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ABSTRACT In this paper, we propose a novel method to address the nighttime single image dehazing
problem. Estimation of the ambient illumination map and transmission map are the key steps of modern
dehazing approaches. For hazy scenes at night, ambient illumination is usually not globally isotropic as a
nighttime scene typically contains multiple light sources. Frequently, Light source regions and non-light
source regions exhibit distinct color features. However, existing nighttime dehazing methods have been
attempting to process these two regions based on identical prior assumptions. Moreover, the commonly-
used local maximum pixel method tends to over-estimate the ambient illumination. These two drawbacks
result in color distortions and halo artifacts around the light source regions in the output images. In this
work, we present a pixel-wise alpha blending method for estimating the transmission map, where the
transmissions estimated from dark channel prior (non-light source region) and the proposed bright channel
prior (light source region) are effectively blended into one transmission map guided by a brightness-aware
weights map. Based on the Retinex theory, a channel difference guided filtering method is proposed to
estimate the ambient illumination, which produces a spatially variant low-frequency passband that selectively
retains the high-frequency edge details. Extensive experiments on the benchmarks demonstrate that our
method outperforms the state-of-the-art methods for nighttime image dehazing, especially in terms of color
consistency and halo artifacts reduction in the dehazed images.

INDEX TERMS Nighttime image dehazing, image restoration, alpha blending.

I. INTRODUCTION
Images or videos captured at foggy or hazy weathers are usu-
ally degraded due to the presence of suspended particles and
water droplets in the air.With lower contrast and faded colors,
hazy images show poor visual appearance and visibility.
It leads to decreased performance of many computer vision
applications, such as object detection, saliency detection, and
so on [4]–[6], [31].

In recent years, the problem of daytime image dehazing
has received extensive attention. Many image dehazing meth-
ods have emerged, including the image enhancement-based
methods and the model-based methods. However, when these
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methods are directly applied to the hazy images captured at
night, the performance is often unsatisfactory [22]. The main
difference between daytime dehazing methods and nighttime
dehazing methods is the ambient illumination term. It is a
constant value at daytime dehazing model since sunlight is
usually the only and dominate light source at daytime scenes,
making the ambient illumination spatially uniform. However,
the ambient illumination is spatially variant due to the scat-
tering of multiple light sources. The widely-used priors in
daytime dehazing methods are no longer appropriate for the
nighttime scenes. For example, the well-known dark channel
prior (DCP) would mostly fail around the light source regions
of an image.

The existing methods for nighttime image dehazing [1],
[12], [13], [22], [29] typically achieve improved dehazing
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performance by using image enhancement technique [22]
or modifying the daytime models, for example, by intro-
ducing variable ambient illumination [13], glow factor [29],
reflectance [12], and so on.

However, these above methods tend to over-estimate the
ambient illumination, because they simply extend the bright
pixel method used in daytime dehazing in a local manner,
with either fixed or adaptive filtering window size. The theo-
retical basis behind it lies in that the bright pixel comes from
sky regions corresponds to the infinite depth and 0 transmis-
sion, thus the ambient illumination is very close to the bright
pixel in sky regions according to the atmospheric scattering
model [9]. But when using this idea with local bright pixel as
the ambient illumination in nighttime hazy scenes, the esti-
mation is not accurate, because most of the local windows do
not contain the sky regions. In addition, the widely used dark
channel prior in the existing methods is not valid in the light
source regions, since no dark channel exists in white lights
area with high intensity values. As a result, these methods
tend to produce unwanted artifacts, such as color distortions
and halos, in the output images.

In this paper, to address these existing problems resulted
by inaccurate ambient illumination estimation and invalid
prior assumption in light source regions, we present a novel
method for nighttime dehazing. Based on the retinex theory
[14], [15], [28], we first estimate the ambient illumination
map through a low-pass filter [10] guided by a channel dif-
ference map. For the transmission estimation, we process
the light source regions and non-lights source regions using
two distinct channel priors, i.e. the dark channel prior and a
novel bright channel prior (BCP). Then, the two estimated
transmission maps are subsequently fused together using the
proposed pixel-wise alpha blending in a brightness-aware
manner, to produce the final transmission map. In the end,
the dehazed image are obtained through the nighttime atmo-
spheric scattering model with the estimated illumination map
and transmission map. Experimental results indicate that the
dehazed results by our proposed method can better keep the
color consistence, present less noise and reduce halo artifacts
compared to the state-of-the-art algorithms. Fig. 1 shows a
simple comparison example.

The contributions of our paper can be summarized as
follows:

1. Hazy images captured at night have spatially variant
ambient illumination due to the scattering of multiple light
sources. Rather than simply using the local maximum pixel as
done in the existing methods, we reformulate the atmospheric
scattering model into a Retinex-like model, so that high qual-
ity ambient illumination can be estimated using a low-pass
filter. By proposing a channel difference map as the guidance
for filtering, the output can obtain the local low-frequency
passband as well as retain the edge details. This method is
more theoretical sound and provides a novel way for ambient
illumination estimation at nighttime hazy scenes.

2. Based on the fact that a nighttime hazy scene usu-
ally contains multiple light sources, we propose a novel

FIGURE 1. (a) Input hazy image. (b)-(d) Dehazing results of Li et al. [29],
Zhang et al. [12], and our method, respectively. (b) and (c) produce halos
around the light sources, exhibits excessive noise in the sky areas, and
fail to recover the consistent colors with the input.

assumption named bright pixel prior to compute the transmis-
sion for the light source regions. By blending the transmission
maps using DCP and BCP in a brightness-aware manner,
the estimated transmission map contributes to dehazed
images that are visually more pleasant with much less color
distortions and halos. This novel idea treats the light source
regions and non-light source regions with separate prior
assumptions, which guarantees a boundary and shape pre-
serving restoration of the light source regions.

II. RELATED WORKS
Currently, most of the daytime haze removal methods [2],
[3], [3], [7]–[9], [16]–[21], [23], [24], [26], [27], [30], [32]
are based on the atmospheric scatteringmodel [11], themodel
is either solved by image priors [2], [8], [9], [17], [20], [21],
[23], [30] or using a learning framework [3], [16], [18],
[19], [24], [27], [32]. They have achieved pleasant dehazing
results at daytime scenes. However, when these methods are
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FIGURE 2. Flow chart of the proposed nighttime dehazing method.

directly applied to hazy images captured at night scenes,
the results are unsatisfactory.

Recently, more researchers have started to carry out
research on nighttime image dehazing. Pei et al. [22] map the
nighttime hazy images to a daytime one by performing a color
transfer technique, followed by a modified dark channel prior
for haze removal. Although this method improves the visi-
bility in the dehazed images, whereas the overall appearance
seems unrealistic. Zhang et al. [13] use gamma correction to
compensate the ambient illumination, and then perform color
correction by utilizing the characteristics of incident lights.
These involved post-processing technique achieves improved
results, but they also produce some unpleasant artifacts such
as glow and halos. Li et al. [29] modify the atmospheric
scattering model by adding an atmospheric point spreading
term to model the glowing effect in the light source regions.
Then they decompose the glow from the hazy image by using
a layer separation algorithm. Their results contain less glow
artifacts, but it is prone to cause excessive enhancement of the
light-source area, making the output images look unnatural.
Ancuti et al. [1] estimate the ambient illumination by using a
maximum operator on local patches, then a multi-scale dark
channels are fused together with a laplacian pyramid. Satura-
tion and contrast features are used to generate the weighting
maps. Recently, based on the statistics of outdoor daytime
images, Zhang et al. [12] propose a maximum reflectance

prior by assuming the maximum intensities at each color
channel have the value of 1 in daytime haze-free images,
which is then used for estimating the ambient illumination.
Dark channel prior [9] is applied for transmission estimation
to recover the haze-free images.

All the above methods estimate the ambient illumination
based on the assumption that the brightest pixels in local
patches of a hazy image can capture the properties of ambient
illumination. However, this assumption only makes sense
when the patches are in a sky region with 0 transmission
value. In addition, the dark channel prior is extensively used
to estimate the transmission maps, whereas it is invalid in the
light-source regions, thus leading to artifacts in that regions
of the output images.

III. PROPOSED NIGHTTIME DEHAZING METHOD
The flow chart of our proposed nighttime dehazing method is
illustrated in Fig. 2. The key steps for nighttime dehazing is
the computation of ambient illumination map and transmis-
sion map. Details for each step are presented in the following
subsections.

A. ATMOSPHERIC SCATTERING MODEL
For the problem of daytime dehazing, the atmospheric scatter-
ing model is widely used. This model divides the hazy images
into two components as in (1). One is the light attenuation
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FIGURE 3. Example of ambient illumination estimation.

term, representing the direct scene radiance attenuation from
object surfaces across the haze to the camera; the other one
is the scattering term, representing the scattered light leading
to the shift of scene colors.

I (x) = J (x)t(x)+ A(1− t(x)). (1)

Here, I is the hazy image obtained by the camera, J is the
haze-free image to be recovered. A is a constant color vector
describes the global ambient illumination in the air, and t is
the medium transmission with respect to the depth of each
pixel denoted by x. The transmission t(x) = e−θd(x) denotes
the percentage of light received by the camera from J , d(x) is
the distance from the scene point to the camera, and θ is the
scattering coefficient with respect to the atmosphere.

In case of the nighttime dehazing, the situation is more
challenging. Unlike a single strong light source (sunlight) in
daytime, the nighttime scene usually contains multiple light
sources, such as moonlight, streetlights, vehicle lights, and
so on. Rather than a global vector, the ambient illumination A
at night becomes a spatially-varying map A(x). Based on the
above analysis, we rewrite (1) as.

I (x) = J (x)t(x)+ A(x)(1− t(x)). (2)

The task of nighttime dehazing is estimating the ambient
illumination map A(x) and transmission map t(x) so as to
recover the haze-free image J (x) from (2). Mathematically,
it is an ill-posed problem.

B. AMBIENT ILLUMINATION ESTIMATION
Existing methods estimate the ambient illumination of night-
time hazy scenes mainly rely on the local extension of maxi-
mum pixel method used in daytime dehazing. This method
works well in daytime mainly because that the maximum
pixel usually comes from the sky area, where the transmission
is close to 0 and the ambient illumination A equals to the hazy
pixel I (x) approximately. Obviously, the above theoretical

basis does not hold at nighttime hazy scenes due to the
spatially varying illumination and absence of sky in local
patches.

The word Retinex is made up of a combination of the
words retina and cortex. Retinex theory mainly contains two
aspects [15]: the color of an object is determined by the
ability of the object to reflect long-wave, medium-wave and
short-wave light, rather than the absolute intensity of the
reflected light; the color of the object is consistent and unaf-
fected by the non-uniform illumination. According to retinex
theory, the human eye perceives the brightness of an object
depending on the ambient illumination and the reflection
of the object surface. Mathematically, a haze-free image J
can be written as a multiplication of two terms, the ambient
illumination A and the reflectance R as follows:

J (x) = A(x)R(x). (3)

Accordingly, Equation (2) can be expressed as

I (x) = A(x)R(x)t(x)+ A(x)(1− t(x)). (4)

We reformulate (4) in a retinex-like model as

I (x) = A(x)(R(x)t(x)+ (1− t(x))). (5)

A is assumed to be spatially-smooth and regarded as a low
frequency term, (R(x)t(x) + (1 − t(x)) serves as the high
frequency term. A can be effectively estimated by applying
a low-pass filtering to the hazy image I . Traditional retinex
algorithms use Gaussian filter for the low frequency compo-
nent estimation, whereas the Gaussian smoothing is isotropic
and not edge-preserving.

In this paper, we propose to solve the problem of ambient
illumination estimation using a guided filter, which is able to
smooth the image as well as preserve edges. Instead of using
the input image, we put forth a channel difference (CD) map
as the reference image to guide the low-pass filtering. The
channel difference map I cd is computed as the difference of
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FIGURE 4. Statistics of BCP from light source patches.

FIGURE 5. Examples of DCP and BCP from nighttime haze-free images.

maximum color channel and minimum color channel value
for each pixel x as in (6).

I cd (x) = max
c1∈{r,g,b}

(I c1(x))− min
c2∈{r,g,b}

(I c2(x)) (6)

The ambient illumination A is written as a linear transform of
guide image I cd in a window ωk centered at the pixel k ,

A(x) = ak I cd (x)+ bk , x ∈ ωk , (7)

where (ak , bk ) is assumed to be constant in ωk , then we
obtain the parameters by minimizing the difference between
the objective image I and the a linear transform of the guide
image I cd with the following cost function:

E(ak , bk ) =
∑
x∈ωk

(ak I cd (x)+ bk − I (x))+ λa2k ). (8)

Here, ωk is the filtering window, λa2k is the smoothing term.
Equation (8) is solved by using the linear ridge regression

model as

ak =

1
|ω|

∑
i∈ωk

I cdi Ii − µk Ik

σ 2
k + λ

(9)

bk = µk − akµk . (10)

Here µk and σ 2
k are the mean and variance of all pixels in the

window ωk from I cd , |ω| is number of pixels, Ik is the mean
of pixels in the window ωk from I .

Having obtained the coefficients ak and bk , we can com-
pute A by (7). Since a pixel x is involved in many filtering
windows, we can finally obtain A(x) by taking an average of
values from all windows overlapping pixel x:

Ac(x) =
1
|ω|

∑
k∈ωx

(ak I cd (x)+ bk ) (11)

Fig. 3 illustrates example results for ambient illumination
estimation. One can see that compared to filtering with input
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image, the proposed channel difference (CD) guided filtering
can better keep the element structures of the night scene.
Note that the light spots appear dark in the illumination map,
this is reasonable since the haze-free variable J of a light
source is frequently high, leading to the direct attenuation
term J (x)t(x) is almost close the hazy image I , the scattering
term A(x)(1− t(x)) can be regarded as a very small value that
close to 0.

C. BRIGHT CHANNEL PRIOR
Unlike the hazy images captured at daytime, there are often
multiple light sources in the hazy images at nighttime, and
the color characteristics of the light source regions (LSR)
are quite different from those of the non-light source
regions (NLSR). Previous works have been attempting to
handle these two distinct regions using one image prior,
such as the dark channel prior (DCP) or the max reflectance
prior (MRP), but the effects are unsatisfactory, since DCP is
not valid in the light source region and MRP fails to handle
the dark object regions such as the grayish roads and walls.

In this work, we propose a novel prior, the bright channel
prior (BCP) for the light source regions. Intuitively, the light
source pixels frequently contains one color channel with a
high intensity value, such as all the color channels in white
lights, red or green channel in yellow lights, blue channel in
blue lights, and so on. Based on the above analysis, the BCP
assumes that, in light source regions of a haze-free image,
the maximum intensity in a local patch is close to 1 for each
color channel. Note that BCP is based on a statistics from
light source regions. Theoretically, it is more robust than the
max reflectance prior resulted from all regions of haze-free
images. Mathematically, BCP is defined as

JDCP(x)=min
j∈ωx

J c(j)→ 0, c ∈ {r, g, b}, x ∈ NLSR (12)

JBCP(x)=max
j∈ωx

J c(j)→ 1, c ∈ {r, g, b}, x ∈ LSR (13)

To demonstrate the effeteness of BCP, 5000 patches (size
15×15) are randomly cropped from 500 nighttime haze-free
images, then these patches are manually labeled as light
source patches and non-light source patches. Fig. 4 shows
the example patches and the statistics of BCP values of light
source patches, it can be seen that over 95% BCP values are
in the range of 0.9 ∼ 1. Fig. 5 shows 4 examples of hazy-free
images and their corresponding DCP and BCP maps, one can
see that DCP mostly fails in the light source regions, where
the BCP work quite well. It proves that the BCP can serve as
a good complementary to DCP in the light source regions.

D. PIXEL-WISE ALPHA BLENDING
Having obtainedA using the guided filter, we can compute the
corresponding transmission maps tDCP and tBCP by applying
the DCP and BCP as

tDCP(x) = 1−min
j∈ωx

( min
c∈{r,g,b}

I c(j)
Ac(j)

) (14)

FIGURE 6. (a) Input nighttime hazy image, (b)-(d) are the dehazing results
using tc

DPP , tc
BCP , and tc .

tBCP(x) = max
j∈ωx

( max
c∈{r,g,b}

I c(j)− Ac(j)
1− Ac(j)

) (15)

Note that tcDCP and tcBCP are only valid in non-light source
and light source regions separately, it is necessary to blend
them together in order to compute the final transmission t .
One way is segmenting the light sources and non-light source
regions with clear border lines in the image, whereas it is
hard to determine the belonging of pixels near the boundaries.
So in this paper, we propose a brightness-aware weighting
method to compute the probability α(x) of each pixel that
belongs to the light source region.

Usually in the light source regions, there exists at least
one pixel with a high intensity in one of the RGB channels,
the higher that value is, the more likely that pixel belongs to
a light source region. So mathematically, we can define the
weight map α in a brightness-aware manner as

α(x) = max
c∈{r,g,b}

(I c)γ . (16)

The blended transmission map t is then computed as

t(x) = tBCP(x) ∗ α(x)+ tDCP(x) ∗ (1− α(x)). (17)
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FIGURE 7. Visual comparisons of our method vs. state-of-the-art methods.

After that, we use a guided filtering to refine the final trans-
mission map t .
There is an illustration of transmission maps tDCP, tBCP,

and weights map α(x) in Fig. 2.
The output dehazed image J can be obtained using the

ambient illumination map A, the transmission map t , and

input hazy image I as

J (x) =
I (x)− A(x)(1− t(x))

t(x)
. (18)

Fig. 6 shows the dehazing results using tDCP, tBCP, and
t . It can be seen that tDCP tends to over-dehaze the light

VOLUME 7, 2019 114625



T. Yu et al.: Nighttime Single Image Dehazing via Pixel-Wise Alpha Blending

FIGURE 8. Object comparison using the data in [29]. Below show the SSIM and PSNR values.

source regions while under-dehaze the dark areas. On the
contrary, tBCP presents pleasant results in the light sources
with preservation of shapes and edges, while the dark areas
seem over-enhanced. The result using t benefits from the
effective pixel-wise alpha blending with both advantages of
DCP and BCP.

IV. EXPERIMENTAL EVALUATION RESULTS
In this section, we present the experimental details and evalu-
ation results by comparing the state-of-the-arts methods with
our proposed method. In subjective evaluation, we compare
the performance of different methods visually on the same
images widely-used in the existing approaches [12], [29].
In object evaluation, the dehazing performance is evaluated
in terms of PSNR and SSIM using the synthetic data. For the
fairness of comparison, the data of the state-of-the-art meth-
ods are from the public codes and images of their authors.
In experiments of our method, the size of DCP and BCP is
fixed to 15 × 15. The kernel size of guided filer for ambient
illumination estimation and transmission refinement is 64,
the smoothing coefficients of both are set to 0.01.

A. SUBJECT COMPARISON ON REAL IMAGES
To demonstrate the effectives of our dehazing method,
we present the dehazing results on real nighttime hazy images
used in the existing research [12]. Currently, there are quite
few research aimed at nighttime image dehazing, we com-
pare our results with the state-of-the-art nighttime dehazing
approaches [12], [29]. Many deep learning based daytime
dehazing methods have been proposed, but none of them
works on nighttime dehazing. To make our results more
convincing, we also include a representative deep learning
based method, DehazeNet [3] for comparison. The visual
comparisons are shown in Fig.7.

In Fig. 7, Li et al.’s [29] and Zhang et al.’s [12] methods
tend to wash out and shift the original colors due to the
excessive de-glow process. From the zoom-in views of the
first image, we can see that our results can keep the orig-
inal shapes and edges of the light sources. Because of the
Dark Channel Prior, Li et al.’s and Zhang et al.’s methods
over-dehaze the light sources, where appear clear burn-out
effects in the zoom-in views. When looking at the sky
regions, we can see there exist color distortion and noise in
Li et al.’s and Zhang et al.’s methods, whereas our method
successfully avoids producing excessive noise when doing
the haze removal. In the third image, both our method and
Zhang et al.’s method can keep the preserve the shape of light
sources. Zhang et al.’s result has better visibility around the
light-sources, but its color in the sky is distorted. In the fourth
image, there are some color distortions in regions of grasses
and leaves of the other two methods. In the last three images
of Fig. 7, our results present more details and visibility in
the dark areas, and also show better preservation of the origi-
nal colors. Although the learning based methods [19], [24]
can preserve the edges in light source regions, it fails to
remove the haze and recover the visibility in almost all
the night hazy images. Currently, the deep learning-based
daytime dehazing methods are trained with daytime models
and daytime datasets, and the network architecture is not
designed for nighttime scenes. The other obstacle prevents
the learning methods being used for nighttime dehazing is the
lack of ground truth data (including hazy images and their
corresponding hazy-free images, ambient illumination, and
transmission).

From these visual comparisons, we can conclude that
generally our method can better keep the color consistence
with the input image. It also has the advantage in preserving
the shape and edges of light sources, which is benefited
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FIGURE 9. Sample results using synthetic images with 1 light source.

from the proposed brightness-aware alpha blending method.
In addition, our method tends to produce less artifacts in the
sky regions.

B. OBJECT COMPARISON ON SYNTHETIC DATA
We also do quantitative evaluations on the dehazing results
in terms of SSIM and PSNR. The synthetic data comes form
Li et al.’s [29] paper with hazy image and its ground truth
haze-free image as a reference. Fig. 8 shows the comparison
results.We can see that ourmethod achieves the highest SSIM
value and PSNR values.

To conduct more objective comparisons. We follow the
method in [12] to synthesize the nighttime hazy images. The
Middlebury 2005 and 2006 datasets [25] are used for generat-
ing the synthetic data, the ground truth images (regarded asR)
and disparity maps are selected to simulate the real nighttime
scene with light sources. The light source is assumed to be in

FIGURE 10. Sample results using synthetic images with 2 light sources.

the middle of the image, and the ambient illumination map
is computed as A(x) = 1 − α × dp(x), where dp(x) is the
Euclidean distance from pixel location to the light source
center. In case of the multiple light sources, the final A(x) is a
combination of all Ai from k light sources. The transmission
map is computed as t(x) = 0.8d(x), where d is the normal-
ized disparity map with black holes filled with their nearest
neighbors. The synthetic hazy images are obtained using (4).
We synthesize nighttime hazy image with three α values (0.4,
0.6 and 0.8), two groups experiments are conducted with
1 light source and 2 light sources in the image. The SSIM
and PSNR values of different methods against our method are
shown in Table 1 and Table 2. Fig. 9 and Fig. 10 also shows
examples for dehazing results using synthetic images. One
can see that our method outperforms the state-of-the-art in all
experiments using SSIM metric and 4 out of 6 experiments
using PSNR.
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TABLE 1. SSIM and PSNR values using image with 1 light source.

TABLE 2. SSIM and PSNR values using image with 2 light sources.

TABLE 3. Results of Runtime Comparison.

C. COMPLEXITY ANALYSIS
The proposed method in this work is efficient. The main
computation comes from the guided filtering and Max/Min
operations. Guided filtering is applied 3 times in total for
computing the ambient illumination and transmission maps
with complexity O(N ). Since Max/Min operations are con-
ducted spatially in all color channels, both the color channels
and spatial mask size are constant, so the iteration is linear
times of the input data, whose complexity is O(N ).
For the comparison with other methods, we conduct the

experiments with runtime analysis using Matlab. Li et al.’s
code is from their webpage. Zhang et al.’s code is provided in
C++. For fair comparison, we reimplemented their algorithm
exactly following the procedures and parameter values pro-
vided in the paper using Matlab. By resizing 20 input images
into size of 640×480, we compute the average processing
time of our method and the other approaches as shown
in Table 3. Our method is more than 10 times faster than that
of Li et al.’s method where the color version of guided filter
is used, and a little faster than Zhang et al.’s method.

V. DISCUSSIONS AND CONCLUSION
In this paper, we have proposed an effective nighttime
image dehazing method by focusing on the estimation

of ambient illumination and transmission. For estimating
the spatially-variant illumination, we reformulate the atmo-
spheric scattering model in a Retinex-like form according
to the Retinex theory, which is then solved by a channel
difference guided filtering. For the transmission estimation,
we utilize the proposed BCP and traditional DCP to deal
with the light source regions and non-light source regions
separately. Subsequently, a pixel-wise alpha blending method
guided by the brightness-aware map is proposed to obtain
the final transmission map. Comprehensive experimental
evaluations show that our method outperforms the state-of-
the-art approaches on both real and synthetic hazy images.
Specially, our dehazing results show advantages on keeping
the consistence of colors and preserving edges of the light
source regions. However, our work also shares a common
limitation with most of the methods using the atmospheric
scattering model, it is relatively simple and may be invalid in
some sophisticated scenes. More advanced models with more
parameters need to be developed in the future. We believe
that new learning networks and datasets will be proposed
for nighttime dehazing in the future, which is also our next
research direction.
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