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ABSTRACT Neural Machine Translation(NMT) has achieved notable results in high-resource languages, but
still works poorly on low-resource languages. As times goes on, It is widely recognized that transfer learning
methods are effective for low-resource language problems. However, existing transfer learning methods
are typically based on the parent-child architecture, which does not adequately take advantages of helpful
languages. In this paper, inspired by human transitive inference and learning ability, we handle this issue by
proposing a new hierarchical transfer learning architecture for low-resource languages. In the architecture,
the NMT model is trained in the unrelated high-resource language pair, the similar intermediate language pair
and the low-resource language pair in turn. Correspondingly, the parameters are transferred and fine-tuned
layer by layer for initialization. In this way, our hierarchical transfer learning architecture simultaneously
combines the data volume advantages of high-resource languages and the syntactic similarity advantages of
cognate languages. Specially, we utilize Byte Pair Encoding(BPE) and character-level embedding for data
pre-processing, which effectively solve the problem of out of vocabulary(OOV). Experimental results on
Uygur-Chinese and Turkish-English translation demonstrate the superiorities of the proposed architecture

over the NMT model with parent-child architecture.

INDEX TERMS Hierarchical transfer learning, low-resource problem, neural machine translation.

I. INTRODUCTION

Language is the most important human communication tools
and the main way of expression for people to communi-
cate [1]. There are 6809 different languages in the world,
most of them are resource-poor languages [2]. Language
diversity leads to communication barriers. Therefore, how to
communicate effectively has always been an urgent and chal-
lenging problem, which has drawn great attentions from both
research and industry communities in recent years. Machine
Translation is an effective way to provide a bridge between
different languages, where the sequence-to-sequence neural
machine translation(NMT) [3]-[5] has achieved remarkable
progress on resource-rich language pairs in the past few
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years [6]-[8]. But because of the complexity of the network
and large number of parameters, the NMT models are highly
depended on the quality and the availability of extensive
parallel corpora. For this reason, NMT models still perform
poorly on most low-resource languages compared with the
Statistical Machine Translation(SMT) [9], [10]. Therefore,
data scarcity is a huge challenge for NMT [11].

In order to deal with the problem of data scarcity in NMT,
there are many strategies for low-resource languages. Using
monolingual data to enrich parallel data is a simple and intu-
itive way such as back-translation [12], data augment [13],
the self-learning algorithm [14], the semi-supervised
method [15], the joint EM optimization method [16] and the
dual learning method [17]. In [18], the model-agnostic meta-
learning algorithm(MAML) was applied to the low-resource
NMT. M-NMT used the memory augmented structure to
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solve the out of vocabulary problem for translation of Uygur-
Chinese [19]. TA-NMT that uses the unified bidirectional EM
algorithm leveraged bilingual data to improve the translation
performance of low-resource languages [20]. The teacher-
student architecture based on the assumption that paral-
lel language pairs have close probabilities of generating
a sentence in the third language improved the translation
performance for low-resource languages with the help of
high-resource language pairs [21]. Despite the success of
TA-NMT and teacher-student architecture in low-resource
languages, we argue that they are not suitable enough if some
low-resource languages have parallel corpora with only one
high-resource language.

Transfer learning is an effective method to solve the low-
resource problem. There are four basic methods of transfer
learning as follows: sample-based transfer learning, model-
based transfer learning, feature-based transfer learning and
relationship-based transfer learning [22]. Due to the improve-
ment of computer performance, the deep learning methods
are applied to various fields and have achieved excellent
achievements in recent years [23], [24]. In [25], Jason Yosin-
ski et al took the lead in conducting research on the mobility
of deep neural network. Following their work, some stud-
ies are mainly about the fine-tuning and domain adaption
for different tasks [26]-[28]. Since the model-based trans-
fer learning method is perfectly combined with deep neural
network and improves the exiting network structure conve-
niently [29]—-[31]. Therefore, the model-based transfer learn-
ing is widely explored in many fields [32]-[36].

In this paper, inspired by human transitive inference and
learning ability in languages, we propose a new hierarchical
transfer learning architecture to make full use of helpful lan-
guages by adding an intermediate layer for the low-resource
languages especially that have only one parallel corpus.
In training process, the three-layer architecture transfers and
fine-tunes the parameters layer by layer. The training process
mimics the process of a person learning new languages as
shown in Figure 1. For example, if a person has mastered
English and Turkish, so the person knows the method about
how to learn a language and their respective syntactic struc-
ture. It is intuitive that it is easier for him to master Uygur
compared with people without language foundation. By using
the architecture, we combine data volume advantage of high-
resource language and linguistic similarity advantage of inter-
mediate language that provides useful syntactic knowledge.

We evaluate the hierarchical transfer learning architec-
ture on Uygur-Chinese and Turkish-English. Experimen-
tal results show that: Our hierarchical transfer learning
architecture improves 1.15 BLEU scores compared with
the NMT systems based on the transformer-big model,
improves 0.58 BLEU scores compared with the NMT sys-
tem with parent-child architecture [10], [37], and excesses
the strong Phrase-based statistical machine translation
model [9] 1.95 BLEU scores on Uygur-Chinese. Similarly
on Turkish-English, our method outperforms the parent-child
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FIGURE 1. A demo example of hierarchical transfer learning architecture
in the source side.

architecture 0.73 BLEU scores, which verifies the generaliza-
tion of the hierarchical transfer learning architecture.
In summary, our contributions are as follows:

1) We propose a new hierarchical transfer learning archi-
tecture to combine data volume advantage of high-
resource languages with syntactic similarity advantage
of similar languages by adding a intermediate layer.

2) Based on the hierarchical architecture, we make full
use of helpful language resources for low-resource lan-
guages and are more flexible in language choice.

3) we verify the generalization of the hierarchical transfer
learning architecture by experimenting it on different
low-resource languages.

4) Experimental results show that our architecture signifi-
cantly improves the translation performance compared
with the parent-child architecture, the NMT system
based on transformer-big model and the phrase-based
SMT model on low-resource languages.

Section II presents related work about transfer learn-
ing method on NMT for low-resource language problem.
Section III describes the details of our hierarchical transfer
learning architecture and the methods that are used to tackle
training data. The details of our experiments and the intro-
duction of the three baselines are described in Section IV.
Section V reports the results of the comparative experiments
and analyzes the process of our experiments. Finally, the con-
clusion is drawn in section VI.

Il. RELATED WORK

In order to improve translation performance of low-resource
languages, transfer learning methods were applied to NMT in
recent years. Its purpose is to initialize the parameters with
the trained models instead of random initialization, which
transfers helpful information from the trained models. The
previous work that uses transfer learning methods [22], [38]
and similar methods to solve the low-resource problem is
outlined. In [39], Dong et al proposed a multi-task learning
model that shares encoder across different translation tasks
for one target language to improve the performance of low-
resource languages. In [40], Firat et al proposed a multi-way,
multilingual NMT to share the attention mechanism. It used
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different encoders and decoders for multiple language pairs.
Majority of exiting transfer learning methods are based on the
parent-child architecture that is proposed by Zoph et al [10],
which pioneer to apply the transfer learning method to NMT.
They trained the parent model on a high-resource language
pair and saved some parameters, then transferred the param-
eters to initialize the child model and to constrain training
for child model with freezing and fine-tuning. This method
got significant performance on low-resource languages and
even exceeded the Phrase-based SMT system on Hausa-
English. Following Zoph et al’s[10] work, Nguyen et al used
BPE to increase vocabulary overlap to optimize the word
embedding and chose related low-resource language as parent
model [41]. Experimental results showed that similar lan-
guages are helpful for low-resource languages. In [42], Dabre
et al explored the influence of language relevance on transfer
learning. They concluded that it is better to choose the lan-
guage that is closer to the low-resource language. In contrast,
in [37], Kocmi et al compared the effect of data volume and
language similarity on the transfer learning method. They
concluded that the data volume of high resource language
is more important than the relatedness of language. Despite
the success of previous work for low-resource languages,
we argue that they did not make good use of these advantages,
which had been proved are both helpful for low-resource
languages. In this paper, we propose the hierarchical trans-
fer learning architecture, which adds the intermediate layer,
to combine the data volume advantage with the language
similarity advantage. DDTF [43] and TTL [44] also proposed
similar three-layer’s architectures, which choose the data that
is useful for target domain in Computer Vision with the help
of intermediate domain. But the difference is that our method
transfers the parameters trained on the high-resource layer
and intermediate layer in the architecture instead of increas-
ing helpful data based on similarity measure algorithm.

IIl. HIERARCHICAL TRANSFER LEARNING ARCHITECTURE
In this section, we present the hierarchical transfer learning
architecture for NMT. To start with, we describe the training
process of the architecture. Afterwards, we introduce the
details of the NMT model(Transformer).

The hierarchical transfer learning architecture consists of
three layers. The training strategy of the architecture is shown
in algorithm 1, while its flow chart and model structure are
illustrated in Figure 2. In the process of training, consider-
ing the training time and efficiency, we train our model on
the high-resource language pair(English-Chinese) for several
steps and transfer the parameters to the intermediate model
in the first layer. In the second layer, the model is trained
on the intermediate language pair(Turkish-English) that is
similar with Uygur on syntax; and the parameters are fine-
tuned until converging. Finally, we transfer the parameters
that are trained on the intermediate language pair to initialize
the model of the low-resource language and train the model
on the low-resource language pair(Uygur-Chinese) until con-
verging in the third layer. We do not modify the framework
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of the NMT model but transfer the parameters to initialize the
next model instead of initializing randomly.

Algorithm 1 Hierarchical Transfer Learning Architecture

Input: Three different parallel corpus,
D(X,Y),D(X1,Y1),.D(X5,Y>5).

1: compute argmax P(Y|X,0;) X is the source language
of high-resource language pair, Y is target language of
high-resource language pair, 6; are the parameters of the
model.

2: compute argmax P(Y11X7,0,) Xjis the source language of
intermediate language, Y| is target language of interme-
diate language, 6, is the parameters fine-tuned on 6.

3: compute argmax P(Y>|X2,63) X is the source language
of low-resource language, Y, is target language of low-
resource language, 63 is the parameters fine-tuned on 6,.

Output: The model of hierarchical transfer learning archi-
tecture with the parameters 6.

Our model is the transformer, which works by relying on
self-attention mechanism completely [7]. In the part of data
pre-processing, the transformer discards Recurrent Neural
Network(RNN) that considers the time series information,
but adds the relative position information. The relative posi-
tion information is calculated in equation (4). The input
embeddings add the relative position embeddings to compose
new sub-word embeddings. The encoder is composed of six
identical layers that each layer consists of multi-head self-
attention mechanism and feed-forward network. The decoder
is also composed of six identical layers that each layer con-
sists of masked multi-head self-attention mechanism, multi-
head self-attention mechanism and feed-forward network.
The attention mechanism is computed as:

Attention (A, B, C) ft <ABT> C (1)
ention (A, B, = softmax | —

v,
One sentence can be presented by a [maxlength,sub-word
dimension] matrix. A, B, C are sub-work embedding matrix of
query, key, value with dimension d,,, dj, d. respectively. ABT
calculates the weights of matrix C. The multi-head attention
is computed as:

MultiHead (A, B, C) = Concat(head,, - - - , head;) WP
head; = Attention(AW?, BWE, CW¢)  (2)

where each head; has its transformation matrix WiA €
Rlinpus ¥ da Wl.B € Nimpuxdp Wl.C € Mdmuxde The three
matrices transform the input sub-word embedding matrix
into different dimensions for the calculation of self-attention
mechanism. The WP e )4 dinput transform the concatenate
heads into the dimension of input. The feed-forward network
of different layers have different parameters. The attention
mechanism links the encoder and decoder. The feed-forward
network is computed as:

FFN(a) = max (0, aW + b1) W) + by 3)
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FIGURE 2. Hierarchical transfer learning architecture.

where a is the input embedding. Wy € Rdimux2048 "} ¢
972048 is the parameters of the first linear transformation. W5
€ R2048xdinpur by € Rbimpur ig the parameters of the second
liner transformation. The position embedding is calculated as:

PEingex.2j = sin (index /100002i/d,-npm)
PEjndex,2j+1 = COS (index /100007 dfnpm) (4)

where the index shows the position of the word in the sen-
tence. j represents the jth dimension of the input sub-word
embedding vector. The sine and cosine functions can express
each other through linear relationships.

IV. EXPERIMENT

A. EXPERIMENT SETTINGS

All the experiments about NMT systems, which are based on
transformer, are implemented in tensor2tensor [45] version
1.11.0. Our GPU is NVIDIA Corporation GK210GL [Tesla
k80] with 11GB RAM. For training the models, we set the
hyper-parameters of the NMT model according to the training
tips in [46], which explores the best performance for trans-
former. The hyper-parameters, which determine the structure
of model, are as shown in table 1. Considering the data spar-
sity of low-resource languages, the dropout of 0.2 is applied to
prevent over-fitting [47]. We use Adam [48] as the optimizer
with learning rate constant of 2. In order to prevent diverged
training, we set the learning-rate-warmup-steps of 16000.
We also set the shared embedding and softmax weights is
true. For decoding, the translation is generated by the 8 words
with the highest probability of each position via setting beam
search size is 8.

B. DATA SET AND PREPROCESSING

In order to testify our method is effective for the scenario that
the low-resource language has parallel corpus only with one
high-resource language such as Uygur-Chinese. We choose
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TABLE 1. Hyper-parameters used to train transformer models, unless
differently specified.

Model parameters Transformer-base Transformer-big

Embedding 512 1024
Encoder depth 6 6
Decoder depth 6 6
Head numbers 8 16

Feed-forward network 2048 4096

Batch size 2048 2048
Beam Size 8 8

TABLE 2. Data sets for the hierarchical transfer learning architecture.

Language Pair Role Train  Dev Test
Size Size Size

English-Chinese
Turkish-English

High-resource language 15SM 2K 2K
Intermediate language 0.2M 3K 3K
035M 1K 1K

Uygur-Chinese Low-resource language

the open Uygur-Chinese news corpus in CWMT as low-
resource language. The dev set and test set are from the
2017 CWMT Uygur-Chinese evaluation campaign. Turkish-
English parallel data that was published on WMT 2016 [49]
is the intermediate language. The dev set and test set are
the newstdev2016(Tr-En) and newstest2016(Tr-En). English-
Chinese parallel corpus that is open on Union Corpus [50] is
the high-resource language. The dev set and test set are form
the newstest-2017 [51]. Table 2 shows the details of the used
data.

In the process of data pre-processing, we applied word
segmentation for English, Turkish and Uygur in each training
condition by learning a sub-word vocabulary via BPE [52].
BPE breaks words into sub-words to solve the out-of-
vocabulary(OOV) problem, which is used as the smallest unit

VOLUME 7, 2019



G. Luo et al.: Hierarchical Transfer Learning Architecture for Low-Resource Neural Machine Translation

IEEE Access

TABLE 3. Sub-word embedding and character-level embedding for data
preprocessing on Chinese.

Data preprocessing Model Steps BLEU Scores
BPE Transformer(big) 0.3M 32.78
Character Transformer(big) 0.3M 34.25

to present sentences instead of the whole word. Sub-word
segmentation can harshly reduce the size of the vocabulary.
By using this way, some OOV words can be presented by
basic sub-word unit. Furthermore, the character-level embed-
ding [53], which uses characters to present words, is applied
to Chinese. Different from languages such as English, there
are more characters in Chinese. According to the characteris-
tics of Chinese, it is more suitable for Chinese in low-resource
languages compared with BPE as we testified in table 3.
Specially, Wolk et al divided polish text into the suffix prefix
core and grammatical groups with POS tag for data sub-word
division and augmentation, which is necessary to reduce the
size of dictionary [54]. However, Uygur is a complex lan-
guage, and there is not a public and accurate morphological
segmentation tool. Therefore, we will study the morphologi-
cal segmentation method for Uygur in future work. Then the
shared vocabulary is created among all source languages and
among all target languages respectively. The information of
Sub-words can be shared by the overlap vocabulary.

C. VOCABULARY

Considering the fairness of the three language pairs,
we respectively choose 0.2M parallel corpus of three lan-
guage pairs to create shared vocabulary. The 0.2M high-
resource parallel corpus is provided by selecting one of every
five sentence on the full language pair. Because of the data
scarcity of Turkish and Uygur, all Turkish-English parallel
corpus and almost all Uygur-Chinese parallel corpus are used
to get the 0.2M parallel corpus respectively. Then we mix
the three parallel corpus to make the 32K shared vocabulary.
The 36K shared vocabulary is also created by the mixed
parallel corpus with 0.35M English-Chinese, 0.2M Turkish-
English and 0.35M Uygur-Chinese parallel corpus to explore
the impact of different vocabulary on results.

D. BASELINES

There are three baselines to be compared with our method.
The first baseline is the Phrase-based SMT system that is
based on Moses [9]. The second baseline is the NMT sys-
tem that is based on the transformer [7], which is exper-
imented with transformer-base model and transformer-big
model respectively, where the big model doubles overall in
model structure.

The third baseline is the NMT system with the transfer
learning method, which follows the parent-child architecture
proposed by Zoph et al [10], [37]. The parent model is trained
on the high-resource language pairs (English-Chinese) and
the child model is trained on the low-resource language
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TABLE 4. The BLEU scores of the baselines that are based on different
models.

Vocabulary Size Method Steps BLEU Scores
32K Transformer-base 0.5M 33.22
32K Transformer-big 0.5M 34.36
32K Parent-child (base) IM 34.80
50K Parent-child (base) 1.459M 34.36
32K Parent-child (big) 0.628M 34.93
50K Parent-child (big) 0.696M 34.76

TABLE 5. The performance of the parent-child architecture that trains
different steps on the parent model.

Vocabulary Size Method Steps(parent) BLEU Scores
32K Parent-child (big) 293K 34.85(160K)
32K Parent-child (big) 460K 34.93(168K)

pairs (Uygur-Chinese). In the process of data pre-processing,
the 32k and 50K shared vocabulary are created respec-
tively by mixing 0.35M English-Chinese parallel corpus and
0.35M Uygur-Chinese parallel corpus via word segmenta-
tion. In the training process, the parent model is trained sev-
eral steps on English-Chinese, and transfers the parameters
to the child model for initialization. For the transformer-base
model, the parent model of the parent-child architecture trains
0.567M and 0.8M steps on the 32k and 50k shared vocabulary
respectively. For the transformer-big model, the parent model
trains 0.46M and 0.456M steps on the 32k and 50k shared
vocabulary respectively. Finally, the child model is trained on
Uygur-Chinese parallel corpus. The BLEU scores of the sec-
ond baseline and the third baseline and experimental details
are showed in Table 4. From Table 4, we can find that the
performance of transformer-big model improves 1.14 BUEU
scores compared to the transformer-base model. For the
transformer-base model, the performance of the parent-child
architecture with 32k shared vocabulary is 0.44 BLEU scores
higher than that with 50k shared vocabulary. Similarly for
the transformer-big model, the improvement is 0.17 BLEU
scores compared with the 50K shared vocabulary. In general,
the 32K shared vocabulary performs better than the 50K
shared vocabulary and the transformer-big model is more
effective than the transformer-base model.

In the parent-child architecture, we also compare the per-
formance of training different steps on the parent model with
the 32K shared vocabulary as shown in table 5. The results
show that when the parent model training is more convergent,
the performance of the transfer learning is better.

E. DETAILS OF OUR EXPERIMENTS

The problems are created in tensor2tensor firstly. In the pro-
cess of data pre-processing, we use BPE to segment words
into sub-words and use character-level embedding for Chi-
nese of the third layer. The two different mixed corpora
are used to create shared vocabularies. One is mixing 350K
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Uygur-Chinese, 200K Turkish-English and 350K English-
Chinese that choose one in five sentence in all English-
Chinese parallel corpus to get a 36K shared vocabulary,
the other is mixing 200K Uygur-Chinese, 200K Turkish-
English and 200K English-Chinese to get a 32K shared
vocabulary for the sake of fairness. Then the English-Chinese
training data and validation set are generated by the shared
vocabulary. Subsequently, the tensor2tensor encodes training
data and validation set to binary files. In the process of
training, the model is trained 500K steps on the training data,
it takes about 9 days. Then we continue to get the training
data on Turkish-English parallel corpus. The parameters of
intermediate model are initialized with the parameters that
are trained on English-Chinese parallel corpus and the model
is trained on the training data for 100k steps, it takes about
31 hours. Next, we get the training data on Uygur-Chinese
parallel corpus. The model of low-resource language pair
is initialized by the parameters that are fine-tuned on the
Turkish-English parallel corpus and because of the small
amount of data, the model is trained for 100K steps to
converge, it takes one day. Other than this, different steps
are experimented on the intermediate language and the low-
resource language respectively to explore the best results.
In order to explore the generalization of the hierarchical trans-
fer learning architecture, we compare hierarchical transfer
learning architecture with the parent-child architecture on
Turkish-English. In training process of hierarchical transfer
learning architecture, we set English-Chinese as the high-
resource language and Uygur-Chinese as the intermediate
language. In the process of parent-child architecture, the par-
ent model is trained on English-Chinese. Finally, the test sets
are decoded with the beam search size is 8, and the quality
of the results is evaluated by the BLEU score [55] that is
common evaluation method in the field of NMT. The BLEU
score is computed as:

n
BLEU = BP x (Z a; * log f) 5)

i=1

where BP is the sentence brevity penalty to punish a sentence
that is too long or too short. BP is calculated in equation (6).
pi is the modified i-gram precision. ¢; is the weight of each
modified i-gram precision.

1 ifa>b
BP=1 ., (6)
e"a ifa<b

where a is the sentence that needs to be evaluated. b is the
reference sentence.

V. RESULTS AND ANALYSIS

In this section, the performance of our hierarchical transfer
learning architecture based on the transformer is compared
with the three baselines. And numbers of experiments have
been done to explore the agents that affect the results of our
hierarchical transfer learning architecture.
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TABLE 6. The BLEU Scores of our hierarchical transfer learning
architecture are compared with the three baselines on Uygur-Chinese.

Vocabulary Size Model Steps BLEU Scores

Phrase-based SMT - 33.56

32K Transformer(big) 0.5M 34.36

32K Parent-child (base) M 34.80

32K Parent-child (big) 0.69M 34.93

32K Hierarchical transfer 0.8M 35.51
learning (big)

36K Hierarchical transfer 0.8M 34.75
learning (big)

TABLE 7. The BLEU Score of the hierarchical transfer learning architecture
is compared with parent-child architecture on Turkish-English.

Vocabulary Size Model BLEU Scores
32K Parent-child (big) 17.73
32K Hierarchical transfer learning 18.46
(big)

Table 6 shows the BLEU scores of the three baselines and
our method on Uygur-Chinese. We can find that our hierarchi-
cal transfer learning architecture improves 1.95 BLEU scores
compared with the Phrase-Based SMT system, improves
1.15 BLEU scores compared with the transformer-big model
and improves 0.58 BLEU scores compared with the parent-
child architecture based on the Transformer-Big model.
Experimental results show that our hierarchical outperforms
the three baselines. The reasons are that the single trans-
former initializes the parameters of the model randomly. The
previous work, which is based on parent-child architecture,
only considers the impact of data volume advantage or lan-
guage similarity advantage. However, both of these factors
are proven to be effective for low-resource problem. Hence,
in order to further improve the performance for low-resource
languages, we use a three-layer architecture to combine these
advantages. The hierarchical transfer learning architecture
applies transfer learning method by setting the same hyper-
parameters to maintain the consistency of the model structure.
The parameters of the model such as the multi-head attention,
the feed-forward network, the attention mechanism and the
masked multi-head attention are transferred layer by layer
for initialization. The first transference utilizes the data vol-
ume advantage of high-resource language. Furthermore, both
Turkish and Uygur are based on the basic syntactic structures
of subject-object-predicate as shown in Figure 3 and are also
very similar in terms of word formation [56]. The second
layer adds syntactic similarity information of the intermediate
language. But we also notice that the improvement of our
architecture is not particularly obvious compared with parent-
child architecture on Uygur-Chinese. We speculate that the
Turkish-English parallel corpus is more scarce than Uygur-
Chinese parallel corpus, which leads to insufficient learning
of synthetic information.
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Furthermore, we explore the generalization of the hier-
archical transfer learning architecture on Turkish-English.
From Table 7, we can find that the hierarchical transfer
learning architecture significantly outperforms the parent-
child architecture on Turkish-English, which gets helpful
information from Uygur-Chinese. Besides, the improvements
are more obvious compared with Uygur-Chinese. We spec-
ulate that more similar intermediate languages can better
improve the performance of low-resource languages. Spe-
cially, the significant improvements on Turkish-English also
shows that without setting same target languages relieves
the constrain on languages selection, which increases the
flexibility of the architecture. Due to the fact that most similar
languages of low-resource languages are still low-resource,
our hierarchical transfer learning architecture allows low-
resource languages to help each other.

We also find that our hierarchical transfer learning archi-
tecture not only can improve the BLEU scores compared
with the baselines but also can converge faster than the NMT
system without transfer learning method on low-resource
language pairs. It is obvious that the man who is adept at
languages learns a new language faster than the man with-
out language foundation. The parameters that are trained on
the first two layers have learned the common information
about languages and the similar syntax information of the
intermediate language. Therefore, our architecture converges
faster on low-resource language. The loss curves are shown
in Figure 4. The results testified that our hierarchical transfer

VOLUME 7, 2019

-+®- Hierarchical transfer learning with 36K shared vocabulary
10 4 —@- Hierarchical transfer learning with 32K shared vocabulary
sl
gz |
S 6
P
'®
1%
"'5,.
...
s JTO
24 AL I °
"""""" RIS P GPPPTRRTES
u T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

FIGURE 5. The loss curve of the hierarchical transfer learning architecture
with different shared vocabularies.
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FIGURE 6. The BLEU scores of the hierarchical transfer learning
architecture that trains 50k, 80k, 100k steps on the intermediate language
with 32k and 36k shared vocabulary respectively.

learning architecture can effectively initialize the parameters
for the low-resource language pair compared with random
initialization.

To explore the impact of the size of shared vocabulary on
our hierarchical transfer learning architecture, Figure 5 shows
the loss curve with different shared vocabularies. The size
of the shared vocabulary has little impact on the loss curve,
this further illustrates that effective parameter initialization
through the hierarchical transfer learning architecture can
make the model converge faster. However, the BLEU scores
of our hierarchical transfer learning architecture with differ-
ent shared vocabulary are significantly different. The BLEU
scores of low-resource language that trained different steps on
the intermediate language pair with different shared vocab-
ulary are compared in Figure 6. Experimental results show
that the BLEU scores of the hierarchical transfer learning
architecture with the 32k shared vocabulary are outstandingly
better than the 36k shared vocabulary.

To explore the impact of training steps of intermedi-
ate language on our architecture with 32K shared vocab-
ulary, Figure 7 shows the fluctuation of the BLEU scores
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FIGURE 7. The performance of the hierarchical transfer learning
architecture that is trained on the intermediate language with different
steps is compared with the transformer-big model.
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FIGURE 8. The best BLEU Scores of our hierarchical transfer learning
architecture that is trained on the intermediate language with different
steps.

of the hierarchical transfer learning architectures on Uygur-
Chinese, which are trained with different steps on the inter-
mediate corpus. Because of learning the prior knowledge of
the high-resource language and the helpful knowledge such
as syntactic information of the similar intermediate language,
the Figure shows that our hierarchical transfer learning archi-
tecture that trains different steps on the intermediate language
is outstandingly excesses the transform-big model.

The 32K shared vocabulary outstandingly excesses the
36K shared vocabulary. The different steps that are trained
on the intermediate language are experimented to explore the
best result with 32K shared vocabulary. The BLEU scores of
the hierarchical transfer learning architecture that is trained
on the intermediate language pair with different steps are
shown in Figure 8. We can find that the model, which is
trained on the intermediate language with 50K steps and
continue to train the model on the low-resource language with
250K steps, gets the best result. The reasons are that the small
number of steps that are trained on the intermediate language
pair will result in under-fitting. Nevertheless the large number
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of training steps will lead to over-fitting. That will damage the
quality of initialization for the low-resource language.

In general, experimental results show that the hierarchical
transfer learning architecture is an effective method for the
low-resource problems and converges faster than the single
transformer. Specially, the architecture also has excellent
generalization on other low-resource languages. We guess
that the more similar the intermediate language is to the low-
resource language, the better the initialization of the parame-
ters, which is the hypothesis we are going to verified.

VI. CONCLUSION

We propose a hierarchical transfer learning architecture to
handle low-resource problems in this paper. Different from
majority of exiting studies that are constrained by the parent-
child architecture, our hierarchical transfer learning architec-
ture adds the intermediate layer to make full use of helpful
languages. Based on this architecture, not only can our model
combine the advantage of data volume on the high-resource
language and the superiority of synthetic similarity on inter-
mediate language, but also can increase model flexibility.
Experimental results on Uygur-Chinese and Turkish-English
translation show that our hierarchical transfer learning archi-
tecture achieve significant improvements over a variety of
baselines. In the future, we are going to explore the effect
of the difference and the size of the intermediate language on
the performance of our hierarchical transfer learning archi-
tecture.
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