

V. APPLICATION TO MEDICAL IMAGE ENHANCEMENT
A. PRINCIPLE OF IMAGE ENHANCEMENT
Image enhancement is used to improve the visual effect of
an image and it’s beneficial to subsequent processing and
analysis. Medical images generally have characteristics such
as ambiguity, non-uniformity, anatomy complexity of the
human body and irregularities of the shape of the tissues
and organs. So it’s very important and necessary for medical
images to be enhanced before their subsequent processing.

TABLE 4. Results of wilcoxon signed rank tests.

DQLSFLA is applied to medical image enhancement by
increasing the contrast and sharpening the features in this
section. The description of image enhancement is below.

I (i, j) = k ∗ A ∗ [f (i, j)− c ∗ m(i, j)]

∗ (σ (i, j)+ b)+ m(i, j)a (17)

where I represents the enhanced image. f is the input image.
m(i, j) is the local mean of the pixel of the coordinate (i,j) in
the image over an n × n window, and σ is the local standard
deviation of the grayscale image. A is the average value of all
points of the grayscale image. a, b, c, and k are parameters
of the enhancement function and any small variation in their
values produces a large variation in the processed image and
thus the value of these parameters should be precisely set. The
approximate ranges of a, b, c and k are defined as [0, 1.5],
[0, (A/2)], [0, 1], and [0.5, 1.5], respectively [41].

B. IMAGE ENHANCEMENT EVALUATION CRITERIA
There are different methods and criteria for evaluating the
quality of enhanced images. In this paper, the evaluation func-
tion F(Z) of image enhancement quality in [42] is adopted.
F(Z) is a function defined by factors such as the performance
measures entropy value, sum of the edge intensities, and
edge pixels. The enhanced quality of the image is evaluated
by comparing F(Z) values. The larger the value of F(Z) is,
the richer the image details are, and the better the image
enhancement is [42]. The description is below.

F(Z) = log (log (E (I (Z)))) ∗ ne ((I (Z)))

∗H (I (Z))
/
(M ∗ N ) (18)

H (I (Z)) = −
∑255

i=0
ei (19)

where the parameters to be optimized a, b, c and k are given
by the species Z = (a, b, c, k). E(Is(Z)) is the intensity of
the edge detected by the edge detection detector. ne is the
number of pixels detected by the edge detector. H(I(Z)) is the
entropy of the I(Z). If hi is not equal to 0, ei = hilog2(hi),
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TABLE 5. Comparison results of DQLSFLA and LSFLA on F(Z).

otherwise ei = 0. hi is the probability of occurrence of the
ith intensity value of the enhanced image. M and N are the
number of pixels in the horizontal and vertical direction of
the image.

C. EXPERIMENTAL RESULTS
The optimization problem considered in this section is to
solve the image enhancement problem by DQLSFLA. Our
goal is to maximize the objective function in order to enhance
the contrast by maximizing the number of pixels in the edges,
increasing the overall edges intensity and the entropy mea-
sure[43]. DQLSFLA and LSFLA are used to parameterize
the image enhancement function optimally. The experimental
environment is the same as in Section 4.1. The performance of
image enhancement using DQLSFLA is validated by apply-
ing it to a human chest bone fluoroscopic image and a human
blood vessel image, and two images are chosen from a lot of
experimental images as two examples to illustrate the effec-
tiveness of DQLSFLA. The parameters of the two algorithms
is N = 100, the maximum number of iterations (MAXIter) is
500, and IR = 10. Table 5 lists the values of the evaluation
function F(Z).
From Table 5, the Mean values of DQLSFLA on the two

images are better than that of LSFLA. The Mean value of
DQLSFLA on Blood tissue is 133.60, while the Mean value
of LSFLA on the same image is 129.23. The difference
between the Mean values is 4.37. In Chest, the minimum
value of DQLSFLA is 181.23, while the maximum value of
LSFLA is 181.17. Theminimum value of DQLSFLA is larger
than the maximum value of LSFLA. Comparative experi-
mental results on medical images demonstrate the efficiency
and effectiveness of DQLSFLA. The comparison between
the original and enhanced images is shown in Fig. 8. From
Fig. 8, compared with the original images, the backgrounds
of enhanced images become weaker, and the textures of
bone and blood vessel are more clearly highlighted. This
indicates that adopting the parameter optimization algorithm
enhances the contrast and detail of the medical image by
maximizing F(Z).

VI. QUADRATIC ASSIGNMENT PROBLEM
Quadratic Assignment Problem (QAP) was proposed by
Koopmans et al. in 1957. Due to its wide range of appli-
cations, many scholars are committed to the study on it.
Many real-world problems include hospital layout problem,
traveling salesman problem and campus planning problem
and etc. can be transformed into QAP, so it is very important
and meaningful to solve QAP.

FIGURE 8. Original images and enhanced images.

A. MATHEMATICAL DESCRIPTION OF QAP
QAP can be described as the problem of assigning a set of
facilities to a set of locations with given distances between
the locations and given task flows between the facilities.
A facility corresponds to only one location and vice versa,
and all facilities must be assigned.

The distance matrix between locations of QAP is denoted
byD= [dij]n∗ n. The distance between each pair of locations
is denoted by dij which represents the distance from location
i to location j.W= [wπ (i)π (j)] represents the task flow matrix
between facilities.π = [π (1), π(2), . . . , π (n)] represents an
allocation scheme.Where π (i) andπ(j) represent the facilities
place at position i and j, respectively. Then QAP can be
described below.

minmize
π∈5

: f (π ) =
∑n

i=1

∑n

j=1
dijwπ (i)π (j) (20)

where 5 is a set of all allocation schemes.

B. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, DQLSFLA is used to solve QAP. Many
experiments are conducted on a lot of data. To illustrate the
points concisely, two sets of locations (Set1 and Set2) and a
set of flow matrix data are selected as examples to explain
the ability of DQLSFLA to solve QAP. The comparison
algorithms are LSFLA, IPSO and IFA. Set1, codes used to
solve this problem, and IPSO and IFA are directly from [44].
Set2 is generated randomly. The coordinates of Set1 and
Set2 are presented in Table 6. The experimental environment
is the same as Section 4.1 and the common parameters of the
4 algorithms are set as follows: N = 20, MAXIter = 4000,
IR = 50 and D = 40. In our experiment, there are 40 loca-
tions and 20 facilities, and a 20*20 flow matrix is presented
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TABLE 6. The coordinate of the locations (Set1 and Set2).

TABLE 7. Flow matrix of 20 facilities.

TABLE 8. Comparison results with the other IOAs on QAP.

in Table 7. Our goal is to select 20 locations out of 40 loca-
tions and determine an allocation scheme to minimize the
objective function. In order to make full use of the advan-
tages of DQLSFLA and comparison algorithms for solving
continuous optimization problems, the search space of these
algorithm is still defined in continuous space when solving
QAP, the search range is limited to [0, 1]. The following
mapping about the continuous search space and the solution
space of QAP is defined. Assume that a solution generated by
DQLSFLA is X = [x1, x2 . . . x39, x40], sort the components
and get the index number of the top 20 components. That is,
the first facility is assigned to the location of the first index
number, and the second facility is assigned to the location of
the second index number, the twentieth facility is assigned to
the location of the twentieth index number. More details for
this model can be seen form [44]. The comparison results are
entered in Table 8.

From Table 8, the Mean value of DQLSFLA is -
1089820.49 on Set1. The Mean value of DQLSFLA is better

FIGURE 9. Contribution graphs corresponding to the best results of
DQLSFLA.

than that of the comparison algorithms. The Std value of
DQLSFLA is 15633.68. It’s also the best value among these
algorithms’ Std values. On Set2, DQLSFLA obtain the best
Mean value, and the Std value is only slightly worse than
LSFLA’s. All in all, DQLSFLA has better performance than
the comparison algorithms have on QAP.

The contribution graphs corresponding to the best results
of DQLSFLA on Set1 and Set2 are shown in Fig. 9. The
circles represent the locations on QAP, where the red ones
represent the best locations selected from 40 locations. The
lines represent the relationship of two locations, namely the
task flows of facilities form one to another.

VII. CONCLUSION AND FUTURE WORK
In this paper, an improved LSFLA(DQLSFLA) is proposed to
solve the defects of LSFLA, such as slow convergence speed
and low optimization efficiency. Firstly an all-solution updat-
ing way is created and replaces the one-solution updating way
of LSFLA to improve the search efficiency, avoid sorting
each subgroup and reduce the computational complexity.
Secondly a differential perturbation strategy and is adopted
to improve the exploration ability. Thirdly an improved Lévy
flight updating method is formulated to keep the advantages
of Lévy flight updating way and apply it to the all-solution
updating approach. Finally, the quasi-Newton local search
method is merged into the improved algorithm near the end
of the iterations to obtain better search accuracy and conver-
gence quality. The experimental comparisons not only prove
the effectiveness of the improvements, but also prove that
DQLSFLA is better than quite a few state-of-the-art algo-
rithms. Moreover, the results on medical image enhancement
and QAP also prove that DQLSFLA can solve the problems
better. In future, DQLSFLA will be applied to other real-
world optimization problems.
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