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ABSTRACT Usually, the synchronization studies of two or multiple exciters are focused on the single
rigid frame (RF), but that mounted on different RFs is still a problem in engineering practice. This study
attempts to solve this issue by considering a dynamical model with double RFs including two pairs of
exciters, in which each pair of exciters is distributed on different RFs. The synchronous and stable states of the
system in different resonant regions are discussed in detail in present work. First, the mathematical modeling
of the system is carried out, and the relative motion differential equations of two RFs and their responses
are achieved by using the transfer function method. Then, the theoretical conditions of implementing
synchronization and stability of the system are derived. The coupling dynamic characteristics of the system,
including frequency-amplitude relationships, coupling torques, stable phase differences, synchronization
and stability abilities, and the phenomenon of the diversity of nonlinear system, are numerically investigated.
Finally, simulations are performed by using the Runge-Kuttamethod to validate the theoretical and numerical
characteristic analysis results. In the sub-resonant region with respect to the natural frequency with regard
to the relative motion between two RFs, the stronger and more stable positive superposition of vibration
amplitude between two RFs can be realized, which is the desire in engineering.

INDEX TERMS Synchronization, stability, exciters, resonant, motor.

I. INTRODUCTION
As a special nonlinear phenomenon, synchronization
often appears in human society and industrial production
processes, such as complex networks, pendulum clocks, elec-
tromechanical devices, chemical and mechanical oscillators,
etc. [1]–[5].

Inmost cases, synchronization phenomenon is harmful and
unexpected in practice, for example, soldiers are forbidden to
march synchronously when passing a wire bridge, because
a resonant response can be activated by the synchronous
walking that may cause a disaster. So the studies on dynamic
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it for publication was Hassan Ouakad.

vibration absorbers [6], [7] have been attracting the attentions
of many scholars in order to reduce the synchronous resonant
responses.

However, from the point of views of other aspects, syn-
chronization can be utilized beneficially. For example, in the
radio broadcast, the receiving frequency must match the
transmitting frequency, which is known as the send-receive
synchronization, in order to receive the expected sounds
from radio stations [12]. Another typical representative of
applying synchronization in engineering practice is the syn-
chronization of exciters (generally related to be as unbal-
anced rotors separately driven by induced motors), which
has been widely investigated and applied to various indus-
try production process with different kinds of vibrating
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equipments for vibratory crushing, feeding, conveying,
screening, separating, cooling, drying, dewatering, etc.
These devices can not only improve the performances
of the industry process, but also enhance the production
efficiency.

For synchronization of exciters in the vibrating sys-
tems, the most noteworthy researches were those given by
Blekhman [8]–[11], who firstly explored the synchroniza-
tion principle of two identical exciters by using Poincare’s
small parameter method. After that, Wen et al. [12] suc-
cessfully implemented such theory to engineering practice
and established a branch of learning known as the vibration
utilization engineering. In addition, the synchronization of
two (or four) non-ideal exciters supported by a flexible portal
frame structure was proposed by Balthazar et al. [13], [14],
where a special phenomenon called ‘‘Sommerfeld effect’’
was studied, and Fang and Hou [15] investigated the syn-
chronization characteristics of rotor-pendula systems driven
by two exciters. Recently, the synchronization and stability
of three or four homodromy exciters in a vibrating system
with the single RF [16], [17], as well as that of two exciters
in a nonlinear vibrating system with double RFs [18], have
been studied. Considering the effect of the drying friction,
synchronous operation of a cylindrical roller in a vibrating
cavity driven by two exciters is discussed in theory and
experiments [19].

In the abovementioned works, synchronization theory of
exciters has been extensively studied, these works mainly
focus on synchronization problem under the precondition that
all relevant exciters are mounted on the same RF, but the
couplingmechanism and synchronization principles of multi-
ple exciters which is respectively mounted on different RFs,
are seldom considered. Therefore, it is necessary to deeply
explore their stabilities of the synchronous states, especially
under different resonant regions of the vibrating system with
multiple RFs.

To resolve the above issues, a double RFs dynamical
model with two pairs of exciters is discussed in this study,
where each pair of reversed rotating exciters is mounted
on different RFs. The synchronous and stable states of two
pairs of exciters under different resonant conditions will
be discussed, as well as the corresponding relative motion
relationship between two RFs. The related research results
are expected to offer a guidance for the design of new
vibrating machines, especially for a certain type of vibrating
crushers.

This paper is organized as follows: In section II,
the dynamic model of the system is introduced and the math-
ematical modeling of the system is derived. The responses
and natural frequencies of the system are given in section III.
Section IV is dedicated to theoretically derive the condi-
tions of synchronization and stability. The coupling dynamic
characteristics of the system are numerically discussed in
section V. Simulations are provided to validate the pro-
posed theoretical results in section VI. Finally, conclusions
are summarized.

II. DESCRIPTION OF THE SYSTEM AND MATHEMATICAL
MODELING

A. NOMENCLATURE
f0i damping coefficient of axes of the induction

motor i, i =1, 2, 3, 4
fjx damping constant of RF j in x-direction,

j = 1, 2
kjx stiffness of spring j in x-direction, j = 1, 2
mj mass of RF j, j = 1, 2
m0 mass of the standard exciter, which is the

exciter mounted on RF1, i.e., m01 = m0
m0i mass of the exciter i, i =1, 2, here

two exciters mounted on RF1 are identi-
cal, denoted by m01, as well as those on
RF2 denoted by m02

m induced mass of the vibrating system
M1 mass of RF1 including two exciters,

M1 = m1 + 2m01
M2 mass of RF2 including two exciters,

M2 = m2 + 2m02
M mass of the total vibrating system,

M = M1 +M2
ri eccentric radius of the exciter i, ri = r ,

i =1, 2
rm1 mass ratio of the standard exciter to RF1,

rm1 = m0/M1
rm2 mass ratio of the standard exciter to RF2,

rm2 = m0/M2
Tei electromagnetic torque of the induction

motor i, i =1, 2, 3, 4
Te0i electromagnetic torque of the induction

motor i operating steadily at the angular
velocity ωm0, i =1, 2, 3, 4

zi ratio of frequency between the operating
frequency and natural frequencies, zi =
ωm0/ωi

ωm0 average angular velocity of four exciters in
the steady-state

ω2 natural frequency of RF2, ω2 =
√
(k1x + k2x)/M2

ω0 natural frequency of the main vibrating sys-
tem, ω0 =

√
k1x/m

ωg natural frequency of the isolated vibrating
system, ωg =

√
k2x/m

ξ1x equivalently critical damping ratio of rela-
tive motion between two RFs in x-direction,
ξ1x ≤ 0.07, for a vibrating system with
small damping

ξ2x critical damping ratio of RF2 in x-direction
η ratio of mass between the exciters mounted

on RF2 and the standard exciter,
η = m02/m0

(•̇) d • /dt

(•̈) d2 • /dt2
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FIGURE 1. Dynamical model of the vibrating system under study.

Figure 1 shows a dynamical model of the vibrating system
under study, which mainly includes two RFs, springs and
two pairs of reversed rotating exciters mounted respectively
on two different RFs, where each exciter is driven by induc-
tion motor. The RF1 is nested inside the RF2 (displayed by
RF1 and RF2 in Fig. 1), the masses of these two RFs are
denoted by m1 and m2, respectively, and they are connected
by spring of the main vibrating system k1x , the RF2 is also
linked with foundation by spring of the isolative system k2x .
Two pairs of exciters are driven by the induction motors sep-
arately, two identical exciters rotating in reversed directions
are mounted on the same RF, and the mass and eccentric
radius of two exciters on RF1 are identical, denoted by m01
and r1. Similarly, those on RF2 are denoted by m02 and r2,
see Fig. 1. The spin axes centers of the exciters are
denoted by oi (i = 1, 2, 3, 4), and their rotating
phases are ϕi (i = 1, 2, 3, 4), respectively. The motions
of RF1 and RF2 along with x-direction are denoted
by x1 and x2.
According to the derivation process in [16], based on

Lagrange’s equation, the mathematical modeling of the
vibrating system is directly derived as follows:

M1ẍ1 + f1x(ẋ1 − ẋ2)+ k1x(x1 − x2)

=

2∑
i=1

m01r1(ϕ̇2i sinϕi − ϕ̈i cosϕi)

M2ẍ2−f1x ẋ1+(f1x+f2x)ẋ2 − k1xx1+(k1x + k2x)x2

=

4∑
i=3

m02r2(ϕ̇2i sinϕi − ϕ̈i cosϕi)

J01ϕ̈1 + f01ϕ̇1 = Te1 − m01r1ẍ1 cosϕ1

J02ϕ̈2 + f02ϕ̇2 = Te2 − m01r1ẍ1 cosϕ2
J03ϕ̈3 + f03ϕ̇3 = Te3 − m02r2ẍ2 cosϕ3
J04ϕ̈4 + f04ϕ̇4 = Te4 − m02r2ẍ2 cosϕ4 (1)

where M1 = m1 + 2m01, M2 = m2 + 2m02, M = M1 +M2,
J01 = J02 = m01r21 , J03 = J04 = m02r22 , r1 = r2 = r ,
and the description of the other parameters can be seen in
Nomenclature.

III. RESPONSES AND NATURAL FREQUENCIES OF THE
VIBRATING SYSTEM
For the convenience of deducing the responses and natural
frequencies, we denote m01 = m0, m02 = ηm0 (η > 0), and
ϕ is the average phase of four exciters, where ϕ1+ϕ2+ϕ3+
ϕ4 = 4ϕ, the phase differences of four exciters are denoted
by ϕ1 − ϕ2 = 2α1, ϕ3 − ϕ4 = 2α2, and ϕ2 − ϕ3 = 2α3,
respectively, such that

ϕ1 = ϕ +
3
2
α1 +

1
2
α2 + α3 = ϕ + ν1

ϕ2 = ϕ −
1
2
α1 +

1
2
α2 + α3 = ϕ + ν2

ϕ3 = ϕ −
1
2
α1 +

1
2
α2 − α3 = ϕ + ν3

ϕ4 = ϕ −
1
2
α1 −

3
2
α2 − α3 = ϕ + ν4 (2)

During the steady operation process of the system, if two
pairs of exciters can operate synchronously, their syn-
chronous angular velocity is given as ϕ̇ = ωm0.

In order to analyze the relative motion between two RFs,
based on [12], the relationships between the acceleration and
the displacement can be obtained as

ẍ1 = −ω2
m0x1, ẍ2 = −ω2

m0x2 (3)

When two pairs of exciters operate synchronously in
the steady state, their average angular acceleration is zero
(i.e., ϕ̈ = 0). Moreover, f2x in (1) can be ignored
(generally in engineering, compared with the damping of
the main vibrating system f1x , that of the isolative sys-
tem f2x is so small that it might be neglected [12]),
substituting (3) into the first two formulae of (1), there
are

M
′

1ẍ1 + f1x(ẋ1 − ẋ2)+ k1x(x1 − x2)

= m0rω2
m0[sin(ϕ + ν1)+ sin(ϕ + ν2)] (4)

M
′

2ẍ2 − f1x(ẋ1 − ẋ2)− k1x(x1 − x2)

= ηm0rω2
m0[sin(ϕ + ν3)+ sin(ϕ + ν4)] (5)

where M
′

1 = M1 and M
′

2 = M2 − k2x/ω2
m0 ≈ M2, due

to the fact that in engineering, the value of k2x/ω2
m0, which

is usually less than k1x/ω2
m0 [12], is quite small and can be

neglected compared with M2.
In the steady state, since the synchronous angular velocity

of two pairs of exciters satisfies ϕ̇ = ωm0, arranging Eqs. (4)
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and (5) by the treatment of (4) × (M
′

2/M
′

1 + M
′

2) − (5) ×
(M
′

1/M
′

1 + M
′

2),the differential equation of relative motion
between two RFs can be deduced as

mẍ12 + f1x ẋ12 + k1xx12

=
M
′

2

M
′

1 +M
′

2

m0rω2
m0

2∑
i=1

sin(ϕ + νi)

−
M
′

1

M
′

1 +M
′

2

ηm0rω2
m0

4∑
i=3

sin(ϕ + νi) (6)

with

m=
M
′

1M
′

2

M
′

1 +M
′

2

, ẍ12= ẍ1−ẍ2, ẋ12= ẋ1 − ẋ2, x12=x1 − x2

where m is defined as the induced mass of the vibrating sys-
tem, and x12, ẋ12 and ẍ12 are relative displacement, velocity
and acceleration between two RFs, respectively.

The natural frequency ω0 and the response of (6) can be
directly obtained as

ω0 =

√
k1x
m
=

√√√√k1x(M
′

1 +M
′

2)

M
′

1M
′

2

(7)

and

x12=A
′

12 [sin(ϕ + ν1−γ12)+ sin(ϕ + ν2 − γ12)]
− ηA

′′

12 [sin(ϕ + ν3−γ12)+ sin(ϕ + ν4 − γ12] (8)

where ω0 is the frequency allowing the amplitude of the
relative motion to reach the maximum value, and

A
′

12 =
rm1z20r√

(1− z20)
2 + (2ξ1xz0)2

A
′′

12 =
rm2z20r√

(1− z20)
2 + (2ξ1xz0)2

=
M1

M2
A
′

12,

γ12 = arctan

(
2ξ1xz0
1− z20

)
, z0 =

ωm0

ω0
, rm1 =

m0

M
′

1

≈
m0

M1
,

rm2 =
m0

M
′

1

≈
m0

M1
, ξ1x =

f1x
2
√
k1xm

.

According to (2), the response amplitude of the relative
motion between two RFs in the steady state, denoted by λ12,
is directly obtained as

λ12

= A
′

12

√√√√√√√√√√√√√√

2+ 2
(
η
M1

M2

)2

+ 2 cos 2α1 + 2
(
η
M1

M2

)2

cos 2α2

−2η
M1

M2
cos 2α3 − 2ηM1

M2
cos(2α1 + 2α3)

−2η
M1

M2
cos(2α2 + 2α3)

−2η
M1

M2
cos(2α1 + 2α3 + 2α3)

(9)

The above discussions are mainly focused on the relative
motion between two RFs. However, the absolute motions x1

and x2 are also important [18], which are investigated as
follows.

Based on the first two formulae of (1), the responses of two
RFs can be solved by the transfer function method [18] as

x1=F1r[sin(ϕ + ν1 − γ1x)+ sin(ϕ + ν2 − γ1x)]
+ ηF3r[sin(ϕ + ν3 − γ3x)+ sin(ϕ + ν4 − γ3x)]

x2=F2r[sin(ϕ + ν1 − γ2x)+ sin(ϕ + ν2 − γ2x)]
+ ηF4r[sin(ϕ + ν3 − γ4x)+ sin(ϕ + ν4 − γ4x)] (10)

where the detailed expressions of (10) are presented in
Appendix A.

According to (10), during the process of the steady oper-
ation of the system, the response amplitudes of two RFs in
x-direction, denoted by λ1 and λ2, can be expressed by

λ1 =

√
A21 + B

2
1

λ2 =

√
C2
1 + D

2
1 (11)

and the specific expressions of A1, B1, C1 and D1 are listed
in Appendix B.

In order to calculate all natural frequencies of the system,
based on the first two formulae of (1), the inertial and stiffness
couplings of the system can be written in the matrix form.

M =
(
M1 0
0 M2

)
, K=

(
k1x −k1x
−k1x k1x + k2x

)
1(ω2

m0) =

∣∣∣∣ k1x − ω2
m0M1 −k1x

−k1x k1x + k2x − ω2
m0M2

∣∣∣∣ (12)

whereM is the inertia coupling matrix,K is the stiffness cou-
pling matrix, and1(ω2

m0) denotes the characteristic equation
of eigenvalues of the system.

Let 1(ω2
m0) = 0, there is

ω4
m0M1M2 − ω

2
m0M1k1x − ω2

m0M1k2x
−ω2

m0M2k1x + k1xk2x = 0 (13)

Solving (13), the natural frequencies of the system in x-
direction, denoted by ωinv and ωsam, are expressed as

ωinv =

√√√√√√√√
M1k1x +M1k2x +M2k1x

+

√
(M2k1x +M1k1x)2

+M1k2x(M1k2x + 2M1k1x − 2M2k1x)

2M1M2

ωsam =

√√√√√√√√
M1k1x +M1k2x +M2k1x

−

√
(M2k1x +M1k1x)2

+M1k2x(M1k2x + 2M1k1x − 2M2k1x)

2M1M2

(14)

In engineering practice, the stiffness of the isolative vibrat-
ing system k2x is far smaller than that of the main vibrating
system k1x (k2x << k1x) [12], [18]. Hence k2x of ωinv can be
ignored as k2x = 0, thus we have ωinv ≈ ω0, which enables
one to know that ωinv corresponds to the natural frequency of
the main vibrating system.
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Further discussions on the response and natural frequen-
cies characteristics of the system will be conducted in the
following studies by using numerical analysis method.

IV. SYNCHRONIZATION OF THE VIBRATING SYSTEM
A. SYNCHRONIZATION CONDITIONS
When two pairs of exciters operate synchronously, differ-
entiating (10) to get ẍ1 and ẍ2, inserting them into the last
four formulae of (1), and over one period ϕ = 0 ∼ 2π
the integration is made, the mean is taken, then the average
balanced equations of two pairs of exciters, can be obtained
as follows

Te0i − f0iωm0 = T̄Li, i = 1, 2, 3, 4 (15)

Here T̄Li(i = 1, 2, 3, 4) represent the load torques of
motor i, which are expressed as follows

T L1 = TuF1[sin γ1x+cos(2α1) sin γ1x + sin(2α1) cos γ1x]
+ ηTuF2[cos(2α1 + 2α2 + 2α3) sin γ2x
+ cos(2α1 + 2α3) sin γ2x + sin(2α1 + 2α2
+ 2α3) cos γ2x + sin(2α1 + 2α3) cos γ2x]

T L2 = TuF1[sin γ1x+cos(2α1) sin γ1x
− sin(2α1) cos γ1x]+ ηTuF2[cos(2α1
+ 2α3) sin γ2x + cos(2α3) sin γ2x
+ sin(2α3) cos γ2x + sin(2α1 + 2α3) cos γ2x]

T L3 = η2TuF4[sin γ4x + cos(2α2) sin γ4x
+ sin(2α2) cos γ4x]+ ηTuF2[cos(2α1
+ 2α3) sin γ2x + cos(2α3) sin γ2x
− sin(2α1 + 2α3) cos γ2x − sin(2α3) cos γ2x]

T L4 = η2TuF4[sin γ4x + cos(2α2) sin γ4x
+ sin(2α2) cos γ4x]+ ηTuF2[cos (2α1 + 2α2
+ 2α3) sin γ2x + cos (2α2 + 2α3) sin γ2x
− sin (2α2 + 2α3) cos γ2x
− sin (2α1 + 2α2 + 2α3) cos γ2x] (16)

where Tu = m0r2ω2
m0/2 is the kinetic energy of the stan-

dard exciter, and the detailed expressions of (16) are given
in Appendix C.

It should be noted that during the process of aforemen-
tioned integration for obtaining (15), since the changes of 2αi
(i =1, 2, 3) aremuch smaller than ϕ(ϕ̇ = ωm0) for time t , they
can be referred to as the slow changing parameter [8]–[11].
Hence, 2αi can be replaced by their average value 2ᾱi.
According to (16), the differences of output electromag-

netic torques between any two motors are expressed as

1T012 = T L1 − T L2
= 2TuF1 sin(2α1) cos γ1x + ηTuF2[cos(2α1
+ 2α2 + 2α3) sin γ2x + cos(2α1
+ 2α3) sin γ2x − cos(2α2 + 2α3) sin γ2x
− cos(2α3) sin γ2x + sin(2α1 + 2α2
+ 2α3) cos γ2x − sin(2α3) cos γ2x
+ sin(2α1 + 2α3) cos γ2x
− sin(2α2 + 2α3) cos γ2x]

1T023 = T L2 − T L3
= TuF1[sin γ1x + cos(2α1) sin γ1x
− sin(2α1) cos γ1x]− η2TuF4[sin γ4x
+ cos(2α2) sin γ4x + sin(2α2) cos γ4x]

+ ηTuF2[cos(2α2 + 2α3) sin γ2x
− cos(2α1 + 2α3) sin γ2x
+ sin(2α1 + 2α3) cos γ2x
+ sin(2α2 + 2α3) cos γ2x + 2 sin(2α3) cos γ2x]

1T034 = T L3 − T L4
= 2η2TuF4 sin(2α2) cos γ4x
+ ηTuF2[cos(2α1 + 2α3) sin γ2x
+ cos(2α3) sin γ2x − cos(2α1 + 2α2
+ 2α3) sin γ2x − cos(2α2 + 2α3) sin γ2x
− sin(2α3) cos γ2x + sin(2α1 + 2α2
+ 2α3) cos γ2x + sin(2α1 + 2α3) cos γ2x
− sin(2α2 + 2α3) cos γ2x]

1T013 = T L1 − T L3
= TuF1[sin γ1x + cos(2α1) sin γ1x
+ sin(2α1) cos γ1x]− η2TuF4[sin γ4x
+ cos(2α2) sin γ4x + sin(2α2) cos γ4x]

+ ηTuF2[cos(2α1 + 2α2 + 2α3) sin γ2x
− cos(2α3) sin γ2x + sin(2α1
+ 2α2 + 2α3) cos γ2x
+ 2 sin(2α2 + 2α3) cos γ2x
+ sin(2α3) cos γ2x]

1T024 = T L2 − T L4
= TuF1[sin γ1x + cos(2α1) sin γ1x
− sin(2α1) cos γ1x]

− η2TuF4[sin γ4x + cos(2α2) sin γ4x
− sin(2α2) cos γ4x]

+ ηTuF2[cos(2α3) sin γ2x
+ sin(2α3) cos γ2x
+ 2 sin(2α2 + 2α3) cos γ

+ sin(2α1 + 2α2 + 2α3) cos γ2x2x
− cos(2α1 + 2α2 + 2α3) sin γ2x]

1T014 = T L1 − T L4
= TuF1[sin γ1x + cos(2α1) sin γ1x
+ sin(2α1) cos γ1x]

− η2TuF4[sin γ4x + cos(2α2) sin γ4x
− sin(2α2) cos γ4x]

+ ηTuF2[cos(2α2 + 2α3) sin γ2x
× 2 sin(2α1 + 2α2 + 2α3) cos γ2x
+ sin(2α1 + 2α3) cos γ2x
+ 2 sin(2α2 + 2α3) cos γ2x
− cos(2α2 + 2α3) sin γ2x] (17)
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The dimensionless rearrangement of (17) can be written as

1T012
Tu

= τc12(α1, α2, α3)

(18)
1T023
Tu
− F1 sin γ1x + η2F4 sin γ4x = τc23(α1, α2, α3)

(19)
1T034
Tu

= τc34(α1, α2, α3)

(20)
1T013
Tu
− F1 sin γ1x + η2F4 sin γ4x = τc13(α1, α2, α3)

(21)
1T024
Tu
− F1 sin γ1x + η2F4 sin γ4x = τc24(α1, α2, α3)

(22)
1T014
Tu
− F1 sin γ1x + η2F4 sin γ4x = τc14(α1, α2, α3)

(23)

Here τcij(α1, α2, α3) (ij = 12, 23, 34, 13, 24, 14) are the
dimensionless coupling torques between motors i and j (their
detailed expressions can be found in Appendix D), and are
also limited functions of α1, α2 and α3, so we have

|τc12(α1, α2, α3)| ≤ τc12max (24)

|τc23(α1, α2, α3)| ≤ τc23max (25)

|τc34(α1, α2, α3)| ≤ τc34max (26)

|τc13(α1, α2, α3)| ≤ τc13max (27)

|τc24(α1, α2, α3)| ≤ τc24max (28)

|τc14(α1, α2, α3)| ≤ τc14max (29)

Hence, the synchronization conditions of two pairs of
exciters are obtained as ∣∣∣∣1T012Tu

∣∣∣∣ ≤ τc12max (30)∣∣∣∣1T023Tu
− F1 sin γ1x + η2F4 sin γ4x

∣∣∣∣ ≤ τc23max (31)∣∣∣∣1T034Tu

∣∣∣∣ ≤ τc34max (32)∣∣∣∣1T013Tu
− F1 sin γ1x + η2F4 sin γ4x

∣∣∣∣ ≤ τc13max (33)∣∣∣∣1T024Tu
− F1 sin γ1x + η2F4 sin γ4x

∣∣∣∣ ≤ τc24max (34)∣∣∣∣1T014Tu
− F1 sin γ1x + η2F4 sin γ4x

∣∣∣∣ ≤ τc14max (35)

with 1T0ij = (Te0i − f0iωm0)− (Te0j − f0jωm0).
Equations (30)∼(35) can be described as that the absolute

value of dimensionless residual torque differences between
arbitrary two motors are less than or equal to the maximum
of their dimensionless coupling torques.

Adding all formulae of (16) up and after the rearrangement
of the results of which, the average dimensionless loading

torque of two pairs of motors, τa(α1, α2, α3), can be given
as

τa(α1, α2, α3)

=
1
4Tu

4∑
i=1

T̄Li

=
1
2
[F1 sin γ1x + F1 cos(2α1) sin γ1x

+ η2F4 sin γ4x + η2F4 cos(2α2) sin γ4x]

+
1
2
ηF2[cos(2α1 + 2α2 + 2α3)+ cos(2α1 + 2α3)

+ cos(2α2 + 2α3)+ cos(2α3)] sin γ2x (36)

as such it is limited functions of α1, α2 and α3, i.e.,

τa(α1, α2, α3) < τamax (37)

The coefficients of synchronization abilities between any
two exciters, ξij, therefore, are defined as

ζij =
τcijmax

τamax
, ij = 12, 23, 34, 13, 24, 14 (38)

The larger the coefficients ξij are, the stronger the synchro-
nization abilities are, and the easier the vibrating system can
implement synchronization.

B. STABILITY CONDITIONS OF THE SYNCHRONOUS
STATES
According to (15), one can solve several groups of the syn-
chronous solutions on 2αi, for these synchronous solutions,
some are stable, while others are unstable, which depends
on the stability condition of the system. So it is important to
discuss the stability of the synchronous states of the system
to determine the stable solutions as follows.

The kinetic energy (T ) and potential energy (V ) of the
vibrating system are directly given as

T =
1
2
(M1ẋ21 +M2ẋ22 +

4∑
i=1

J0iϕ̇2i )

V =
1
2
[k2xx22 + k1x(x2 − x1)

2] (39)

Then the mean values of kinetic energy ET and potential
energy EV over one period, can be obtained as

ET

=
1
2π

∫ 2π

0
Tdϕ=

1
4π

∫ 2π

0
(M1ẋ21 +M2ẋ22 +

4∑
i=1

J0iϕ̇2i )dϕ

=
1
2
r2ω2

m0{[M1F1F2 cos (γ1x − γ2x)

+M2F2F4 cos (γ2x − γ4x)]q(α1, α2, α3)

+ [M1F1F2 sin (γ1x − γ2x)+M2F2F4 sin
(
γ2x − γ4x

)
]

× p(α1, α2, α3)+
(
M1F2

1 +M2F2
2

) [
1+ cos (2α1)

]
+

(
M1F2

2+M2F2
4

)
η2
[
1+ cos (2α2)

]
}

+ (1+ η)m0r2ω2
m0 (40)
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EV

=
1
2π

∫ 2π

0
Vdϕ=

1
4π

∫ 2π

0
[k2xx22 + k1x(x1 − x2)

2]dϕ

=
1
2
r2{[k1xF1F2 cos (γ1x−γ2x)−k1xF1F4 cos (γ1x−γ4x)

+ k1xF2F4 cos (γ2x − γ4x)− k1xF2
2

+ k2xF2F4 cos (γ2x − γ4x)]q(α1, α2, α3)

+ [k1xF1F2 sin (γ1x − γ2x)− k1xF1F4 sin (γ1x − γ4x)

+ k1xF2F4 sin (γ2x − γ4x)+ k2xF2F4 sin (γ2x − γ4x)]

× p(α1, α2, α3)+ [k1xF2
1 + k1xF

2
2 + k2xF

2
2

− 2k1xF1F2 cos (γ1x − γ2x)][1+ cos
(
2α1

)
]+ [k1xF2

4

+ k1xF2
2 + k2xF

2
4 − 2k1xF2F4 cos (γ2x − γ4x)]

× η2[1+ cos
(
2α2

)
]} (41)

where

q(α1, α2, α3)= η[cos (2α1 + 2α2 + 2α3)+cos (2α1 + 2α3)

+ cos (2α2+2α3)+ cos (2α3)]

p(α1, α2, α3)= η[sin (2α1+2α2 + 2α3)+sin (2α1 + 2α3)

+ sin (2α2+2α3)+ sin (2α3)]

Hamilton’s average action amplitude over one period,
denoted by I , can be presented by

I =
1
2π

∫ 2π

0
(T − V )dϕ = ET − EV (42)

Based on [12], we know that the solutions of stable phase
differences (denoted by 2α10, 2α20 and 2α30) in the syn-
chronous states correspond to the minimums of Hamilton’s
average action amplitudes. In other words, in order to ensure
the stability of phase differences among exciters, the follow-
ing Hesse matrix of I (denoted by H) should be positive
definite, where the elements of Hessematrix of I are proposed
in Appendix E.

H =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 (43)

The matrixH is positive definite, if and only if, the follow-
ing conditions (44), should be satisfied.

H1 = d11 > 0

H2 = d11d22 − d12d21 > 0

H3 = d11d22d33 + d12d23d31 + d13d21d32
−d11d23d32 − d12d21d33 − d13d22d31 > 0 (44)

Equation (44), therefore, is the stability condition of the
system in the synchronous states, andH1,H2 andH3 are here
defined as the coefficients of the stability ability.

V. NUMERICAL DYNAMIC CHARACTERISTIC
DISCUSSIONS
To clearly reveal the dynamic characteristics of the system,
some numerical analyses resulting from the above theoretical

TABLE 1. Structural parameters of the system.

TABLE 2. Parameters of motors.

results are discussed in this section. The structural parame-
ters of the system are listed in TABLE 1, based on which,
the values of two critical natural frequencies, ω2 and ω0, are
easily calculated as ω2 =

√
(k1x + k2x)/M2 ≈ 74 rad/s and

ω0 =
√
k1x/m ≈ 134 rad/s, respectively. Additionally, here

we use four identical driving motors (three-phase squirrel-
cage, 50 Hz, 380 V, 0.75 kW, 6-pole,1-connected, and rated
speed 980 r/min), and the other parameters of motors are
shown in TABLE 2.

A. FREQUENCY-AMPLITUDE CHARACTERISTICS OF THE
SYSTEM IN THE STEADY STATES
According to (9) and (11), and considering the stability con-
ditions of the system (44), the frequency-amplitude relation-
ships of two RFs for different η by changing the supporting
frequencies in the steady state, are shown in Fig. 2, from
which one can see that, the resonant regions are obviously
divided into three parts (marked by Regions I, II and III)
by two critical natural frequencies ω2 and ω0, and some
characteristics are discussed in detail as following.

In Fig. 2, the practical response amplitudes of the system
depend on the sum of the vibration superposition excited by
two pairs of exciters, which are determined by the stable
states of the phase differences among exciters for different
resonant regions shown in Fig. 5. In region I of Fig. 2,
the operating frequency ωm0 < ω2, and the response ampli-
tudes of two RFs are both close to zero, which implies that
the exciting forces caused by exciters are not implemented
positive superposition. While in region II, ω2 < ωm0 < ω0,
the operating frequency of the system is in the sub-resonant
region with respect to ω0, and the obvious resonant responses
are emerged, which are results of the positive superposition
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FIGURE 2. Frequency-amplitude relationships of two RFs for different values of η in the steady state: (a) η = 0.5; (b) η = 1; (c) η = 1.5;
(d) frequency-amplitude relationships of the relative motion between two RFs.

of exciters, these facts can be also reflected in Region II of
Fig. 5, in this case the phase difference between two exciters
mounted on the same RF is equal to zero, while that on
different RFs near to Pi. Additionally, in Region II of Fig. 2,
the response amplitudes of two RFs are both monotonously
increasedwith the increasingωm0, so the ideal working points
of the vibrating machines should be selected in this interval
in order to obtain large enough vibration amplitudes of the
relative motion. In light of Region III, ωm0 > ω0, the chang-
ing of frequency-amplitude curves are similar with that
in region I.

It is worth noting that, the variation tendencies of different
response curves are similar with each other in Fig. 2, due
to the fact of the similarity of the stable phase differences
among exciters shown in Fig. 5. Additionally, three curves
for different η in Fig. 2(d) indicate that a larger mass ratio
can provide a greater Relative Motion Response Amplitude
(RMRA), so the RMRA between two RFs can be determined

by adjusting the operating frequency ωm0 and the value
of η.

From Fig. 2, it should also be seen that the frequency jump
phenomenon appears at ω2 and ω0, this is because the stable
phase differences are varied in different resonant regions,
which leads to the change of the displacement response of
the system.

B. COEFFICIENTS OF SYNCHRONIZATION ABILITY
Figure 3 shows the plots of coefficients of synchronization
ability defined in (38) between arbitraty two exciters for dif-
ferent η. These coefficients are only dependent on the system
structure parameters but independent on that of motors. Addi-
tionally, it can be also found that the synchronization ability
is the weakest in the vicinity of ω0, while is the strongest in
the neighborhood of ω2. In the range of ωm0 > ω0, there
is ζ34 < ζ13 = ζ23 = ζ24 = ζ14 < ζ12. Furthermore,
the synchronization abilities increase with the increasing η.
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FIGURE 3. Coefficients of synchronization ability among exciters
versus ωm0 for different η: (a) η = 0.5; (b) η = 1; (c) η = 1.5.

C. STABILITY ANALYSES OF THE SYNCHRONOUS STATES
Here the stability analyses are mainly focused on two points:
the stable phase differences (SPD) among two pairs of
exciters and coefficients of stability ability among them.

As it is mentioned in Section IV-B, there are many solu-
tions corresponding to the synchronous states, some are sta-
ble, some are not stable. And the stable ones, which are
discussed based on SPDs, have to be further determined
by using the stability conditions (44). So the SPDs are the
significant dynamic parameters to determine the final motion
types of the vibrating system. Under the consideration of
satisfying synchronization and stability conditions, see (17),
the SPDs can be calculated by changing the value of ωm0,
and the plots of relationships between SPDs and ωm0, are
illustrated in Fig. 4. Based on the variation trends of SPDs
for different η, it is clear that the plots are divided into three
regions (I, II, III) by two main natural frequencies ω0 and ω2
(normally in engineering, ω2 < ω0), and these three regions
cover three motion states, respectively.

On the other hand, the coefficients on stability ability of
the system Hi (i = 1, 2, 3) can be obtained by substituting
the structural parameters of the system into (44), which are
shown in Fig. 5. Combined with the relationships between
the SPDs and the coefficients of stability ability, some results
are given as follows.

In Region I of Fig. 4 with ωm0 < ω2, there are H1 ≥ 0,
H2 ≥ 0 and H3 ≥ 0, indicating the stable operation of the
system. However, themultiple groups of solutions on the SPD
plots which lead the multiple equilibria of the system known
as the diversity of nonlinear system [20], can be observed
in Fig. 4. The stability ability is therefore weak in Region I
as displayed in Fig. 5, and the stable states dependent on the
initial conditions and external disturbances.

For region II of Fig. 4 with ω2 < ωm0 < ω0, only one
group of solutions on SPDs are obtained as 2α10 = 2α20 = 0
and 2α30 ≈ ±π . In this case, the exciting forces excited by
two exciters on the same RF implement the positive superim-
position, and two RFs reflect the motion with inverse phases
since 2α30 is close toπ . Fig. 5 indicates that the stability of the
system is the strongest in this single equilibrium point state,
which is exactly the desire in engineering.

For region III with ωm0 > ω0, the SPDs satisfy 2α10 =
2α20 = π , but there exist multiple solutions of 2α30 in Fig. 4.
In this case the exciting forces of two exciters on the same
RF are compensated with each other. It follows that two
RFs embody no vibration in the stead state, while the phase
difference 2α30 has multiple values causing the diversity of
nonlinear system. Some relevant simulation analyses will be
given in order to verify this property in the following sections.
In addition, for the stability ability in Region III, one can see
the relevant plots shown in Fig. 5.

VI. COMPUTER SIMULATIONS
In the above section, the coupling dynamic characteristics
and stability of the system are studied by numeric based on
the theoretical results, in which the state is divided into three
resonant regions (see Regions I, II and III of Fig. 4).

In this section, further investigations will be performed
by computer simulations, which are carried out by directly
applying a fourth-order Runge-Kutta algorithm to (1) in order
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FIGURE 4. Values of stable phase differences versus ωm0 for different η:
(a) η = 0.5; (b) η = 1; (c) η = 1.5.

to verify qualitatively the theoretical and numerical results for
different resonant regions (Regions I, II and III of Fig. 4) in
section V. The corresponding parameters of the system are the

FIGURE 5. Coefficients of stability ability versus ωm0 for different η:
(a) Values of H1; (b) Values of H2; (c) Value of H3.

same as those in section V except for the spring stiffness k1x .
Here the resonant regions of the system (i.e., the ratio
between the operating frequency and natural frequency of
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FIGURE 6. Simulation results in region I for η = 1: (a) rotational velocities of four motors; (b) phase
difference between exciters 1 and 2; (c) phase difference between exciters 3 and 4; (d) phase difference
between exciters 2 and 3; (e) displacement of RF1 in x-direction, (f) displacement of RF2 in x-direction;
(g) relative displacement between RFs 1 and 2 in x-direction; (h) displacements of RFs 1 and 2 in
x-direction.
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FIGURE 7. Simulation results in region I for η = 1.5: (a) rotational velocities of four motors; (b) phase difference between exciters 1
and 2; (c) phase difference between exciters 3 and 4; (d) phase difference between exciters 2 and 3; (e) displacement of RF1 in
x-direction; (f) displacement of RF2 in x-direction; (g) relative displacement between RFs 1 and 2 in x-direction; (h) displacements of
RFs 1 and 2 in x-direction.
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FIGURE 8. Simulation results in region II for η = 1: (a) rotational velocities of four motors; (b) phase difference between exciters 1
and 2; (c) phase difference between exciters 3 and 4; (d) phase difference between exciters 2 and 3; (e) displacement of RF1 in
x-direction; (f) displacement of RF2 in x-direction; (g) relative displacement between RFs 1 and 2 in x-direction; (h) displacements
of RFs 1 and 2 in x-direction.
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FIGURE 9. Simulation results in region II for η = 1.5: (a) rotational velocities of four motors; (b) phase difference between
exciters 1 and 2; (c) phase difference between exciters 3 and 4; (d) phase difference between exciters 2 and 3; (e) displacement of
RF1 in x-direction; (f) displacement of RF2 in x-direction; (g) relative displacement between RFs 1 and 2 in x-direction;
(h) displacements of RFs 1 and 2 in x-direction.
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FIGURE 10. Simulation results in region III for η = 1: (a) rotational velocities of four motors; (b) phase difference between
exciters 1 and 2; (c) phase difference between exciters 3 and 4; (d) phase difference between exciters 2 and 3; (e) displacement of
RF1 in x-direction; (f) displacement of RF2 in x-direction; (g) relative displacement between RFs 1 and 2 in x-direction.
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FIGURE 11. Simulation results in region III for η = 1.5: (a) rotational velocities of four motors; (b) phase difference between
exciters 1 and 2; (c) phase difference between exciters 3 and 4; (d) phase difference between exciters 2 and 3; (e) displacement
of RF1 in x-direction; (f) displacement of RF2 in x-direction; (g) relative displacement between RFs 1 and 2 in x-direction.
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the system) are set by changing the spring stiffness k1x to
adjust the natural frequencies of the system. Simultaneously,
two groups of simulations (η = 1 and η = 1.5) are given in
each resonant region. In order to obtain the motion character-
istics of the system better, the simulation time is set to 30 s in
every simulation process, and the certain disturbance is added
to motor 2 at 15 s.

A. SIMULATIONS OF REGION I
As shown in Figs. 6 and 7, here the spring stiffness k1x =
20000 kN/m, and two calculated critical natural frequen-
cies are ω2 ≈ 115.0 rad/s and ω0 ≈ 213.2 rad/s. See
Figs. 6(a) and 7(a), the synchronously rotational velocities are
all 983 r/min, i.e., the operating frequency ωm0 ≈ 103 rad/s,
we have ωm0 < ω2, so the system operates in Region I of
Fig. 4(b)(c). The initial phases in Fig. 6 for η = 1 are set as
ϕ1 = π/6, ϕ2 = π/2, ϕ3 = π/3, ϕ4 = π ; while in Fig. 7 for
η = 1.5, the initial phases satisfy ϕ1 = 0, ϕ2 = π , ϕ3 = π ,
ϕ4 = 2π . Additionally, when time reaches 15 s, a disturbance
of phase with 2π /3 is added to motor 2.
From Figs. 6 and 7, one can see that, although the rotational

velocities of two pairs of exciters all reach the synchronous
operation states after the first short transient process, their
phase differences are not stabilized at a single equilibrium
point state. As shown in Fig. 6(b)∼(d), when a disturbance
of 2π /3 phase is added to motor 2, 2α1 and 2α2 both change
from 180◦ to 0◦ (or 360◦), 2α3 increases from 90◦ to 180◦;
while in Fig. 7(b)∼(d), 2α3 reflects multiple equilibrium
point states before adding a disturbance, and the phase differ-
ences between any two exciters all change from the previous
stable state to another after the addition of a disturbance.

As such, the system exhibits non-harmonic responses
characterized by micro-vibration, see the enlargement
in Figs. 6(e)∼(h) and 7(e)∼(h). The above facts imply the
characteristics of the diversity of nonlinear system [20],
which all approximately agree well with what are shown
in Figs. 2, 4 and 5 of section V.

B. SIMULATIONS OF REGION II
Similar with the above section VI-A, setting k1x =

8000 kN/m, the other parameters are the same with those
in section V, and the calculated critical natural frequencies:
ω2 ≈ 74 rad/s and ω0 ≈ 134 rad/s. From Figs. 8(a) and 9(a),
we can know that the synchronously rotational velocities of
the system are both near 800 r/min (or ωm0 ≈ 84 rad/s),
i.e., ω2 < ωm0 < ω0, and the vibrating system can syn-
chronously operate in resonant Region II of Fig. 4(b)(c), the
corresponding simulation results are shown in the relevant
plots of Figs. 8 and 9.

From Figs. 8 and 9, the initial phases of exciters all satisfy
ϕi = 0 (i = 1, 2, 3, 4), and a phase disturbance with π /3 is
added to motor 2 at 15 s. The stable phase differences of the
system: 2α1 = 2α2 ≈ 0◦, 2α3 ≈ 168◦ in Fig. 8 for η = 1;
and 2α1 = 2α2 ≈ 0◦, 2α3 ≈ 170◦ in Fig. 9 for η = 1.5.
Although a disturbance is added to motor 2, the system still
return to their previous stable states after the short adjusting

process, which demonstrates the stronger stability with single
equilibrium point, as shown in Figs. 8(b)∼(d) and 9(b)∼(d).
What’s more, the variation trends of stable phase differences
in Fig. 9 are similar with those in Fig. 8, and whether the
interference is added or not, the single equilibrium state
of the system is not broken down. These facts are roughly
coincidencewithwhat are shown by the lines l1(2α1 = 2α2 ≈
0◦, 2α3 ≈ 168.5◦) and l2(2α1 = 2α2 ≈ 0◦, 2α3 ≈ 171◦)
in Fig. 4(b) and 4(c), respectively.

Seeing the displacements of two RFs for the case of η = 1
shown in Fig. 8(e)∼(g), the vibration amplitudes of RF1 and
RF2 are about 12.5 mm and 5 mm, respectively, and the
relative displacement between two RFs is close to 17.5 mm
in Fig. 8(g), which are in good agreement with the points
A, B and E in Fig. 2. As such, for the case of η = 1.5
shown in Fig. 9(e)∼(g), which is similar with that in Fig. 8,
and here no further discussions. It should be mentioned that
the motion types between two RFs are obviously inverse
phases, as shown in the enlargement of Figs. 8(h) and 9(h),
which verifies indirectly the physical property of ω0 given in
sections V-A, i.e., it is referred to be as the natural frequency
of the relative motion with inverse phases between two RFs.

C. SIMULATIONS OF REGION III
In this section setting k1x = 3000 kN/m, the simulations
of Region III for different mass ratios of exciters can be
seen in Figs. 10 and 11, where two natural frequencies are
solved as ω2 ≈ 45.2 rad/s and ω0 ≈ 82.5 rad/s. From
Figs. 10(a) and 11(a), the synchronously rotational velocities
of the system are both stabilized at 983 r/min (or ωm0 ≈

103 rad/s), we have ωm0 > ω0, and the system can syn-
chronously operate in Region III of Fig. 4(b)(c). Similar
to what are illustrated in Fig. 6, the initial phases satisfy
ϕ1 = π/6, ϕ2 = π/2, ϕ3 = π/3, ϕ4 = π , and a disturbance
of π /3 phase is added to the motor 2 at 15s.

In Figs. 10 and 11, when a disturbance is added to the
motor 2, the simulation results in region III are similar with
those in region I, i.e., 2α1 and 2α2 have no change of the
equilibrium state in Figs. 10 and 11. However, 2α3 changes
from 31◦ to 55◦ in Fig. 10(d), and 2α3 in Fig. 11(d) always
keeps unstable no matter whether a disturbance is added.
These facts verify the phenomenon of the diversity of non-
linear system shown in Fig. 4.

Additionally, according to the values of stable phase dif-
ferences, it can be noted that the exciting forces acting on
two RFs are cancelled mutually, see Figs. 10 and 11, so the
motion type of two RFs is no vibration in the steady state.
These results can roughly agreewith what are shown in Fig. 2.

VII. CONCLUSION
This paper proposes an analytical approach to investigate
stability of the synchronous states of two pairs of exciters
distributed on different RFs. The criterions of implementing
synchronization and stability are obtained theoretically, and
the coupling characteristics of the system are discussed by
numeric, in which the resonant region of the system is divided
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into three parts: (I) ωm0 < ω2; (II) ω2 < ωm0 < ω0;
(III)ωm0 > ω0, based on the ratios of the operation frequency
ωm0 to natural frequencies (ω2 and ω0).
According to the results of dynamic analyses and simu-

lations, the motion types of two RFs in Regions I and III
are similar with each other in the steady state, in this case
the diversity of nonlinear system is appeared, which kind
of equilibrium state to be occurred is dependent on the ini-
tial conditions and external disturbances, and the displace-
ments of two RFs are both close to zero, the motion type of
the system reflects no vibration. However, in region II the
phase differences of each pair of exciters on the same RFs
are all stabilized in the vicinity of zero, the corresponding
exciting forces are superimposed positively, while the phase
differences between two exciters on different RFs are sta-
bilized in the neighborhood of π , and two RFs realize the
relative motion with inverse phases, which is the desire in
engineering.

By the comparisons of theory, numerical characteristic
analyses and simulations, the theoretical method used is
proved to be feasible and valid. The ideal working points of
such kinds of vibrating machines used in engineering, should
be selected in region II with ω2 < ωm0 < ω0. Only in
this way, can the stronger relative vibration amplitude with
inverse phases between two RFs be obtained.

The present work can be as a theoretical reference for
designing some new vibrating equipments, such as vibrating
shock crushers, vibrating activate feeder, and so on.

APPENDIX A
COEFFICIENTS OF EQ. (10)

F1 = m0ω
2
m0

√
c2 + d2

a2 + b2
, F2 = F3 = m0ω

2
m0

√
e2 + f 2

a2 + b2
,

F4 = m0ω
2
m0

√
g2 + f 2

a2 + b2
,

γ1x =


arctan

bc− ad
ac+ bd

, ac+ bd > 0

π + arctan
bc− ad
ac+ bd

, ac+ bd < 0,

γ2x = γ3x =


arctan

be− af
ae+ bf

, ae+ bf > 0

π + arctan
be− af
ae+ bf

, ae+ bf < 0,

γ4x =


arctan

bg− af
ag+ bf

, ag+ bf > 0

π + arctan
bg− af
ag+ bf

, ag+ bf < 0,

a = M1M2ω
4
m0 − (M1k1x +M2k1x

+M1k2x + f1x f2x)ω2
m0 + k1xk2x ,

b = −(M1f1x+M2f1x+M1f2x)ω3
m0+(k1x f2x+k2x f1x)ωm0,

c = −M2ω
2
m0+k1x+k2x , d= (f1x+f2x)ωm0, e=k1x ,

f = f1xωm0, g = −M1ω
2
m0 + k1x .

APPENDIX B
PARAMETERS OF EQ. (11)

A1 = F1r[cos(ν1 − γ1x)+ cos(ν2 − γ1x)]
+ ηF3r[cos(ν1 − γ1x)+ cos(ν2 − γ1x)]

B1 = F1r[sin(ν1 − γ1x)+ sin(ν2 − γ1x)]
+ ηF3r[sin(ν1 − γ1x)+ sin(ν2 − γ1x)]

C1 = F2r[cos(ν1 − γ1x)+ cos(ν2 − γ1x)]
+ ηF4r[cos(ν1 − γ1x)+ cos(ν2 − γ1x)]

D1 = F2r[sin(ν1 − γ1x)+ sin(ν2 − γ1x)]
+ ηF4r[sin(ν1 − γ1x)+ sin(ν2 − γ1x)]

APPENDIX C
COEFFICIENTS OF EQ. (16)

F1

= m0ω
2
m0

√
c2 + d2

a2 + b2

=

√√√√√√√√
r2m1

(
1
z22
− 1

)2

+ f1(ξ1x , ξ2x)(
1− 1

z2inv

)2 (
1− 1

z2sa

)2
+ f3(ξ1x , ξ2x)+ f4(ξ1x , ξ2x)

,

F2

= F3 = m0ω
2
m0

√
e2 + f 2

a2 + b2

=

√√√√√√√
r2m
z40
+ f2(ξ1x , ξ2x)(

1− 1
z2inv

)2 (
1− 1

z2sa

)2
+ f3(ξ1x , ξ2x)+ f4(ξ1x , ξ2x)

,

F4

= m0ω
2
m0

√
f 2 + g2

a2 + b2

=

√√√√√√√√
r2m2

(
1
z21
− 1

)2

+ f2(ξ1x , ξ2x)(
1− 1

z2inv

)2 (
1− 1

z2sa

)2
+ f3(ξ1x , ξ2x)+ f4(ξ1x , ξ2x)

,

rm

=
m0

M
, rm1 =

m0

M1
, rm2 =

m0

M2
, ω0 =

√
k1x
m
, ω1 =

√
k1x
M1
,

ω2

=

√
k1x + k2x

M2
, ωg =

√
k2x
M
, zinv =

ωm0

ω
′

inv

, zsa =
ωm0

ω
′

sa
,

z0

=
ωm0

ω0
, z1 =

ωm0

ω1
, z2 =

ωm0

ω2
, zg =

ωm0

ωg
,

ξ1x

=
f1x

2
√
k1xM

, ξ2x =
f2x

2
√
k2xM

,

f1(ξ1x , ξ2x)

= 4
(
rmξ1x
z0
+
rm1rm2ξ2x

rmzg

)2

, f2(ξ1x , ξ2x) =
4r2mξ

2
2x

z20
,
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f3(ξ1x , ξ2x)

=
8ξ1xξ2x
z20zg

[
2ξ1xξ2x
zg

− z0

(
1−

1

z2inv

)(
1−

1
z2sa

)
],

f4(ξ1x , ξ2x)

=
4

z40

[
1
zg

(
ξ2x −

rm2ξ2xz20
rm

+
ξ1xz0
zg

)
− z0ξ1x

]2
.

APPENDIX D
COEFFICIENTS OF EQS. (18)-(23)

τc12(α1, α2, α3)
= 2F1 sin(2α1) cos γ1x + ηF2[cos(2α1
+ 2α2 + 2α3) sin γ2x + cos(2α1 + 2α3) sin γ2x
− cos(2α2 + 2α3) sin γ2x − cos(2α3) sin γ2x
+ sin(2α1 + 2α2 + 2α3) cos γ2x − sin(2α3) cos γ2x
+ sin(2α1 + 2α3) cos γ2x − sin(2α2 + 2α3) cos γ2x]

τc23(α1, α2, α3)

= F1[cos(2α1) sin γ1x − sin(2α1) cos γ1x]
− η2F4[cos(2α2) sin γ4x + sin(2α2) cos γ4x]

+ ηF2[cos(2α2 + 2α3) sin γ2x − cos(2α1 + 2α3) sin γ2x
+ sin(2α1 + 2α3) cos γ2x
− sin(2α2 + 2α3) cos γ2x
+ 2 sin(2α3) cos γ2x]

τc12(α1, α2, α3)

= 2η2F4 sin(2α2) cos γ4x
+ ηF2[cos(2α1 + 2α3) sin γ2x + cos(2α3) sin γ2x
− cos(2α1 + 2α2 + 2α3) sin γ2x
− cos(2α2 + 2α3) sin γ2x
+ sin(2α1 + 2α2 + 2α3) cos γ2x − sin(2α3) cos γ2x
+ sin(2α1 + 2α3) cos γ2x
− sin(2α2 + 2α3) cos γ2x]

τc13(α1, α2, α3)

= F1[cos(2α1) sin γ1x
+ sin(2α1) cos γ1x]

− η2F4[cos(2α2) sin γ4x + sin(2α2) cos γ4x]

+ ηF2[cos(2α1 + 2α2 + 2α3) sin γ2x
− cos(2α3) sin γ2x + sin(2α1 + 2α2 + 2α3) cos γ2x
+ 2 sin(2α1 + 2α3) cos γ2x + sin(2α3) cos γ2x]

τc24(α1, α2, α3)

= F1[cos(2α1) sin γ1x
− sin(2α1) cos γ1x]

− η2F4[cos(2α2) sin γ4x − sin(2α2) cos γ4x]

+ ηF2[cos(2α3) sin γ2x − cos(2α1 + 2α2
+ 2α3) sin γ2x + sin(2α1 + 2α2 + 2α3) cos γ2x
+ 2 sin(2α2 + 2α3) cos γ2x + sin(2α3) cos γ2x]

τc14(α1, α2, α3)

= F1[cos(2α1) sin γ1x

+ sin(2α1) cos γ1x]− η2F4[cos(2α2) sin γ4x
− sin(2α2) cos γ4x]+ ηF2[cos(2α1 + 2α3) sin γ2x
− cos(2α2 + 2α3) sin γ2x + sin(2α1 + 2α3) cos γ2x
+ sin(2α2 + 2α3) cos γ2x + 2 sin(2α1
+ 2α2 + 2α3) cos γ2x]

APPENDIX E
ELEMENTS OF THE MATRIX H OF EQ. (43)

d11 =
∂2I

∂α21
= Qη[cos (2α10 + 2α20 + 2α30)+ cos (2α10 + 2α30)]

+Pη[sin (2α10 + 2α20 + 2α30)+ sin (2α10 + 2α30)]

− 2r2ω2
m0(M1F2

1 +M2F2
2 ) cos (2α10)

+ 2r2[k1xF2
1 + k1xF

2
2

+ k2xF2
2 − 2k1xF1F2 cos (γ1x − γ2x)] cos (2α10)

d12 = d21 =
∂2I

∂α1∂α2
= Qη cos (2α10 + 2α20 + 2α30)
+Pη sin (2α10 + 2α20 + 2α30)

d13 = d31 =
∂2I

∂α1∂α3
= Qη[cos (2α10 + 2α20 + 2α30)+ cos (2α10 + 2α30)]
+Pη[sin (2α10 + 2α20 + 2α30)+ sin (2α10 + 2α30)]

d22 =
∂2I

∂α22
= Qη[cos (2α10 + 2α20 + 2α30)
+ cos (2α20 + 2α30)]+ Pη[sin(2α10
+ 2α20 + 2α30)+ sin (2α20 + 2α30)]

− 2r2ω2
m0(M1F2

2 +M2F2
4 )η

2 cos (2α20)

+ 2r2[k1xF2
4 + k1xF

2
2 + k2xF

2
4

− 2k1xF2F4 cos (γ2x − γ4x)]η2 cos (2α20)

d23 = d32 =
∂2In
∂α2∂α3

= Qη[cos (2α10 + 2α20 + 2α30)

+ cos (2α20 + 2α30)]+ Pη[sin(2α10
+ 2α20 + 2α30)+ sin (2α20 + 2α30)]

d33 =
∂2In

∂α23
= Qη[cos (2α10 + 2α20 + 2α30)

+ cos (2α10 + 2α30)

+ cos (2α20 + 2α30)+ cos (2α30)]

+Pη[sin (2α10 + 2α20 + 2α30)+ sin (2α10 + 2α30)

+ sin (2α20 + 2α30)+ sin (2α30)]

Q = −2r2ω2
m0[M1F1F2 cos (γ1x − γ2x)

+M2F2F4 cos (γ2x − γ4x)]

+ 2r2[k1xF1F2 cos (γ1x − γ2x)

− k1xF1F4 cos (γ1x−γ4x)+k1xF2F4 cos (γ2x−γ4x)

+ k2xF2F4 cos (γ2x − γ4x)− k1xF2
2 ]
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P = −2r2ω2
m0[M1F1F2 sin (γ1x−γ2x)

+M2F2F4 sin (γ2x−γ4x)]

+ 2r2[k1xF1F2 sin (γ1x−γ2x)

− k1xF1F4 sin (γ1x−γ4x)+ k1xF2F4 sin (γ2x−γ4x)

+ k2xF2F4 sin (γ2x−γ4x)]
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