
Received July 8, 2019, accepted August 4, 2019, date of publication August 19, 2019, date of current version August 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936139

A Value Set Analysis Refinement Approach
Based on Conditional Merging and
Lazy Constraint Solving
JIAN LIN , LIEHUI JIANG, YISEN WANG , AND WEIYU DONG
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China

Corresponding author: Jian Lin (ling_pro@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 61802431.

ABSTRACT Value set analysis is a common static binary program analysis approach. Value set analysis
attempts to identify a tight over-approximation of the program state at any given point in the program and
can be used to detect vulnerability. Existing memory corruption detection analysis technologies based on
value set analysis have a high false positive rate, because value set analysis suffers from a lack of accuracy.
We observed that two main sources of imprecision in value set analysis are merge operation and failed
branch conditions tracking. In order to address above problems, in this paper, we propose a value set analysis
refinement approach based on conditional merging and lazy constraint solving. We propose a variable
dependence analysis algorithm to divide program paths into subsets and only merge the states which satisfy
the condition that the states are from the same subset, which reduces the imprecision from the merging
operation. We collect path predicates as path constraint and solve the path constraint using Satisfiability
Modulo Theories (SMT) solver lazily to get a tighter number range of the variable when a variable need be
refined, which reduces the imprecision from the failed branch conditions tracking.We implement a prototype
system RVSA based on the proposed approach and verify its effectiveness according to experimentation.
Compared with state-of-the-art approach, the experimental results demonstrate that the false positive rate is
reduced by 12.9%. Furthermore, using our proposed approach, 25 zero-day vulnerabilities are found in the
Netgear httpd binary.

INDEX TERMS Value set analysis, value set analysis refinement, conditional static analysis, SMT solver,
vulnerability detection.

I. INTRODUCTION
Binary vulnerability detection techniques can be roughly
divided into two categories: static analysis and dynamic
analysis [1], [2]. The dynamic analysis, such as fuzzing [3],
[4] and dynamic taint analysis [5], [6], examines program
behavior while it is running in a given environment. Dynamic
binary analysis allows you explore individual paths which
makes it very precise but at the expense of less code cov-
erage. And the dynamic analysis needs an environment for
execution. For programs in IoT devices, dynamic analy-
sis approaches usually rely on the physical hardware [7] or
emulator [8]. But acquiring hardware is expensive and not
scalable [9], and building an accurate emulator for differ-
ent devices is difficult and time-consuming. Static analysis

The associate editor coordinating the review of this article and approving
it for publication was Pietro Savazzi.

generally reasons about a program without executing it.
Static analysis lifts the binary program into assembly code
or intermediate language, uses a specialized model to model
program properties, and detects the properties using security
strategy to find the vulnerability. Although static analysis is
not accurate, it has high code coverage and is not limited by
the execution environment.

Value Set Analysis (VSA) is a common static analysis
approachwhich is based on abstract interpretation theory. The
abstract interpretation was proposed by P. Cousot’s lattice
theory in 1977 to simplify and approximate the calculation
of fixed points, and achieved a balance between the effi-
ciency and accuracy [10]. VSA attempts to identify a tight
over-approximation of the program state (i.e., values in mem-
ory and registers) at any given point in the program. It can
be used to understand the possible targets of indirect jumps
or the possible targets of memory read and write operations.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 114593

https://orcid.org/0000-0002-8504-5480
https://orcid.org/0000-0002-0181-2137

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

The original design of VSA was proposed by Balakrishnan
and Reps [11], [12], which was incorporated into a binary
program static analysis platform called CodeSurfer/x86 [13].

Angr [14] implemented a VSA-based memory corruption
detection analysis to detect buffer overflow vulnerability by
checking the target address of the memory read and write
operations, called angr-VSA. Evaluating using the DARPA
CGC dataset [15], angr-VSA was able to identify 27 actual
vulnerabilities while producing 130 false positives, resulting
in a false positive rate of 82.8%. Too many false positives
are unacceptable since each potential vulnerability need be
examined further manually. So, false positive is a big problem
of VSA.

The results of VSA are over-approximate, which suffer
from a lack of accuracy. In VSA, the fully merging strategy is
adopted. For two states which reach to the same basic block,
the VSA will merge the two states into a new merged state,
and the merge operation usually causes a certain precision
loss. Tracking branch conditions helps us constrain variables
in a state after taking a conditional exit, which produces a
more precise analysis result. When a new path predicate is
seen, VSA will apply a solver to solve it. But if the solver is
too heavyweight, it is time consuming and impractical. If the
solver is too lightweight, it will fail to track some complex
branch conditions and cause a precision loss.

In order to increase the precision of VSA, we propose a
value set analysis refinement approach based on conditional
merging and lazy constraint solving, which can prune the
false positives automatically. Instead of fully merging strat-
egy, we divide program paths into subsets by our proposed
variable dependence analysis algorithm, and conditionally
merge the abstract states from the same subset, which reduces
the imprecision introduced by the merging operation.We also
apply a heavyweight solver: Satisfiability Modulo Theories
(SMT) [16] solver for lazy constraint solving. Lazy constraint
solving collects path predicate as path constraint of state
during VSA. Later, when a variable need be refined, we use
SMT solver to solve path constraint to obtain a tighter number
range of the variable, which reduces the imprecision from
failed branch conditions tracking.

We implement a prototype system RVSA (Refined Value
Set Analysis) based on our approach and evaluate on DARPA
CGC dataset and Netgear httpd binary. The experimental
result shows that false positive rate of RVSA reduced by
12.9%, compared to angr-VSA.

In summary, we make the following contributions:
• We propose a variable dependence analysis algorithm
to divide program paths into subsets. Each subset cor-
responds to a set of paths with same data dependence.
Value set analysis on each subset separately can get a
more precise result.

• We propose a value set analysis refinement approach
based conditional merging and lazy constraint solving to
prune false positives. Conditional merging only merges
the states from the same subsets. Lazy constraint solving
collects path predicate as path constraint of state and

use SMT solver to solve path constraint lazily when
the variable need be refined. The proposed approach
can reduce the imprecision from the merge operation
and failed branch conditions tracking, and increase the
accuracy of VSA.

• We implement a prototype system and verify its effec-
tiveness. The experiment demonstrates that the false
positive rate is reduced by 12.9% than the state-of-the-
art approach and 25 zero-day vulnerabilities are found
in the Netgear httpd binary.

The remainder of this paper is organized as follows.
Section II introduces the traditional VSA, and illustrate the
limitation of VSA on a motivating example. The design of
our approach is presented in section III. The implementation
of our approach is provided in sections IV. An evaluation of
our approach is presented in section V, discussion and future
work are explained in section VI, related work is introduced
in section VII, and section VIII concludes the paper.

II. BACKGROUND
A. VALUE SET ANALYSIS
VSA is a combined numeric-analysis and pointer-analysis
algorithm that determines an over-approximation of the set
of numeric values or addresses that each register and mem-
ory location holds at each program point [12]. The abstract
domain of VSA includes memory region, value set and
abstract state.

1) MEMORY REGION
During the analysis of an executable, VSA breaks the address
space into a set of disjoint memory areas, which are referred
to as memory regions. Every memory region has a region
identifier: RegionId . For a given program, there are three
kinds of regions: (1) the global-region contains informa-
tion about locations that correspond to global data, (2) the
AR-regions contain information about locations that corre-
sponds to the activation record of a particular procedure, and
(3) the Malloc-Regions contain information about locations
that are allocated at a particular malloc site. Each memory
region represents a group of abstract locations that have
similar runtime properties. Abstract location represents the
address of the variable, called a− loc.

2) VALUE SET
A value set is a safe approximation for a set of addresses
and numeric values. Suppose that n is the number of regions
in the executable. A value set is an n-tuple of strided
intervals of the form s [l, u], with each component of the
tuple representing the set of addresses in the corresponding
region. A strided-interval s [l, u] represents the set of integers
γ (s [l, u]) := {i |l ≤ i ≤ u, i ≡ l (mods)}. The s is called the
stride, the [l, u] is called the interval. When s is 0, 0 [l, l]
represents the singleton set {l}.

3) ABSTRACT STATE
We define the memory region as a map from the a-loc to
value set: Region := a − loc → ValueSet , and define

114594 VOLUME 7, 2019

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

the abstract state as a map from region identifier to region:
State := RegionId → Region. VSA will identify an abstract
state at each program point.

Algorithm 1 Value Set Analysis Algorithm
Input: program’s control flow graph CFG
Output: abstract states S
1: b0 = EntryBlock(CFG)
2: W = {b0}
3: S [b0] = InitState()
4: while W 6= ∅ do
5: b = W .removeNext()
6: states = Analysis(b, S [b])
7: for sn ∈ states do
8: bn = sn.block
9: if bn in S then

10: if sn 6= S[bn] then
11: S [bn] = Merge(S[bn], sn)
12: W .add (bn)
13: end if
14: else
15: S [bn] = sn
16: W .add (bn)
17: end if
18: end for
19: end while
20: return S

The VSA algorithm is shown in Algorithm 1. The set
W is here called the work-list [17] with operations add and
removeNext for adding and removing an item. The work-list
is sorted by topological order and initially contains the entry
basic block, indicating forward analysis from the entry basic
block.

In each iteration of the while-loop, the Analysis function
will be called to analysis the selected basic block at Line 6.
The Analysis function will generate multiple output states
based on the input state. Those output states that changing
are added to the work-list.

When there are two input states at the same basic block,
VSA will merge the two input states as a new input state at
Line 11. The merging operation will merge the value set of
every variable in the abstract states. The merging operation
equation of a variable is as shown in equation 1, where sm
is generally the maximum common divisor of s1, s2 and
absolute value of l2 − l1, lm is the minimum value of l1 and
l2, and um is the maximum value of u1 and u2.

sm [lm, um] = s1 [l1, u1] ∪ s2 [l2, u2]

= sm [min (l1, l2) ,max (u1, u2)] (1)

When the program reads or writes memory, according to
the value set of the destination address and length of the
memory read or write, we can detect whether it exceeds
the reversed space of corresponding variable. If exceeds,
it is reported as a potential vulnerability. However, because

FIGURE 1. Motivating example.

the value set obtained by the VSA is over-approximate, not
accurate, it will result in a high false positive rate.

B. MOTIVATING EXAMPLE
A motivating example where false positives occur is shown
in Figure 1. The source code of the example is on the left.
The Control Flow Graph (CFG) with five basic blocks is on
the right. VSA will produce two false positives, including the
read function at basic block B4 and the memcpy function at
basic block B5.

There are two paths B1->B2->B4 and B1->B3->B4, which
can reach B4. No mater which path it takes, the value of
variable v4 is 30, so there will be no overflow at B4. However
in VSA, the output states of B2 and B3 will be merged at the
entrance of B4. In the output state of B2, the value set of v2
is 0[10, 10], and the value set of v3 is 0[20, 20]. In the output
state of B3, the value set of v2 is 0[15, 15], the value set of
v3 is 0[15, 15]. In the merged state, the value set of v2 will
be 5[10, 15], the value set of v3 will be 5[15, 20]. When the
merged state is used as the input state to analyze B4, the read
function performs a memory write operation. The write target
address is str1 and the write length is v4. The value set of
v4 is 5[25, 35], and the reserved size of the str1 is 30. The
maximum value of v4 exceeds the size of str1, so an overflow
may occur and a potential vulnerability will be reported. The
reason for this false positive is that VSA is not path sensitive,
so the state merging at the entrance of B4 expands the value
set of v4.

At B5, the memcpy function also performs a memory
write operation with a target address of str2 and a size of
v1. Arriving at B5 requires input to satisfy path constraint
v1*(v1+1)<100. Obviously the value of v1 cannot exceed
10, so no overflow occurs. However the value set of v1
from VSA is 1

[
0, 232 − 1

]
, this is a false positive. The main

reason for this false positive is that the numeric abstraction
domain is used in the VSA, and the relationship between
variables is ignored. Considering this branch condition, only
the value set of v5 is limited to 1[0, 99], and there is no
way to limit v1 which has a numerical relationship with v5.
Affine-Relation Analysis has been proposed as a technique to

VOLUME 7, 2019 114595

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

FIGURE 2. Approach overview.

obtain relations among the variables [18]. However, it is both
complicated to implement, and is computationally expensive
in reality. Angr applies an algebraic solver to path predicates.
The algebraic solver attempts to simplify and solve path
predicate to obtain a number range for the variables involved
in the path predicate. But if the path predicate has multiple
variables or non-linear constraint, the algebraic solver will
fail to simplify and solve the path predicate. Here, the path
predicate v1*(v1+1)<100 has non-linear constraint, so the
path predicate cannot be solved to get the number range of
variable v1.

III. DESIGN
A. OVERVIEW
The main reason why VSA produces false positives is that the
value of the destination address and length may be inaccurate
due to over-approximate results of VSA. Therefore, refining
the value set of the destination address and length to obtain a
more accurate value set can effectively reduce false positive
rate.

This paper proposes a value set analysis refinement
approach based on conditional merging and lazy constraint
solving. The approach overview is shown in Figure 2. The
following is a description of how the approach works in
conjunction with the motivating example in Section II-B.
First, we use the traditional VSA to analyze the binary

program and get pairs of basic block and variables which
may overflow. When analyzing binary program, the memory
object and register are treated as variables, and the address
of variable is represented as a − loc. The results obtained in
the example program will be (B4, v4) and (B5, v1), indicating
that the variable v4 at B4 and the variable v1 at B5may cause
a vulnerability. Therefore, the next steps are to refine these
variables. We call the variable that needs be refined as the
target variable, and the basic block of the target variable as
the target basic block.

Then, we propose a new algorithm for variable dependence
analysis to divide program paths into subsets (Section III-B).
Variable dependence analysis of (B4, v4) in the example
program will get two subsets, as shown in Figure 3.
Next, we use the conditional merging VSA to analyze the

binary program (Section III-C). Only states from the same
subsets are merged. So the state from B2 to B4 and the state
from B3 to B4 come from different subsets, so they are not
merged. Thus, there will be two states at B4, and the value

FIGURE 3. Variable Ddependence Ssubgraphs of variable (B4, v4).

sets of v4 in the two states are detected separately, both are
0[30, 30], so the variable (B4, v4) will not overflow.
Finally, Path predicate is collected as path constraint of

abstract state in VSA. After reaching the target basic block,
we use a SMT solver to solve the corresponding path con-
straint lazily and get a tighter number range of the target
variable (Section III-D). In the example program, when B5 is
reached, the path constraint is v1*(v1+1)<100. The number
range of v1 from the SMT solver is [0, 9], so the value set of
v1 is 1[0, 9], and the variable (B5, v1) will not overflow.

B. VARIABLE DEPENDENCE ANALYSIS
In order to describe variable dependence analysis, we present
two new notions: Variable Dependence and Variable Depen-
dence Subgraph.
Definition 1 (Variable Dependence): For an execution

path that reaches the target basic block, back tracking the
target variable will know which basic blocks are involved
in the computation of the final value of the target vari-
able. We define the set of these basic blocks as Variable
Dependence of this path.
Definition 2 (Variable Dependence Subgraph): Variable

Dependence Subgraph is a subgraph of CFG. All paths in
a Variable Dependence Subgraph have the same Variable
Dependence, start with the first basic block of the Variable
Dependence and end with the target basic block.

If two execution paths have the same Variable Depen-
dence, the value set of the target variable is affected by the
same instructions. So only states from the same Variable
Dependence Subgraph can been merged. We propose a vari-
able dependence analysis algorithm to generate all Variable
Dependence Subgraphs for target variable.

If there are loops in the program, it is impossible to get all
execution paths, which is known as path explosion problem.
We use loop unrolling to mitigate this problem. The number
of loop unrolls is set to 2, indicates that the loop body can
execute once or more. Variable dependency analysis is to
find all Variable Dependencies, it is enough to loop unrolls
twice. After loop unrolling, we will get a new CFG, which is
a directed acyclic graph.

Variable dependency analysis algorithm is shown in
Algorithm 2. The algorithm takes the target variable v0,
the target basic block b0, and the loop-unrolled CFG as
inputs. The setW is here called the work-list with operations

114596 VOLUME 7, 2019

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

Algorithm 2 Variable Dependence Analysis Algorithm
Input: target variable v0, target basic block b0,

loop-unrolled CFG
Output: Variable Dependence Subgraphs G
1: g0 = EmptyGraph()
2: d0 = []
3: vs0 = [v0]
4: W = {(b0, vs0, d0, g0)}
5: G = {}
6: while W 6= ∅ do
7: b, vs, d, g = W .removeNext ()
8: vsd = GetDefineVar(vs, b)
9: if vsd 6= ∅ then

10: vsu = AnalysisBlock (vsd)
11: vs = (vs\vsd) ∪ vsu
12: d = d .add(b)
13: if vs=∅ then
14: G [d] = G [d] ∪ g
15: continue
16: end if
17: end if
18: for b′ ∈ b.prevs do
19: g′ = g.addEdge(b′, b)
20: W .add

((
b′, vs, d, g′

))
21: end for
22: end while
23: return G

add and removeNext for adding and removing an item.
The item is a tuple of four elements (b, vs, d , g). The element
b is the basic block to be analyzed, element vs is a set of
variables whose definition has not been analyzed, element d
is the Variable Dependence which has been analyzed, element
g is the corresponding Variable Dependence Subgraph. The
W is sorted by topological reverse order of basic blocks and
initially contains the target basic block, indicating backward
analysis from the target basic block.

In each iteration of the while-loop, an item will been
selected to be analyzed. At Line 8, the functionGetDefineVar
will get a set vsd , which is a subset of vs and whose element
is defined in the basic block b. This can be obtained quickly
by Use-Define Chain. A Use-Define Chain is a data structure
that consists of a use of a variable, and all the definitions
of that variable that can reach that use without any other
intervening definitions. For every used variable v in vs, we can
get all basic blocks that define the variable v. If these basic
blocks contain the current basic block b, so v is define in basic
block b and is added to set vsd .
If the basic block b has defined variables vsd , at Line

10, the function AnalysisBlock will be called to analyze all
instructions of the basic blocks according to the reverse order
and get all variables vsu that are involved in the computation
of the value of variables vsd . Then, we update the vs through
removing vsd and adding vsu.

Algorithm 3Marking Basic Blocks Algorithm
Input: the number of subgraphs n, subgraphs
{CFG0, . . . ,CFGn−1}

Output: marked basic blocksMB
1: MB = {}
2: for i = 0 to n do
3: for j = i+ 1 to n do
4: CFGc = CommonSubGraph(CFGi,CFGj)
5: edges = IncomingEdges(CFGi,CFGc)
6: b = NearestPublicParentVertex(edges)
7: MB.append(b)
8: end for
9: end for
10: return MB

If vs is an empty set, indicating that all the variables
involved in this path have been analyzed, so we store the
final Variable Dependence Subgraph g into G at Line 14. G
is a map from Variable Dependence to Variable Dependence
Subgraph. If vs is not an empty set, indicating we need to
continue the backward analysis, thus we add the previous
basic blocks to the work-listW at Line 20.

C. CONDITIONAL MERGING
By variable dependence analysis, we can get all Variable
Dependence Subgraphs of the target variable. If two states
that reach the same basic block are from the same Variable
Dependence Subgraph, then the two states can be merged,
otherwise they cannot be merged.

So we need to knowwhich Variable Dependence Subgraph
the state comes from. An easy way is to look up all the basic
blocks which the state traverses. But this is expensive because
it will compare all traversed basic blocks of the two states
at each merge points. We want to identify a subset of basic
blocks such that different Variable Dependence Subgraphs
remain differentiable. Our goal is to mark some basic blocks
on the CFG such that, for each pair of Variable Dependence
Subgraph, we are able to distinguish them by only taking
those marked basic blocks into consideration. That is, a path
is now represented by the sequence of marked basic blocks it
traverses instead of all of the traversed basic blocks.

Because all Variable Dependent Subgraphs end with the
target basic block, any two Variable Dependence Subgraphs
have a largest common subgraph which contains the target
basic block. Any Variable Dependence Subgraph has one
or more incoming edges into the largest common subgraph.
Back tracking these edges will get a nearest public par-
ent basic block. Marking this basic block can distinguish
this Variable Dependence Subgraph from another Variable
Dependence Subgraph.

The algorithm for selecting marked basic blocks is
shown in Algorithm 3. The algorithm takes the number of
Variable Dependence Subgraphs n and all Variable Depen-
dence Subgraphs CFG0 to CFGn−1. For any two Variable

VOLUME 7, 2019 114597

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

Dependence Subgraphs CFGi and CFGj, we use function
CommonSubGraph to get the largest common subgraph
CFGc At Line 4. Then, we get all edges which enter CFGc
from CFGi, get the nearest public parent basic block b of the
edges and add b to marked basic blocksMB.

After the marked basic blocks are obtained, we need
reanalyze the program using conditional merging VSA. Con-
ditional merging only affects the states of the basic blocks
in the Variable Dependence Subgraphs, so instead of rean-
alyzing the entire program, we only reanalyze the union
of all Variable Dependence Subgraphs CFGu, as shown in
Equation 2.

CFGu = CFG0 ∪ CFG1 ∪ . . . ∪ CFGn−1 (2)

We modify traditional VSA algorithm to support condi-
tional merging. The algorithm of conditional merging VSA
is shown in Algorithm 4. Compared with the traditional
VSA, there are the following differences. First, at Line 1-6,
the initial value of the work-list is no longer the program
entry basic block, but all the nodes whose in-degree is 0.
The initial state of these nodes is the state obtained from the
traditional VSA states S0. Second, at Line 9-10, the state of
a basic block is no longer a single state, and multiple states
may exist at the same time. Therefore, list is used to store the
states of a basic block and output states need be generated
for each input state separately. Third, at Line 12-13, after a
basic block analyzed, check whether the basic block is in the
marked basic blocks MB, and if so, add the basic block to
the mb set of the state. Finally, when need to merge, we use
functionConditionalMerge to do conditional merging at Line
21. In function ConditionalMerge, only the states with the
same mb set are merged.

D. LAZY CONSTRAINT SOLVING
Tracking branch conditions helps us constrain variables in a
state after taking a conditional exit, which produces a more
precise analysis result. When a new path predicate is seen
(i.e., when following a conditional branch), traditional VSA
attempts to simplify and solve it to obtain a number range for
the variables involved in the path predicate. However there
are many path predicates, so the traditional VSA only use a
lightweight solver with limited ability.

We additionally apply a heavyweight constraint solver:
SMT solver. Instead of solving at every time when a new
path predicate is seen, we collect the path predicate as path
constraint of the state. Later, when value set of a variable need
be refined, we simplify path constraint and solve it using the
SMT solver.

Firstly, we need collect path predicate as path constraint
during the VSA. For each abstract state in VSA, we use
σ to represent the corresponding path constraint. The σ of
the initial state is null. When a conditional branch (the path
predicate is e) is followed, VSA will have two output states
with jump or not jump. For the state with jump, update the
path constraint to σ ∧ e. For the state with not jump, update
the path constraint to σ ∧ ¬e.

Algorithm 4 Conditional Merging Value Set Analysis
Algorithm
Input: union of subgraphs CFGu, initial states S0, marked

basic stateMB
Output: abstract states S
1: bs0 = EntryBlocks(CFGu)
2: W = {}
3: for b0 in bs0 do
4: W .add (b0)
5: S [b0] = {S0 [b0]}
6: end for
7: while W 6= ∅ do
8: b = W .removeNext()
9: for inState in S[b] do

10: states = Analysis(b, inState)
11: for sn ∈ states do
12: if b in MB then
13: sn.mb.add(b)
14: end if
15: bn = sn.block
16: if bn not in CFGu then
17: continue
18: end if
19: if bn in S then
20: if sn not in S[bn] then
21: S[bn] = ConditionalMerge(sn, S[bn])
22: W .add (bn)
23: end if
24: else
25: S [bn] .add(sn)
26: W .add(bn)
27: end if
28: end for
29: end for
30: end while
31: return S

When two states are merged, the path constraint update to
σm=σ1 |σ2 . In most cases, the merged state comes from the
two states separated from the previous conditional branch,
so σ1 and σ2 have some common path predicates sigma0.
Therefore, the merged path constraints can be simplified, and
the simplified equation is shown as Equation 3.

σ0 = CommonPredicates (σ1, σ2)

σ1
′
= σ1 − σ0

σ2
′
= σ2 − σ0

σm =

{
σ0 if σ1′ = ¬σ2′

σ0 ∧
(
σ1
′
|σ2
′
) (3)

Then, when we need to refine a variable (i.e. v), the path
constraint is further simplified for the variable v. The path
predicates unrelated to the variable v are removed. Based
on the previous variable dependence analysis, a set of all
variables related to variable v can be obtained as a set vs.

114598 VOLUME 7, 2019

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

For a single path predicate σ , if all variables in σ are not
in vs, it means σ is not related to the variable v. When the
path constraint has multiple path predicates connected by
operation ∧ (i.e. σ = σ1 ∧ σ2 ∧ . . . ∧ σn), for every path
predicate σi, σi can be removed from the path constraint
if σi is not related to the variable v. When path constraint
has multiple path predicates connected by operation | (i.e.,
σ = σ1|σ2| . . . |σn), if there exists a path predicate σi not
related to the variable v, then the entire path constraint σ is
also considered to be not related to variable v.
Finally, we use the SMT solver to solve the minimum and

maximum values of the variable v as the number range of
the variable. The newly generated number range is generally
within the range of the original value set. The newly gener-
ated number range is only determined by the collected path
constraint. The path constraint may be not complete, such
as the use of widening operators. So the newly generated
number range may not within the range of the original value
set in this case.We perform an intersection between the newly
generated number range and the original value set of variable
v. The equation is shown in Equation 4.

s
[
l ′, u′

]
= s ([l, u] ∩ [min (v|σ) ,max (v|σ)]) (4)

IV. IMPLEMENTATION
We implement a prototype system using the approach
proposed in this paper, called RVSA (Refined Value Set
Analysis).

We use angr-VSA as traditional VSA. In angr-VSA,
The main interface of VSA is the Value Flow Graph (VFG).
The VFG is an enhanced CFG that includes the program state
representing the VSA fix-point at each program location.
The program states contained in the VFG present memory
in an abstract layout provided by the SimAbstractMemory
memory model, with values in memory represented by value-
sets, as provided by Claripy. The memory read and write
operations are hooked by SimInspect, and then we detect
whether the variable is out-of-bounds access by the value set
of the destination address and length of the memory read and
write to find potential vulnerabilities. We use angr-VSA to
get target basic blocks and target variables.

For each variable that need be refined, we use the
VSA_DDG analysis of angr to get the use-define chain and
get Variable Dependence Subgraphs by variable dependence
analysis algorithm. Then we use conditional merging VSA to
get multiple states of target basic block from different Vari-
able Dependence Subgraphs. Finally, we detect vulnerability
in each state separately.

Angr lift binary to VEX intermediary language, and use
engine SimEngineVex to execution VEX. When execution,
we can get the path predicate, which is the claripy.ast.bool
type. For each state, we also get a path constraint. We use
Z3 as our SMT solver [19]. Z3’s main functionality is to
check the satisfiability of logical formulas over one or more
theories. Z3 can produce models for satisfiable formulas.
Besides, Z3 also can solve optimization problems over SMT

formulas, MaxSMT, and their combinations [20]. We use
Z3 to solve the path constraint to get themaximal andminimal
of target variable.

V. EVALUATION
To evaluate RVSA, this section attempts to answer the
following questions:

Effectiveness of vulnerability detection. How effective
is RVSA’s approach in reducing the false positive rate of
VSA-based vulnerability detection analysis when analysis
complex, real-world software? (Section V-B).

Justifying design decisions. How effective are the design
decisions made by RVSA including conditional merging and
lazy constraint solving in terms of false positives pruning?
(Section V-C and V-D).

Performance. How much performance overhead does
RVSA increase, including running time and memory con-
sumption? (Section V-E).

A. EXPERIMENTAL SETUP
We evaluated our system on a Lenovo desktop equipped
with an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz with
4 cores and 16 GB RAM, running Linux Ubuntu 18.04 TLS.

In these experiments, we compared the results reported by
both RVSA and angr-VSA. The reason why angr-VSA was
chosen for comparison is twofold: 1) angr is a renowned static
analysis tool for binaries and VSA is an important feature
of angr; and 2) to the best of our knowledge, angr-VSA
achieves one of the lowest false positive rate among existing
VSA-based memory corruption detection tools.

In order to compare with angr-VSA, we choose the
same DARPA CGC dataset [15]. As part of Cyber Grand
Challenge, DARPA released a set of binaries that run in a
customized OS called DECREE. There are 131 services in
this dataset, but 5 of these involve communication between
multiple binaries, so we only consider the 126 single-binary
applications. For each binary in the dataset, the analysis
begins with the main function.

To verify the ability for detecting real-world vulner-
abilities, we also choose the HTTP server of Netgear
R6400 Nighthawk Routers as dataset. The latest version
of the device firmware is R6400-V1.0.1.46_1.0.32, the http
server binary is /usr/sbin/httpd, and the httpd binary can be
obtained by unpacking the firmware using binwalk. Httpd
is developed by Netgear vendors and not open source. The
size of httpd binary is 1.6MB, so the binary is more compli-
cated. In order to simplify the analysis, the analysis doesn’t
begin with the main function. Preliminary analysis of the
program, we found there are a dispatch table in memory
address 0x12299C and 174 handler functions in this dispatch
table. Accessing different cgi via http post request, the cor-
responding handler function will be executed and the http
post data is the first argument of the handler function. So,
the analysis starts with these handler functions, and treats the
first parameter as the input content.

VOLUME 7, 2019 114599

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

TABLE 1. Vulnerability detection result.

B. EFFECTIVENESS OF VULNERABILITY DETECTION
The vulnerability detection result is shown in Table 1.
We define FP for the number of false positive, which has no
vulnerability and is determined to be potential vulnerability.
We define Bugs for the number of found actual vulnerability.
Then false positive rate is calculated as Equation 5.

FPR =
FP

FP+ Bugs
(5)

The number of bugs found by RVSA is the same with
angr-VSA. It proves RVSA has not missed any of actual
vulnerability. In DARPA CGC dataset, we found 27 actual
vulnerabilities in 19 different binaries, mainly stack overflow
vulnerabilities. In Netgear httpd binary, 30 vulnerabilities
were detected and submitted to Netgear Seurity Team. After
further investigation by the Netgear team, they were previ-
ously made aware of 5 vulnerabilities as they received them
from another researcher. The remaining 25 vulnerabilities
were received as zero-day vulnerability, and granted as the
vulnerability ID of the vendor, as shown in Table 2. Among
the 25 zero-day vulnerabilities, there are 19 stack overflow
vulnerabilities, 5 out-of-bounds read and write vulnerabilities
and one null pointer dereference vulnerability. Since Netgear
has not released new patches, more details do not allow to be
disclosed.

RVSA has lower false positive rate than angr-VSA.
Through conditional merging and lazy constraint solving by
RVSA, approximately half of the false positives are effec-
tively pruned. In DARPA CGC dataset, the number of false
positives was reduced by 60, and the false positive rate was
reduced by 10.7%. In Netgear httpd binary, the number of
false positives reduced by 123, and the false positive rate
reduced by 14.2%. In summary, the false positives reduced
from 334 to 151, and the false positive rate reduced by 12.9%.

The result of pruned false positives is show in Table 3.
The number of false positives pruned by conditional merging
is 121, and the number of false positive pruned by lazy
constraint solving is 62. The ratio is about 2:1.

TABLE 2. Zero-day vulnerabilities in Netgear httpd binary.

TABLE 3. Result of pruned false positives.

C. CONDITIONAL MERGING
We use conditional merging to refine the target variable for
the total 334 false positives. The result of conditional merging
for pruning false positives is shown in Figure 4. For each
false positive, we can get the number of Variable Dependence
Subgraphs. The number of Variable Dependence Subgraphs
at least 1 and up to 30. If the number is 1, the state cannot
be decomposed, so these false positive cannot be pruned. The
number of false positives is shown as red line. As the number
of Variable Dependence Subgraphs increases, the number
of false positives decreases, indicating most abstract states
only can decomposed into a few states. The pruned false
positive is shown as the blue line. As the number of Variable
Dependence Subgraphs increases, the results aremore precise
and the rate of pruning increases.

114600 VOLUME 7, 2019

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

FIGURE 4. Conditional merging for pruning false positive.

FIGURE 5. Decompiled pseudocode of function sub_21D10.

Case Study. In the program of Netgear httpd, when han-
dling the ‘‘pppoe2.cgi’’ request, the function sub_21D10 will
be executed. Part of the function’s decompiled pseudocode is
shown in Figure 5, and the CFG is shown in Figure 6. The
variables v10, v12 and v15 are string type, and the lengths
of these variables are represent as len(v10), len(v12) and
len(v15). The reversed size of the variable v15 is 1024 bytes,
so the maximum of len(v15) should not be more than 1024.
When the string v10 contains the character ’.’, it will be
executed into the true branch, otherwise it will enter the
false branch. Both in the true and false branches, v15 and
v12 are assigned separately. In the true branch, the value
set of len(v15) is 1[198, 710], and the value set of len(v12)
is 0[70, 70]. In the false branch, the value set of len(v15)
is 0[198, 198], and the value set of len(v12) is 1[70, 582].
If the two states merge, the value set of len(v15) becomes
1[198,710], the value set of len(v12) becomes 1[70,582].
Then the strcat(v15, v12)will have a memory write operation
which target address is v15+len(v15) and size is len(v12).
The maximum value of len(v15)+len(v12) is 1292, which
exceeds the size of 1024 reserved by the variable v15, so angr-
VSA will report this as a potential vulnerability.

The variable dependence analysis algorithm will divide the
true branch and the false branch into two different Variable
Dependence Subgraphs, so the two state will not be merged.
For each state, the maximum value of len(v15)+len(v12)will
be calculated separately, so it will not exceed the reserved
1024 bytes of variable v15. We can prune this false positive.

FIGURE 6. CFG of function sub_21D10.

FIGURE 7. Lazy constraint solving for pruning false positive.

D. LAZY CONSTRAINT SOLVING
After conditional merging, there are 212 false positives
remaining. We use lazy constraint solving to refine the tar-
get variable of the remaining false positives. The result of
lazy constraint solving for pruning false positives is shown
in Figure 7. For each false positive, we can get multiple states
according to the number of Variables Dependent Subgraphs.
Every state has a path constraint and the path constraint is
represented as an Abstract Syntax Tree (AST) type of claripy.
Usually the more complex the path constraint is, the greater
the depth of AST will be. So we use the depth of AST to
represents the complexity of path constraint. If a false positive
has multiple states, we use the average depth of multiple
states. The number of total false positives is shown as red

VOLUME 7, 2019 114601

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

FIGURE 8. Function process_sys of KPRCA_00035.

line and basically evenly distributed. The number of pruned
false positives are shown as blue line. the rate of pruning is
high when the depth ranges from 3 to 13. When the depth is
larger, the rate is reduced with the path constraint complexity
increasing. When the depth is less than 3, the rate is also low.
Because some simple path constraint can be solved by the
lightweight algebraic solver, traditional VSAwill not produce
false positive in this case.

Case Study. In the program KPRCA_00035 of DARPA
CGC dataset, part of the source code for the function pro-
cess_sys is shown in the Figure 8. We directly analyze
the binary executable. However to simplify the description,
we explain it on the source code. The values of machine-
>registers[2] and machine->registers[3] can be determined
by the user input in the previous initialization function, so the
value set of the variable start at line 146 and the variable len at
line 147 are both 1[0, 0xffff]. The path constraint to reach line
157 is [start+len<0x10000, len!= 0]. The first path predicate
start+len<0x10000 contains two variables, so the algebraic
solver of angr-VSA cannot get a number range for each
individual variable, so the value set of variable start is 1[0,
0xffff], the value set of variable len is 1[1, 0xffff]. Inside the
sv.fp function, there is a memory write operation which target
address is &machine->memory[start] and size is len. The
value set of start+len is 1[1, 0x1fffe]. The maximum value
exceeds the reserved 0x10000 bytes of machine->memory,
so angr-VSA will report this as a potential vulnerability.
In RVSA, the path constraint of the state that we get is
start + len < 0x10000 ∧ len! = 0 and the maximum and
minimum of start+len that we use SMT solver to get is 0xffff
and 1, the refined value set of start+len will be 1[1, 0xffff].
So this will not overflow, we can prune this false positive.

E. PERFORMANCE OVERHEAD
To evaluate performance of RVSA, we select the 19 programs
whose vulnerability was found in DARPA CGC dataset.
We record the running time andmemory consumption.Mean-
while, we record the number of basic blocks and the number
of loops used to analyze their impact on performance.

The result of performance evaluation is summarized
in Table 4. It can be seen that the more the number of

basic blocks is, the more the number of loops is, the longer
the running time will be. This is in line with the common
sense, usually the larger the number of basic blocks, the more
instructions are analyzed, and the longer the running time
will be. For loop programs, it is usually necessary to perform
multiple analyses on the same basic block inside the loop.
In this experiment, the maximum number of the loop iteration
is set to 128.

Compared with angr-VSA, RVSA’s running time increased
from an average of 855 seconds to 1107 seconds, an increase
of 29.47% calculated using Equation 6. Analysis cost in
terms of running time is relatively acceptable. The growth
time mainly consists of two parts. The first is because of
conditional merging. RVSA need generate one output state
for each input state. If a basic block has several input states
which cannot be merged, RVSA will analyze the basic block
several times. The second is the time that the SMT solver
takes. When the path constraint is complex, it may take a long
time. The timeout of the SMT solver is set to 60 seconds.

TIR =
TRVSA − Tangr−VSA

Tangr−VSA
(6)

Compared with angr-VSA, RVSA’s memory consumption
increased from an average of 485MB to 605MB, an increase
of 24.74% calculated using Equation 7. But compared to the
total 16GB memory in the experiment environment, analysis
cost in terms of memory consumption is completely accept-
able.

MIR =
MRVSA −Mangr−VSA

Mangr−VSA
(7)

VI. DISCUSSION AND FUTURE WORK
We have demonstrated that RVSA can prune approximately
half of the false positives effectively by conditional merging
and lazy constraint solving. Belowwe will describe the future
map of RVSA. The possible future direction is tomake further
improvements to the limitations of our current prototype
implementation.

The first source of false positives is the choice of the
abstract domain. The basic data type of VSA, the strided
interval, is essentially an approximation of a set of numbers.
But if the value set of the variable is some discrete values that
are not regular, for example 2, 8, 10, the strided interval value
set of it will be 2[2, 10]. The impossible values 4 and 6 will
be included in the strided interval.Adopting a more precise
abstract domain, such as power set interval domain [21],
BDD-based value set domain [22], disjoint domain [23] may
improve preciseness with addition performance overhead.

The second source of false positives is the use of widening
operators. When analysis loops, in order to enforce conver-
gence within finite time, the most common method is to use a
widening operator. In RVSA, the widening operator is used
when the number of loop analysis reaches a threshold (in
this experiment, the threshold is set to 128). The widening
operator equation is shown as Equation 8, where +∞ takes
the maximum value possible, such as for a 4-byte unsigned

114602 VOLUME 7, 2019

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

TABLE 4. Performance evaluation result.

integer variable, the maximum value +∞ = 232 − 1.
Therefore, wideningwill cause a large loss of precision. Some
mitigation method in abstract interpretation, such as widen-
ing thresholds [24], abstract acceleration [25], intertwining
widening and narrowing [26] may be applied.

[l1, u1]∇ [l2, u2]

= [(l1 6 l2 ? l1 : −∞) , (u1 > u2 ? u1 : +∞)] (8)

The third source of false positives is some precision intro-
duced by the system implementation. Variable dependence
analysis relies on the use-define chain generated by angr, but
the use-define chain generation may introduce errors when
encountering pointer alias problems. When using constraint
solver, we set the timeout of Z3 to 60 seconds, but it still may
time out.

VII. RELATED WORK
A. VALUE SET ANALYSIS
The VSA was first proposed by Balakrishnan et al.
in 2004 and integrated into the binary program static analysis
platform CodeSurfer/x86. CodeSurfer/x86 first uses IDA Pro
to analyze binary program and combines VSA and Aggregate

Structure Identification (ASI) [27] for recovering type and
resolving indirect jump. Binary analysis platforms, such as
BitBlaze [28], Jakstab [29], BAP [30], and angr, also provide
VSA.

B. APPLICATION OF VSA
ByteWeight [31] recognizes the function start through
automatically learning key features. After function start iden-
tification, ByteWeight then uses VSA with an incremental
control flow recovery algorithm to find function bodies with
instructions, and extracts function boundaries. TIE [32] is a
novel type reconstruction system based upon static analy-
sis. In the variable recovery phase, TIE uses VSA to infer
high-level variable locations by analyzing access patterns in
memory. BITY [33] uses a pre-learned classifier to predict
types for binaries. BITY first recovers variables from binary
codes using VSA, then extracts the related representative
instructions of the variables as well as some other useful
information as their features. MAYHEM [34] employs an
online version of VSA to reduce the solver load when resolv-
ing the bounds of a symbolic index. VSA returns a strided
interval for the given symbolic index. The strided interval is

VOLUME 7, 2019 114603

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

then refined by the solver to get the tight lower and upper
bounds of the memory object.

GUEB [35] uses VSA to reason each variable in the assign-
ment and free instructions based on an abstract memory
model to search for use-after-free vulnerabilities in binary
programs, and evaluated on a real vulnerability, the CVE-
2011-4130, appearing in ProFTPD. LoongChecker [36]
presents a novel semi-simulation approach to statically detect
potential vulnerabilities in binary code. The semisimulation
approach simulates address related instructions accurately
using VSA, and only traces data dependence on other instruc-
tions using data dependence analysis. LoongChecker evalu-
ated it on three real world programs, and detected three known
vulnerabilities and two zero-day vulnerabilities. However,
neither GUEB nor LoongChecker gives a false positive rate
in their evaluation.

Balakrishnan combines VSA with a property automaton
that encodes certain usage rules for the Windows driver
API [37]. Evaluated on a corpus of 17 device-driver exe-
cutables, it found 2 real bugs along with 5 false positives.
Similar to our conditional merging, this approach uses the
states of the attribute automaton to classify the program state,
but this approach requiresmanual construction of the attribute
automaton. Our approach automatically classifies program
state through variable dependence analysis.

Angr developed a number of improvements to increase the
precision of VSA, include creating a discrete set of strided-
intervals, applying an algebraic solver to path predicates
and adopting a signedness-agnostic domain [38], [39]. The
algebraic solver is lightweight but only has limited ability.
We additionally apply a more heavyweight SMT solver. But
instead of calling the SMT solver at each path branch, we only
use the constraint solver lazily when we finally refine the
variable.

C. CONDITIONAL STATIC ANALYSIS
Some static analysis techniques aim to improve analysis pre-
cision by decomposing the program’s state space into mul-
tiple subspaces and performing analysis on each separately.
Partial static analysis [40], [41] performs partial analysis on
components and compose these partial results to compute
the overall results. Conditional static analysis explores only
those the permitted states are described by a condition θ
expressed as a logical formula. the condition θ is either
determined from the analysis design [42], [43], where θ is
applicable to all program states, or determined during pro-
gram analysis execution [44], where θ is composed of the
conditions assumed to hold for a certain set of states. Elena
Sherman automatic generate the condition θ to decompose
the program’s state space into multiple partitions based on the
program’s control flow graph, and each partition corresponds
to a set of paths expressed as a set of CFG branches [45].

D. SMT SOLVER
The SMT solver is based on satisfiability modulo theories
[16] and can predicate and solve the satisfiability of some

complex formulas. Popular SMT solvers include Z3 [19],
MathSAT [46], CVC4 [47], Yices [48] and Boolector [49].
The SMT solver has a wide range of applications. It is mainly
used for dynamic symbolic execution [50], [51] in the field
of binary analysis. In dynamic symbolic execution, the SMT
solver has two important tasks: (1) checking the satisfiability
of a path constraint; (2) obtaining concrete input values that
can be used to reach the corresponding state of a path con-
straint. In this paper, we use SMT solver for lazy constraint
solving to get a tighter number range of variable.

VIII. CONCLUSION
VSA-based memory corruption detection analysis has a
high false positive rate because VSA suffers from a lack
of accuracy. In this paper, we have proposed a value set
analysis refinement approach based on conditional merging
and lazy constraint solving to increase the accuracy. Firstly,
We use our proposed variable dependence analysis algo-
rithm to divide the program paths into multiple Variable
Dependence Subgraphs. Then, we modify traditional VSA
algorithm to support conditional merging. By conditional
merging, we identify multiple states from different Variable
Dependence Subgraphs at any given point and detect vulner-
ability on each state separately. Finally, by lazy constraint
solving, we track branch conditions to constrain variables
and get a tighter number range of variables. We implement a
prototype system RVSA and compare it with state-of-the-art
approach angr-VSA. The false positive rate of vulnerability
detection of RVSA is reduced by 12.9% compared with the
angr-VSA. Furthermore, RVSA found 30 vulnerabilities in
the Netgear httpd binary with fewer false positives, 25 of
which are zero-day vulnerabilities. The experiments demon-
strated that our approach can significantly increase the accu-
racy of VSA and prune approximately half of false positives.
We believe that our approach can be an effective and scal-
able vulnerability detection approach for binary programs,
especially programs in IoT devices which are hard to be
dynamically analyzed.

REFERENCES
[1] T. Ji, Y. Wu, C. Wang, X. Zhang, and Z. Wang, ‘‘The coming era of

alphahacking?: A survey of automatic software vulnerability detection,
exploitation and patching techniques,’’ in Proc. IEEE 3rd Int. Conf. Data
Sci. Cyberspace (DSC), Jun. 2018, pp. 53–60.

[2] T. N. Brooks, ‘‘Survey of automated vulnerability detection and exploit
generation techniques in cyber reasoning systems,’’ in Proc. Sci. Inf. Conf.
Cham, Switzerland: Springer, 2018, pp. 1083–1102.

[3] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, ‘‘Fuzzing: State of the art,’’
IEEE Trans. Rel., vol. 67, no. 3, pp. 1199–1218, Sep. 2018.

[4] V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, ‘‘The art, science, and engineering of fuzzing: A sur-
vey,’’ Dec. 2018, arXiv:1812.00140. [Online]. Available: https://arxiv.
org/abs/1812.00140

[5] J. Clause, W. Li, and A. Orso, ‘‘Dytan: A generic dynamic taint analysis
framework,’’ in Proc. Int. Symp. Softw. Test. Anal., Jul. 2007, pp. 196–206.

[6] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, ‘‘Dta++:
Dynamic taint analysis withtargeted control-flow propagation,’’ in Proc.
NDSS, Feb. 2011, pp. 1–14.

[7] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, ‘‘AVATAR:
A framework to support dynamic securityanalysis of embedded systems’
firmwares,’’ in Proc. NDSS, Feb. 2014, pp. 1–16.

114604 VOLUME 7, 2019

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

[8] D. D. Chen, M. Woo, D. Brumley, and M. Egele, ‘‘Towards automated
dynamic analysis forlinux-based embedded firmware,’’ in Proc. NDSS,
Feb. 2016, pp. 1–16.

[9] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
‘‘What you corrupt is not what you crash: Challenges in fuzzing embedded
devices,’’ in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), Feb. 2018,
pp. 1–15.

[10] P. Cousot and R. Cousot, ‘‘Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,’’ in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang., Jan. 1977, pp. 238–252.

[11] G. Balakrishnan and T. Reps, ‘‘Analyzing memory accesses in ×86
executables,’’ in Proc. Int. Conf. Compiler Construct. Berlin, Germany:
Springer, 2004, pp. 5–23.

[12] G. Balakrishnan and T. Reps, ‘‘WYSINWYX: What you see is not what
you eXecute,’’ACMTrans. Program. Lang. Syst., vol. 32, no. 6, Aug. 2010,
Art. no. 23.

[13] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum,
‘‘Codesurfer/×86—A platform for analyzing ×86 executables,’’ in
Proc. Int. Conf. Compiler Construct. Berlin, Germany: Springer, 2005,
pp. 250–254.

[14] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, ‘‘SOK: (State
of) the art of war: Offensive techniques in binary analysis,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 138–157.

[15] Darpa Cyber Grand Challenge Binaries. Accessed: Aug. 18, 2019.
[Online]. Available: https://github.com/CyberGrandChallenge

[16] L. De Moura and N. Bjørner, ‘‘Satisfiability modulo theories: Intro-
duction and applications,’’ Commun. ACM, vol. 54, no. 9, pp. 69–77,
Sep. 2011.

[17] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
Berlin, Germany: Springer-Verlag, 2005.

[18] M. Müller-Olm and H. Seidl, ‘‘Precise interprocedural analysis through
linear algebra,’’ ACM SIGPLAN Notices, vol. 39, no. 1, pp. 330–341,
Jan. 2004.

[19] L. De Moura and N. Bjørner, ‘‘Z3: An efficient SMT solver,’’ in Proc. Int.
Conf. Tools Algorithms Construct. Anal. Syst. Berlin, Germany: Springer,
2008, pp. 337–340.

[20] N. Bjørner, A.-D. Phan, and L. Fleckenstein, ‘‘νz—An optimizing SMT
solver,’’ in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst.. Berlin,
Germany: Springer, 2015, pp. 194–199.

[21] D. Engelhard, ‘‘An interval-based abstract domain for jakstab supporting
up to k arbitrary disjunctions,’’ B.S. thesis, Hamburg Univ. Technol.,
Hamburg, Germany, Oct. 2015.

[22] S. Mattsen, ‘‘Bdd-based value analysis for ×86 executables,’’ Ph.D. dis-
sertation, Hamburg Univ. Technol., Hamburg, Germany, 2017.

[23] E. Sherman and M. B. Dwyer, ‘‘Exploiting domain and program structure
to synthesize efficient and precise data flow analyses (T),’’ in Proc. 30th
IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), Nov. 2015, pp. 608–618.

[24] S. Cha, S. Jeong, and H. Oh, ‘‘Learning a strategy for choosing widening
thresholds from a large codebase,’’ in Proc. Asian Symp. Program. Lang.
Syst. Cham, Switzerland: Springer, 2016, pp. 25–41.

[25] B. Jeannet, P. Schrammel, and S. Sankaranarayanan, ‘‘Abstract acceler-
ation of general linear loops,’’ ACM SIGPLAN Notices, vol. 49, no. 1,
pp. 529–540, Jan. 2014.

[26] G. Amato, F. Scozzari, H. Seidl, K. Apinis, and V. Vojdani, ‘‘Efficiently
intertwining widening and narrowing,’’ Sci. Comput. Program., vol. 120,
pp. 1–24, May 2016.

[27] G. Balakrishnan and T. Reps, ‘‘DIVINE: Discovering variables in exe-
cutables,’’ in Proc. Int. Workshop Verification, Model Checking, Abstract
Interpretation. Berlin, Germany: Springer, 2007, pp. 1–28.

[28] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, ‘‘Bitblaze: A new approach to
computer security via binary analysis,’’ in Proc. Int. Conf. Inf. Syst. Secur.
Berlin, Germany: Springer, 2008, pp. 1–25.

[29] J. Kinder and H. Veith, ‘‘Jakstab: A static analysis platform for binaries,’’
in Proc. Int. Conf. Comput. Aided Verification. Berlin, Germany: Springer,
2008, pp. 423–427.

[30] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, ‘‘BAP: A binary
analysis platform,’’ in Proc. Int. Conf. Comput. Aided Verification. Berlin,
Germany: Springer, 2011, pp. 463–469.

[31] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, ‘‘BYTEWEIGHT:
Learning to recognize functions in binary code,’’ in Proc. 23rd USENIX
Secur. Symp. (USENIX), 2014, pp. 845–860.

[32] J. Lee, T. Avgerinos, and D. Brumley, ‘‘Tie: Principled reverse engineering
of types in binary programs,’’ in Proc. NDSS, Feb. 2011, pp. 1–19.

[33] Z. Xu, C. Wen, and S. Qin, ‘‘Learning types for binaries,’’ in Proc.
Int. Conf. Formal Eng. Methods. Cham, Switzerland: Springer, 2017,
pp. 430–446.

[34] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, ‘‘Unleashing may-
hem on binary code,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 380–394.

[35] J. Feist, L. Mounier, and M.-L. Potet, ‘‘Statically detecting use after free
on binary code,’’ J. Comput. Virology Hacking Techn., vol. 10, no. 3,
pp. 211–217, Aug. 2014.

[36] S. Cheng, J. Yang, J. Wang, J. Wang, and F. Jiang, ‘‘Loongchecker:
Practical summary-based semi-simulation to detect vulnerability in binary
code,’’ in Proc. IEEE 10th Int. Conf. Trust, Secur. Privacy Comput. Com-
mun., Nov. 2011, pp. 150–159.

[37] G. Balakrishnan and T. Reps, ‘‘Analyzing stripped device-driver executa-
bles,’’ in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst. Berlin,
Germany: Springer, 2008, pp. 124–140.

[38] Z. Zhang and X. Koutsoukos, ‘‘Generic value-set analysis on low-level
code,’’ in Proc. 5th Analytic Virtual Integr. Cyber-Phys. Syst. Workshop.
Rome, Italy: Linköping Univ. Electron. Press, Dec. 2014.

[39] G. Vigna and C. Kruegel, ‘‘Bintrimmer: Towards static binary debloat-
ing through abstract interpretation,’’ in Proc. Int. Conf. Detection Intru-
sions Malware, Vulnerability Assessment (DIMVA). Gothenburg, Sweden:
Springer, 2010, pp. 482–501.

[40] C. Ballabriga, H. Cassé, and P. Sainrat, ‘‘WCET computation on software
components by partial static analysis,’’ in Proc. JRWRTC, Mar. 2007,
pp. 15–65.

[41] P. Cousot and R. Cousot, ‘‘Modular static program analysis,’’ in Proc. Int.
Conf. Compiler Construct. Berlin, Germany: Springer, 2002, pp. 159–179.

[42] M. Naik and A. Aiken, ‘‘Conditional must not aliasing for static
race detection,’’ ACM SIGPLAN Notices, vol. 42, no. 1, pp. 327–338,
Jan. 2007.

[43] C. L. Conway, D. Dams, K. S. Namjoshi, and C. Barrett, ‘‘Pointer analysis,
conditional soundness, and proving the absence of errors,’’ in Proc. Int.
Static Anal. Symp. Berlin, Germany: Springer, 2008, pp. 62–77.

[44] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P.Wendler, ‘‘Conditional
model checking: A technique to pass information between verifiers,’’ in
Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., Nov. 2012,
Art. no. 57.

[45] E. Sherman and M. B. Dwyer, ‘‘Structurally defined conditional data-flow
static analysis,’’ in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst.
Cham, Switzerland: Springer, 2018, pp. 249–265.

[46] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, ‘‘The mathsat5
SMT solver,’’ in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst.
Berlin, Germany: Springer, 2013, pp. 93–107.

[47] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, and D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, ‘‘CVC4,’’ in Proc. Int. Conf. Comput.
Aided Verification. Berlin, Germany: Springer, 2011, pp. 171–177.

[48] B. Dutertre, ‘‘Yices 2.2,’’ in Proc. Int. Conf. Comput. Aided Verification.
Cham, Switzerland: Springer, 2014, pp. 737–744.

[49] R. Brummayer and A. Biere, ‘‘Boolector: An efficient SMT solver for bit-
vectors and arrays,’’ in Proc. Int. Conf. Tools Algorithms Construct. Anal.
Syst.. Berlin, Germany: Springer, 2009, pp. 174–177.

[50] C. Cadar and K. Sen, ‘‘Symbolic execution for software testing: Three
decades later,’’ Commun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013.

[51] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
‘‘A survey of symbolic execution techniques,’’ACMComput. Surv., vol. 51,
no. 3, Jul. 2018, Art. no. 50.

JIAN LIN was born in 1989. He received the M.S.
degree in computer science and technology from
the Information Engineering University, in 2016.
He is currently pursuing the Ph.D. degree in
cyberspace security with the State Key Laboratory
of Mathematical Engineering and Advanced Com-
puting. His main research interests include binary
program analysis and vulnerability detection and
exploit.

VOLUME 7, 2019 114605

J. Lin et al.: VSA Refinement Approach Based on Conditional Merging and Lazy Constraint Solving

LIEHUI JIANG was born in 1967. He is currently
a Professor and a Ph.D. Supervisor with the
State Key Laboratory of Mathematical Engineer-
ing and Advanced Computing, Zhengzhou, China.
His main research interests include computer
architecture, reverse engineering, and security.

YISEN WANG was born in 1990. He received
the B.A. degree from Tianjin University, in 2012,
and the M.S. degree in computer science and tech-
nology from Information Engineering University,
in 2015. He is currently pursuing the Ph.D. degree
in computer science and technology with the State
Key Laboratory of Mathematical Engineering and
Advanced Computing. His main research inter-
ests include computer architecture, the Internet of
Things security, and deep learning.

WEIYU DONG was born in 1976. He is cur-
rently an Associate Professor and a Supervisor
of master’s degree with the State Key Labora-
tory of Mathematical Engineering and Advanced
Computing, Zhengzhou, China. His main research
interests include computer architecture, system
virtualization, and computer security.

114606 VOLUME 7, 2019

