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ABSTRACT Wireless networks improve indoor communications by deploying femtocell networks into
the macrocell coverage. This results in spectrum sharing with the consequences of cross-tier interference
from the macrocell user equipment (MUEs) to the femtocell access points (FAPs). This work considers the
uplink cross-tier interferencemanagement for the cell-edgeMUEs (CUEs) in cooperativemulti-usermultiple
input multiple output (MU-MIMO) systems. For better interference management, the CUEs are grouped
into clusters and communicate to the macrocell base station (MBS) through a relay node (RN). The linear
pre-coders and decoders algorithms for the FAPs, MUEs and CUEs are proposed for effective interference
management to minimize the sum mean square error (MSE), subject to the total transmit power constraints.
The designed pre-coders and decoders use the pilot-assisted channel estimation to improve the accuracy of
the acquired channel state information (CSI). The least-square (LS) and minimum MSE (MMSE) channel
estimators are considered. The performance of the system is investigated in terms of the bit error rate (BER)
for the linear pre-coders and decoders algorithms with the pilot-assisted channel estimators.

INDEX TERMS Channel estimation, decentralized transceiver, femtocells, long term evolution-advanced,
relay node, uplink communication.

I. INTRODUCTION
Femtocell networks are deployed into macrocell networks
to improve the indoor coverage and provide high data rates
to end users while reducing their load. Femtocells do not
require specific infrastructure, they are easily installed by
the end users. They operate in the licensed band of the
macrocell and in some cases, they are imposed on the same
frequency spectrum [1]. This results in the challenge of cross-
tier interference betweenmacrocell and femtocells when both
transmit on the same frequency band simultaneously. Further-
more, the macrocell users located at the cell-edge, referred in
this paper, as cell-edge macrocell user equipment (CUEs),
experience performance degradation due to the long distance
between the CUEs and the macrocell base station (MBS).
The management of cross-tier interference from CUEs to the
femtocell access point (FAPs) is of paramount importance
and is part of the focus of this work.

The associate editor coordinating the review of this article and approving
it for publication was Ahmed Mohamed Ahmed Almradi.

Several techniques have been employed to mitigate this
interference. They include: Interference alignment, where
the signals are constrained into the same subspaces at the
unintended receivers and the desired signals are retrieved at
each receiver by eliminating the aligned interferences, using
a decoding matrix [2]; interference avoidance, where the
allocation of various system resources to users is controlled
to ensure that the interference remains within acceptable
limits [3]; and interference cancellation, where the suppres-
sion of the interference can be done at the transmitter or
receiver side [4]. Another effective interference management
technique is the pre-coding approach, which provides reliable
high data rate communication in multi-user multiple input
multiple output (MU-MIMO) systems. A linear pre-coder
and decoder design, also known as transceiver design, is an
effective way to reduce or mitigate multi-user interference
in femtocell networks while improving the performance [5].
It can be employed to enhance the bit error rate (BER)
performance and increase the information rate of spatial
multiplexed MU-MIMO systems. Moreover, minimum mean
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square error (MMSE) or zero-forcing (ZF) can be used to
design the pre-coder at the source and decoder at the destina-
tion to estimate the transmitted signal. In this paper, MMSE
is employed in the transceiver design, due to its simplicity
and effectiveness [6]. It is also known that MMSE mitigates
both interference and noise compared to other linear detectors
such as ZF, which cancels interference but enhances noise
power [7].

The performance of the linear pre-coder and decoder
is heavily dependent on the availability of timely channel
state information (CSI) at both transmitter and receiver [8].
Although, a non-linear pre-coder and decoder can provide
good performance, it is complex in its design [6]. At the
receiver, the channel is estimated using known pilot symbols.
Channel estimation techniques can either be least square (LS)
based, MMSE based or maximum likelihood (ML) based [9].

To improve the coverage area, network capacity and relia-
bility of the link in aMU-MIMO system [6], [10], cooperative
relays are incorporated into the system as one of the interfer-
ence management techniques. With this technique, the relay
node (RN) acts as a bridge that facilitates the cooperative
communication and retransmits the signal received from a
CUE to the MBS, interference-free. The CUE’s high signal
power causes interference to the neighbouring FAPs. Hence,
an effective interferencemanagement technique is required to
optimize the network lifetime. The RNs improve the transmit
signal of the CUEs and maintain good communication to the
MBS within the cluster by relaying their signals to the MBS.
They should mitigate the cross-tier interference to the FAPs
to enhance the performance of the CUEs and FAPs in the
MU-MIMO relay systems. Cooperative technique enables
a FAP to gather information about its neighbouring femto-
cells and performs its allocation by considering its effects
on the neighbours. This increases the average femtocells’
throughput and quality of services (QoS) as well as its global
performance, which are locally optimized. The MU-MIMO
relay networks are heterogeneous featuring FAP, RN and
MBS networks with their respective users, the half-duplex
communication network with the CUEs, RNs, FUEs, MUEs
in multi-slot transmission. For such a distributed network,
a centralized or joint pre-coder and decoder design is not
appropriate or feasible. Therefore, decentralized algorithms
for the FAPs, MUEs, RNs and CUEs are considered in the
design of optimal pre-coders and decoders based on the CSI.
Each FAP manages its own sub-channels for suitable perfor-
mance. The pre-coder for the RNs is also designed based
on the CSI for the MU-MIMO relay networks consider-
ing amplify-and-forward (A-F) technique at the RN. In this
work, the pilot-assisted LS and MMSE channel estimators
are employed in the MU-MIMO networks, due to their inher-
ent advantages of low complexity and good mean square
error (MSE) performance.

A. RELATED RESEARCH
Different techniques for interference mitigation in femto-
cells have been proposed. The authors in [11] studied the

interference mitigation techniques in femtocells/macrocell
networks where a frequency reuse mechanism that increases
overall system performance was proposed. Clustering algo-
rithm and cooperative relay schemes have been used in mul-
tiple interference management schemes for a better radio
resource allocation, interference management or power con-
trol [12]. The authors in [13], [14] investigated a management
of cross-tier interference, where a novel femtocell clustering
based on interference cancellation (IC)was introduced. A dis-
tributed antenna system was also used to mitigate cross-tier
interference between macrocell and femocells. The authors
in [15] proposed a scheme called IC-relay time division
multiple access (TDMA), which allowsmulti-user concurrent
transmission in the source relay link. They aimed to cancel
interference at the multi-antenna relay by linear IC tech-
niques. A MIMO relaying system with fixed relay networks
was introduced in [16] for IC. Authors in [17] analyzed
and designed an A-F, decode-forward and demodulation-
forward relay protocol and discussed IC in the MU-MIMO
environment.

Several pilot-aided schemes have been investigated to
enhance the channel estimation accuracy in the MU-MIMO
systems. This guarantees the performance of linear pre-coder
and decoder designs. However, pilot contamination is one of
the limitations of this technique. Authors in [18] provided an
explicit expression of the massive MIMO user capacity in the
pilot contaminated regimewhere the number of users is larger
than the pilot sequence length. Authors in [19] proposed
a channel estimation scheme for a massive MIMO which
does not require the knowledge of the inter-cell large fading
coefficient, thus no overload. An iterative soft decision IC
has been investigated in multi-cell multi-user massive MIMO
with pilot contamination [20] where only the MMSE was
considered. Authors in [21] designed a pilot contamination
pre-coding which maximizes the minimum SINR subject to
the network sum power constraint for interference reduc-
tion. Most of these works assumed the perfect CSI at the
transceiver side, whereas in practice CSI is prone to errors
due to different factors. In [22] and [23], the authors did not
only consider perfect CSI, but also the channel uncertainty
and/or Imperfect CSI. This work considers imperfect CSI
for a more realistic scenario and, the pilot-aided scheme is
also considered for synchronisation and channel estimation
purposes to design the transceivers.

The linear pre-coder and decoder designs have also been
considered as interference management techniques. In [24],
with the assumption of perfect CSI, the authors employed
an optimization technique for the design of optimal source,
relay and receiver in uplink MU-MIMO relay communica-
tion systems in order to minimize the MSE of the estimated
signal at the destination. The pilot-aided channel estimation
is not done in [24]. Channel uncertainties were considered
in [25], where a robust transceiver design for a general
MU-MIMO relay was studied in the presence of statisti-
cal CSI errors. Imperfect CSI was also considered in [26],
where proposed joint linear pre-coder and decoder designs
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for downlink and uplink were compared to a conventional
joint linear pre-coder and decoder design in MU-MIMO
systems. The authors in [27] and [28] designed algorithms
that converge to the optimum pre-coders and decoders for
users in a MU-MIMO system. Moreover, the authors in [28]
introduced interference alignment to help the femtocell user
equipment (FUEs) to eliminate the cross-tier interference
by aligning the MUE interference signal, subject to individ-
ual SINR constraints at their MBS. Interference alignment
transceiver is designed in [29] to minimize the maximum
MSE for multicell MU-MIMO wireless communication sys-
tems where a robust Min-Max MSE algorithm is proposed
to counter the channel uncertainty. Transceiver designs with
imperfect CSI were addressed in [30] for a MIMO relaying
systemwhere a near-optimal closed-form solution is provided
for the source-to-relay-destination transceiver designs with
imperfect CSI at all nodes. Beamforming has been considered
as one of the approach for interference management in [31].
The authors in [32] proposed semi-decentralized beam-
forming design to minimize the total transmit power under
SINR and interference constraints on multiple-input single-
output (MISO) channels in HetNets where the beamformer is
designed in a distributed fashion using the signal-to-leakage-
and-noise ratio (SLNR) criteria. However, in the aforemen-
tioned research works, clustering, relaying and decentralized
algorithms for the pre-coders and decoders design are not
considered together. In this paper, the advantages of each
of the aspects is employed to achieve a better interference
management transceiver for the proposed distributed system
and well instigated.

B. MAIN CONTRIBUTIONS
In this paper, we present a cooperative relay interference
management technique where decentralized algorithms for
linear pre-coders and decoders design based on pilot-assisted
channel estimation are employed. The main contributions of
this paper are summarized as follows:

- This paper extends the system model presented in [28]
and [33] by introducing cooperative RN systems to
manage the cross-tier interference caused by the CUEs
to FAPs [10], while providing further performance
enhancements for the CUEs as well as increasing the
coverage of macrocell networks. Numerical evaluations
are provided to prove the benefit of this cooperative RN
extension over a simple MU-MIMO system.

- In pratical networks, a perfect CSI is impossible to obain
due to limitation of channel estimation [34]. The authors
in [28] considered a perfect CSI, which is not a prac-
tical scenario. This motivates us to investige the each
sub-optimal transceiver design (FUEs, MUEs, CUEs
and RNs) in the presence of channel estimation errors.

- The MMSE methodology considered is similar to [28].
However, instead of considering only a joint design for
all the pre-coders, we consider decentralized transceiver
designs for the MU-MIMO relay systems. We divide
the optimization problem into sub-optimal problems

where we consider four different transceiver designs,
the FUEs, MUEs, CUEs and RNs. Therefore, decentral-
ized approach is considered in the design of pre-coders
and decoders at the FAPs and MBS during the first
and second time slots. Furthermore, the transceivers are
designed with the estimated channels and are iteratively
updated until their optimal values are found. Finding
the optimal values for these pre-coders and decoders
depends on the Lagrange multipliers.

C. ORGANISATION, NOTATIONS AND LIST OF SYMBOLS
Organisation: The remaining sections of the paper are organ-
ised as follows: Section II describes the system model,
problem formulation, proposed network architecture, uplink
training and channel estimation as well as the uplink trans-
mission designs. The decentralized algorithms for the lin-
ear transceiver designs with MMSE approach for the FAPs,
MUEs and CUEs are presented in Section III. Section IV
describes the performance evaluation. Section V presents the
conclusion of the paper.
Notations: We use upper-case bold letters for matrices

and lower-case bold letters for vectors. (·)H , (·)T , (·)∗ and
(·)−1 denote the Hermitian, transpose, optimal and inverse of
matrices respectively. IN is a N × N identity matrix and E[·]
denote the expectation. ‖·‖ is the norm of a vector or complex
scalar and tr(.) represents the trace of a matrix.
List of Symbols:Table 1 gives the list of some symbols used

in this paper. The omitted symbols are all defined in the paper.

FIGURE 1. The network architecture with a single MBS, MUEs, RNs
clusters with CUEs, FAPs with FUEs.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. THE NETWORK ARCHITECTURE
The network architecture consists of half-duplex multi-user
relay Long Term Evolution-Advanced (LTE-Advanced) fem-
tocell networks deployed into a macrocell network. The
CUEs considered are grouped into clusters and communicate
to the MBS through a RN. The FUEs and the CUEs transmit
during the first time slot while the RNs transmit to the MBS
during the second time slot. The MUEs, on the other hand,
transmit continuously to the MBS during both first and sec-
ond time slot. The network architecture is illustrated in Fig. 1.
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TABLE 1. Table of symbols.

The RN creates a cooperative communication between the
CUEs and the MBS. Furthermore, RNs enable a cross-tier
interference management to the neighbouring FAPs.

B. UPLINK TRAINING AND CHANNEL ESTIMATION
We consider an uplink transmission where all users share
the same time-frequency resource. To detect the transmitted

signal from the users, the base stations use the CSI knowl-
edge acquired through uplink training. We assume that the
channel remains constant during the training phase in order to
analyze the system performance. For the channel estimation
purposes, we use pilot symbols (a set of symbols whose loca-
tion and values are known to the receiver) multiplexed with
the information-bearing data [35]. During the uplink training
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phase, the users (FUEs, MUEs and CUEs), transmitting to
the base stations (FAPs, MBS and RNs), are assigned pilot
sequences.

Let Ns,Nf ,NR and NB represent the antennas at the users
(FUEs,MUEs andCUEs), FAPs, RNs andMBS, respectively.
We denote F as the number of FAP and U the number of
FUEs in the f th femtocells. Let R be the set of RN in each
cluster, K the number of CUEs in the r th RN and M the
number of MUEs outside the cluster. 9 denotes the pilot
sequence matrix transmitted from the users to their base
stations or access point. The pilot sequence matrix9 satisfies
99H

= I . LetUi be the number of FUEs in the jth FAP. Thus,
the received pilot signal yψj at the jth FAP is written as

yψj =
Ui∑
i=1

√
PFAPji LFAPji HFAP

ji ψFAP
ji︸ ︷︷ ︸

pilot signal from jth FAP users

+

F∑
f=1
f 6=j

U∑
u=1

√
PFAPfu LFAPfu HFAP

jfu ψFAP
fu

︸ ︷︷ ︸
pilot from other femtocell

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
jm ψMUE

om︸ ︷︷ ︸
pilot from MUE outside the cluster

+

R∑
r=1

K∑
k=1

√
PCUErk LCUErk HCUE

jrk ψCUE
rk︸ ︷︷ ︸

pilot from the CUE in the RN

+nψj , (1)

where PFAPji and PFAPfu are the transmit powers of the ith FUE
of the jth FAP and the uth FUE of the f th FAP while PMUE

om and
PCUErk are the transmit powers of themthMUE of theMBS and
k th CUE of the r th RN. HFAP

ji denotes the channel matrix of
the ith user of the jth FAP. HFAP

jfu is considered as the channel
matrix from the uth user of the f th femtocell to the jth FAP,
HMUE
jm is the channel matrix frommth MUE to the jth FAP and

HCUE
jrk is the channel matrix from k th CUE of the r th RN to the

jth FAP. It is worth mentioning that LFAPji HFAP
ji is the propa-

gation loss of the ith FUE of the jth FAPs while LFAPfu HFAP
jfu is

the propagation loss of the uth FUE of the f th FAP. Similarly,
LMUE
om HMUE

jm is the propagation loss of the mth MUE of the
MBS and LCUErk HCUE

jrk is the propagation loss of the k th CUE
of the r th RN. However, LFAPji ,LFAPfu ,LMUE

om and LCUErk model
the distance in slow fading while HFAP

ji ,HFAP
jfu ,HMUE

jm and
HCUE
jrk model the fast Rayleigh fading. ψFAP

ji and ψFAP
fu are

the pilot symbol of the ith FUE of the jth FAP and uth FUE
of the f th FAP, respectively. ψMUE

om and ψCUE
rk are the pilot

symbol of the mth MUE of the MBS and k th CUE of the
r th RN, respectively. nψj is the vector representing additive
white Gaussian noise (AWGN) at the jth FAP, where the
AWGN vector satisfies E{nψj n

ψH
j } = (σ FAP

j )2INf in which

nψHj is the conjugate transpose of nj and INf denotes the

identity matrix. The received pilot signal yψr at the r th RN
is written as

yψr =
K∑
k=1

√
PCUErk LCUErk HCUE

rk ψCUE
r,k︸ ︷︷ ︸

pilot from the r th RN users

+

F∑
f=1

U∑
u=1

√
PFAPfu LFAPfu HFAP

rfu ψ
FAP
fu︸ ︷︷ ︸

pilot from the femtocells

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
rm ψMUE

om︸ ︷︷ ︸
pilot from the other MUEs

+nψr , (2)

where HCUE
rk is the channel matrix from the k th CUE of the

r th RN. HFAP
rfu is the channel matrix from the uth FUE of the

f th femtocell to the r th RN and HMUE
rm is the channel matrix

from mth MUE to the r th RN. nψr is the AWGN vector at the
r th RN that satisfies E{nψr n

ψH
r } = (σCUE

r )2INR . The received
pilot signal yψo at the MBS is written as:

yψo =
M∑
m=1

√
PMUE
om LMUE

om HMUE
om ψMUE

om︸ ︷︷ ︸
pilot from all MUEs

+

F∑
f=1

U∑
u=1

√
PFAPfu LFAPfu HFAP

ofu ψ
FAP
fu︸ ︷︷ ︸

pilot from all femtocells

+

R∑
r=1

K∑
k=1

√
PCUErk LCUErk HCUE

ork ψ
CUE
rk︸ ︷︷ ︸

pilot from all CUEs in the RNs

+nψo , (3)

where HMUE
om is the channel matrix from the mth MUE of

the MBS. HCUE
ork is the channel gain from k th CUE of the

r th RN to the MBS and HFAP
ofu is the channel matrix from the

uth user of the f th FAP to the MBS. nψo is the AWGN vector
at the MBS that satisfies E{nψo n

ψH
o } = (σMUE

o )2INB .

1) LS CHANNEL ESTIMATOR
The LS channel estimation ĤFAP-LS

ji for the jth FAP is given as

ĤFAP-LS
ji =

yψj

ψFAP
ji .

√
PFAPji LFAPji

. (4)

The LS channel estimate ĤCUE-LS
rk for r th RN is obtained as

follows

ĤCUE-LS
rk =

yψr

ψCUE
rk .

√
PCUErk LCUErk

. (5)
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Similarly, the LS channel estimate ĤMUE-LS
om for MBS is

obtained as

ĤMUE-LS
om =

yψo
ψMUE
om .

√
PMUE
om LMUE

om

, (6)

where we assume that in (4, 5, 6), PFAPji ,PCUErk ,PMUE
om and

LFAPji ,LCUErk ,LMUE
om are known.

2) MMSE CHANNEL ESTIMATOR
Considering (4), the MMSE channel estimator ĤFAP-MMSE

ji
for jth FAP is given as

ĤFAP-MMSE
ji = ĤFAP-LS

ji .QFAP
ji .RHFAP

ji ĤFAP-LS
ji

, (7)

where RHFAP
ji ĤFAP-LS

ji
represents the covariance matrix of

N × N matrices HFAP
ji and ĤFAP-LS

ji , i.e. RHFAP
ji ĤFAP-LS

ji
=

E
{(
HFAP
ji

) (
ĤFAP-LS
ji

)H}
andQFAP

ji =

(∑Ui
i=1 RHFAP

ji HFAP
ji
+

(σ FAP
j )2INf

)−1
.

TheMMSE channel estimator ĤCUE-MMSE
rk for r th RNwith

equation (5) is obtained as

ĤCUE-MMSE
rk = ĤCUE-LS

rk .QCUE
rk .RHCUE

rk ĤCUE-LS
rk

, (8)

where RHCUE
rk ĤCUE-LS

rk
denotes the covariance matrix of N ×

N matrices HCUE
rk and ĤCUE-LS

rk , i.e. RHCUE
rk ĤCUE-LS

rk
=

E
{(
HCUE
rk

) (
ĤCUE-LS
rk

)H}
andQCUE

rk =

(∑K
k=1 RHCUE

rk HCUE
rk
+

(σCUE
r )2INR

)−1
.

Similarly with (6), the MMSE channel estimation
ĤMUE-MMSE
om for MBS is given as

ĤMUE-MMSE
om = ĤMUE-LS

om .QMUE
om .RHMUE

om ĤMUE-LS
om

, (9)

where RHMUE
om ĤMUE-LS

om
represents the covariance matrix of

N × N matrices HMUE
om and ĤMUE-LS

om , i.e. RHMUE
om ĤMUE-LS

om
=

E
{(
HMUE
om

) (
ĤMUE-LS
om

)H}
andQMUE

om =

(∑M
m=1 RHMUE

om HMUE
om

+ (σMUE
o )2INB

)−1
.

C. UPLINK TRANSMISSION DESIGN
The signals are transmitted from the CUEs to the MBS
through the RN during the first time slot. Similarly, the chan-
nels from the RN to the MBS are estimated at the MBS and
fed back to the RN, which then forwards the estimates back
to the MUE. The FUEs also transmit to their respective FAPs
during the first time slot while theMUEs transmit to theMBS
during both time slots. The relaying operates in a half-duplex
mode, in the first time slot, and the CUEs use transmit pre-
coding to broadcast to the RN and in the second time slot,
the RNs cooperatively form a distributed relay beam-former
to forward the signals to MBS. Direct links between CUEs

andMBS are not assumed due to severe attenuation [25]. The
Rayleigh flat-fading channel and noise have independent and
identically distributed (i.i.d.) complex Gaussian entries with
zero mean and unit variance CN (0, 1).
The complex received signal vector at the jth FAP during

the first time slot yj is defined as

yFAPj =

Ui∑
i=1

√
PFAPji LFAPji HFAP

ji wFAP
ji sFAPji︸ ︷︷ ︸

FUEs signal of the jth FAP

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
jm wMUE

om sMUE
om︸ ︷︷ ︸

MUEs interference

+

F∑
f=1
f 6=j

U∑
u=1

√
PFAPfu LFAPfu HFAP

jfu wFAP
fu sFAPfu

︸ ︷︷ ︸
other femtocells interference

+

R∑
r=1

K∑
k=1

√
PCUErk LCUErk HCUE

jrk wCUE
rk sCUErk︸ ︷︷ ︸

CUEs interference

+ nj︸︷︷︸
noise

,

(10)

where sFAPji is the message of the ith user of the jth FAP and
wFAP
ji is the pre-coding vector of the ith FUE of the jth femto-

cell, while sMUE
om and wMUE

om are the message and pre-coding
vector of the mth MUE of the MBS, respectively. sFAPfu is the
message of the uth FUE of the f th FAP and wFAP

fu is the pre-
coding vector of the uth FUE of the f th FAP. sCUErk and wCUE

rk
are the message and the pre-coding vector of the k th CUE of
the r th RN, respectively. nj is the AWGN vector at the jth FAP
and that satisfies E{njnHj } = (σ FAP

j )2INf .
In order to design the pre-coder wFAP

ji in (10), the knowl-
edge of wMUE

om ,wFAP
fu and wCUE

rk is required. This can be done
by joint design which is computationally complex. To sim-
plify the pre-coder design problem, the design of the pre-
coders in (10) is divided into four different pre-coder designs
where in each design, we assume that the pre-coder variable
that is not currently being designed is represented by ZF and
is independent of each other. Hence, to find the optimal wFAP

ji

in (10) of the ith FUE at the jth FAP, wMUE
om ,wFAP

fu and wCUE
rk

are found using ZF pre-coder assumption and an estimation
error as follows

wMUE′
om =

[
(ĤMUE-Est

om )H
(
(ĤMUE-Est

om )H ĤMUE-Est
om

)−1
+ ε

]
,

(11)

wFAP′
fu =

[
(ĤFAP-Est

fu )H
(
(ĤFAP-Est

fu )H ĤFAP-Est
fu

)−1
+ ε

]
,

(12)

wCUE′
rk =

[
(ĤCUE-Est

rk )H
(
(ĤCUE-Est

rk )H ĤCUE-Est
rk

)−1
+ ε

]
,

(13)
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where ε represents an estimation error, a Gaussian random
number of zero mean and σ 2

ε . Equation (10) is rewritten with
the ZF assumption design as

yFAP
′

j =

Ui∑
i=1

√
PFAPji LFAPji HFAP

ji wFAP
ji sFAPji

+

F∑
f=1
f 6=j

U∑
u=1

√
PFAPfu LFAPfu HFAP

jfu wFAP′
fu sFAPfu

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
jm wMUE′

om sMUE
om

+

R∑
r=1

K∑
k=1

√
PCUErk LCUErk HCUE

jrk wCUE′
rk sCUErk + nj. (14)

Similarly, the received signal yMBS′
o of the MBS during the

first time slot is assumed to be

yMBS′
o =

M∑
m=1

√
PMUE
om LMUE

om HMUE
o,m wMUE

om sMUE
o,m

+

R∑
r=1

K∑
k=1

√
PCUErk LCUErk HCUE

ork wCUE′
rk sCUErk

+

F∑
f=1

U∑
u=1

√
PFAPfu LFAPfu HFAP

ofu wFAP′
fu sFAPfu + no, (15)

where no is the AWGN vector with variance (σMBS
o )2 dis-

tributed according to CN (0, (σMBS
o )2). Similarly, the received

signal yRN
′

r at the RN during the first time slot is

yRN
′

r =

K∑
k=1

√
PCUErk LCUErk HCUE

rk wCUE
rk sCUErk

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
rm wMUE′

om sMUE
om

+

F∑
f=1

U∑
u=1

√
PFAPfu LFAPfu HFAP

rfu wFAP′
fu sFAPfu

+ nr , ∀r = 1, . . . ,R (16)

where nr is the AWGN vector with variance (σCUE
r )2

which is distributed according to CN (0, (σCUE
r )2). It is

assumed that the channels are i.i.d. complexGaussian random
variables.

The RN receives the signal from the K -CUEs and inter-
ference from the FUEs and MUEs. It amplifies and forwards
the signal vector multiplied by the RN pre-coder For during
the second time slot. The amplified r th transmit signal xor to
the MBS during the second time slot is expressed as

xor = For × yRN
′

r , ∀ r = 1, · · · ,R. (17)

The MUEs continuously transmit signals to the MBS in both
time slots. The FUEs transmit only during the first time slot.
Therefore, the received signal yMBS-nd′

o at the MBS is writ-
ten as:

yMBS-nd′
o =

R∑
r=1

√
PrLrHorxor

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
om wMUE

om sMUE
om︸ ︷︷ ︸

MUEs signal at the MBS

+no,

(18)

where Hor is the channel matrix from the r th RN to the
MBS and Pr is the transmit power at the RN. Lr is the
propagation loss at the r th RN. no is the AWGN vector at
the MBS with variance (σMBS

o )2 which is distributed accord-
ing to CN (0, (σMBS

o )2). After substitution and calculation,
the received signal at the MBS during the second time signal
is written as

yMBS-nd′
o =

R∑
r=1

K∑
k=1

√
PrLrHorForHCUE

rk wCUE
rk sCUErk︸ ︷︷ ︸

1st term

+

M∑
m=1

√
PMUE
om LMUE

om HMUE
o,m wMUE

om sMUE
om︸ ︷︷ ︸

2nd term

+zo,

(19)

where zo =
∑R

r=1 Ho,rFor ñr + no and ñr =(∑F
f=1

∑U
u=1 H

FAP
rfu wFAP′

fu sFAPfu +nr

)
. The femtocell interfer-

ences during the first time slot are considered as noise at the
MBS. The 1st and 2nd terms of equation (19) are the signals
to be decoded at the MBS during the second time slot, and
need to be combined as one term. Note: Ns is the number
of antennas for users. NR is the number of equipped antenna
for RNs, NB is the number of MBS antennas and ds is the data
stream. The following is assumed:

d̂ =
K∑
k=1

ds, N̂s =
K∑
k=1

Ns,NR ≥ d̂ and N̂s > d̂ . We assume

thatNB ≥ NR. With the above assumptions, the signals, chan-
nels matrices and pre-coders for CUEs and MUEs (during
the second time slot) are combined as in (20)–(22), as shown
at the top of the next page. respectively. The received signal
yMBS-nd
o of the MBS in (19) during the second time slot can
be rewritten as

yMBS-nd
o = HoFoHUEWUEsUE + zo, (23)

where Ho = [
√
P1L1Ho,1, · · · ,

√
PRLRHoR] ∈ CNB×N̂R(R)

and Fo = [Fo,1, · · · ,Fo,R]T ∈ CNR×N̂R(R). The combination
of CUEs andMUEs will be referred to as UEs throughout this
article. zo is a CNB×1 is the AWGN vector with variance σ 2

zo
which is distributed according to CN (0, σ 2

zo ).
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sUE =
[
sCUE1,1 , · · · , s

CUE
1,K | · · · | s

CUE
R,1 , · · · , s

CUE
R,K︸ ︷︷ ︸

CUE transmit signals

| sMUE
o,1 , · · · , sMUE

o,M︸ ︷︷ ︸
MUE transmit signals

at 2nd time slot

]T
∈ C1×(RK+M )d̂ (20)

HUE
=

[√
PCUE11 LCUE11 HCUE

11 , · · · ,

√
PCUE1K LCUE1K HCUE

1K | · · · |

√
PCUER1 LCUER1 HCUE

R1 , · · · ,

√
PCUERK LCUERK HCUE

RK︸ ︷︷ ︸
CUE channels matrices

|

√
PMUE
o1 LMUE

o1 HMUE
o1 , · · · ,

√
PMUE
oM LMUE

oM HMUE
oM︸ ︷︷ ︸

MUE channel matrix

]
∈ CNR×N̂s(RK+M ) (21)

WUE
=



wCUE
11 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · wCUE
RK 0 · · · 0

0 · · · 0 wMUE
o1 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · wMUE
oM


∈ CN̂s(RK+M )×d̂(RK+M ) (22)

III. DECENTRALIZED ALGORITHMS FOR LINEAR
TRANSCEIVER DESIGNS
In this section, the decentralized transceiver optimization
algorithms for the FAPs, MUEs and CUEs are designed with
the coordinated MMSE approach during the first and second
time slots.

A. COORDINATED MMSE APPROACH FOR FEMTOCELL
AND MUES TRANSCEIVER DURING THE FIRST TIME SLOT
1) OPTIMIZATION OF THE FAPS PRE-CODING
AND DECODING VECTORS
The algorithm starts with initialized random pre-coders and
decoders wFAP

jx . In each iteration, the FUE pre-coders and
decoders are updated alternatively. Considering the MMSE
receiver, we apply the MMSE decoding for jth FAP such that
the interference is received from the MUEs and neighbouring
femtocells during the first time slot. The decoded information
ŝFAPjx for the x th FUE of the jth FAP can be expressed as

ŝFAPjx = (dFAPjx )H .yFAP
′

j (24)

where dFAPj,x is the decoding vector for x th FUE of jth FAP

and yFAP
′

j is as in (14). In order to minimize the power noise
component, we employ the coordinated MMSE algorithm
that minimizes the sum MSE at the jth FAP estimated as

min
wFAP
j1 ,...,wFAP

jUi
dFAPj1 ,··· ,dFAPjUi

Ui∑
x=1

E
[
‖ŝFAPj,x − s

FAP
j,x ‖

2
]

s. t.: (wFAP
jx )H (wFAP

jx ) ≤
PFAPjx

LFAPjx

, x = 1, · · · ,Ui, (25)

where PFAPjx is the maximum transmit power of the x th FUE
of the jth FAP. We consider the estimated channels to rewrite
the minimum sum MSE at the x th FUE of the jth FAP. This is
rewritten as

min
wFAP
j1 ,...,wFAP

jUi
dFAPj1 ,··· ,dFAPjUi

Ui∑
x=1

[
‖(dFAPj,x )H

√
PFAPjx LFAPjx ĤFAP-Est

jx wFAP
jx − 1‖2

+

Ui∑
i=1
i6=x

‖(dFAPjx )H
√
PFAPji LFAPji ĤFAP-Est

ji wFAP′
ji ‖

2

+

M∑
m=1

‖(dFAPjx )H
√
PMUE
om LMUE

om ĤMUE-Est
jm wMUE′

om ‖
2

+

F∑
f=1
f 6=j

U∑
u=1

‖(dFAPjx )H
√
PFAPfu LFAPfu ĤFAP-Est

jfu wFAP′
fu ‖

2

+

R∑
r=1

K∑
k=1

‖(dFAPj,x )H
√
PCUErk LCUErk ĤCUE-Est

jrk wCUE′
rk ‖

2

+‖(dFAPj,x )‖2σ 2
]

s. t.: (wFAP
jx )H (wFAP

jx ) ≤
PFAPjx

LFAPjx

, x = 1, . . . ,Ui. (26)

The minimum sum MSE problem in (26) is convex in
wFAP
j,x , x = 1, . . . ,Ui, if all dFAPj,x are fixed and convex in

dFAPj,x , x = 1, . . . ,Ui, if all wFAP
j,x are also fixed. This enables

obtaining the FUE pre-coding vectors of the jth FAP when
the FUE decoding vectors of the jth FAP are fixed and vice
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versa [28]. When the dFAPj,x are fixed, the sum MSE opti-
mization problem with respect to the wFAP

j,x pre-coder can be
reformulated as

min
wFAP
j1 ,...,wFAP

jUi

Ui∑
x=1

[
‖(dFAPjx )H

√
PFAPjx LFAPjx ĤFAP-Est

jx wFAP
jx − 1‖2

+

Ui∑
i=1
i 6=x

‖(dFAPjx )H
√
PFAPji LFAPji ĤFAP-Est

ji wFAP′
ji ‖

2

+

M∑
m=1

‖(dFAPjx )H
√
PMUE
om LMUE

om ĤMUE-Est
jm wMUE′

om ‖
2

+

F∑
f=1
f 6=j

U∑
u=1

‖(dFAPjx )H
√
PFAPfu LFAPfu ĤFAP-Est

jfu wFAP′
fu ‖

2

+

R∑
r=1

K∑
k=1

‖(dFAPjx )H
√
PCUErk LCUErk ĤCUE-Est

jrk wCUE′
r,k ‖

2

+‖(dFAPj,x )‖2σ 2
]

s. t.: (wFAP
jx )H (wFAP

jx ) ≤
PFAPjx

LFAPjx

, x = 1, . . . ,Ui. (27)

The Lagrange duality and Karush-Kuhn-Tucker (KKT) con-
ditions are employed to efficiently solve the FAP optimization
problem. The KKT conditions are given by

- Stationarity:

Ui∑
i=1

ĤFAP-Est
jx (dFAPji )HdFAPji (ĤFAP-Est

jx )HwFAP∗
ji

+µjxwFAP∗
jx − (ĤFAP-Est

jx )HdFAPjx = 0,

- Primary feasibility:

(wFAP
jx )H (wFAP

jx ) ≤
PFAPjx

LFAPjx

,

- Complementary Slackness:

µjx

(
(wFAP

jx )H (wFAP
jx )−

PFAPjx

LFAPjx

)
= 0,

- Dual feasibility:

µjx ≥ 0,

wherewFAP∗
jx is the optimal value for the FAP pre-coder. Using

the KKT conditions the optimal MMSE pre-coding vector
wFAP∗
jx is obtained as

wFAP∗
jx =

( Ui∑
i=1

(ĤFAP-Est
jx )H (dFAPji )(dFAPji )H ĤFAP-Est

jx

+µjxIUi

)−1
× (ĤFAP-Est

jx )HdFAPjx , (28)

where µjx represents the satisfaction of the transmit power

constraint (wFAP
jx )H (wFAP

jx ) ≤
PFAPjx

LFAPjx
. Similarly, we fix the pre-

coding vectors wFAP
jx and obtain the KKT conditions for the

optimization problem with respect to the decoder dFAPjx , from
which the optimal decoding matrix dFAP∗ji can be obtained.
The decoding vector dFAP∗jx can be expressed as

dFAP∗jx

=

( M∑
m=1

(ĤMUE-Est
jm wMUE′

om )(ĤMUE-Est
jm wMUE′

om )H

+

F∑
f=1
f 6=j

U∑
u=1

(ĤFAP-Est
jfu wFAP′

fu )(ĤFAP-Est
jfu wFAP′

fu )H

+

R∑
r=1

K∑
k=1

(ĤCUE-Est
jrk wCUE′

rk )(ĤCUE-Est
jrk wCUE′

rk )H + σ 2
j IUi

)−1
× ĤFAP-Est

jx wFAP
jx . (29)

It is assumed that each pre-coder is updated instantaneously
when the decoder is updated. This is accomplished by insert-
ing the resulting pre-coder (28) in decoder (29). The detailed
optimization process is presented in Algorithm 1.

Algorithm 1 Coordinated MMSE for FAPs During the First
Time Slot
1: Initialize and construct the estimated channels using the

LS and MMSE estimators as (4) - (9), respectively.
2: Initialize the FUEs pre-coders wFAP

jx with each element
drawn i.i.d. from the standard Gaussian distribution
CN (0, 1).

3: for j = 1, · · · ,F do
4: Initialize the FUEs decoder dFAPj1 , · · · , dFAPjx by

CN (0, 1).
5: Compute the wMUE′

om ,wFAP′
fu ,wCUE′

rk as (11) - (13)
6: Calculate the sum MSE ε =∑Ui

x=1 E
[
‖ŝFAPjx − s

FAP
jx ‖

2
]
in (25), (26)

7: Set n = 0 and δo = ε
8: repeat
9: Update the decoder dFAPj1 , · · · , dFAPjx as (29).
10: Calculate the FUE pre-coder wFAP

j1 , · · · ,wFAP
jx

(28) with the updated decoder.
11: Calculate ε with the new pre-coder and decoder
12: set n = n+ 1
13: δn = δn−i − ε

14: until ε ≈ 0
15: end for

2) OPTIMIZATION OF THE MUES PRE-CODING
AND DECODING MATRICES
Similar to the FAPs algorithm, theMUE algorithm starts with
initialized random pre-coders and decoders wMUE

ol . In each
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iteration, theMUE pre-coders and decoders are updated alter-
natively. The decoded information ŝMUE

ol is expressed as

ŝMUE
ol = (dMUE

ol )H .yMBS′
o (30)

where (dMUE
ol )H is the decoding vector for l th MUE of MBS

and yMBS′
o is as in (18). We describe the minimum sum MSE

problem of the l th user at theMBS during the second time slot
as follows

min
wMUE
o1 ,...,wMUE

oM
dMUE
o1 ,··· ,dMUE

oM

M∑
l=1

E{‖ŝMUE
ol − sMUE

ol ‖
2
}

s. t.: wMUE
ol (wMUE

ol )H ≤
PMUE
ol

LMUE
ol

, l = 1, · · · ,M , (31)

where PMUE
ol is the maximum transmit power of the l th MUE

of the MBS. The sum MSE optimization problem, Lagrange
duality and KKT conditions are simularly described as the
optimization FAP transceiver. Thus, the optimal MMSE pre-
coding vector wMUE∗

ol for the l th MUE of the MBS is given by

wMUE∗
ol =

( M∑
m=1

(ĤMUE-Est
ol )H (dMUE

om )(dMUE
om )H (ĤMUE-Est

ol )

+µolIM

)−1
(ĤMUE-Est

ol )HdMUE
ol , (32)

where µol represents the satisfaction of transmit power con-
straint (wMUE

ol )H (wMUE
ol ) ≤ PMUE

ol . Considering the same
process of fixing the wMUE

ol MUE pre-coder and obtaining the
KKT conditions of the resulting sum-MSE problem, the opti-
mal decoding vector dMUE∗

ol of the l th MUE of the MBS can
be formulated as

dMUE∗
ol

=

( R∑
r=1

K∑
k=1

(ĤCUE-Est
ork wCUE′

rk )(ĤCUE-Est
ork wCUE′

rk )H

+

F∑
f=1

U∑
u=1

(ĤFAP-Est
ofu wFAP′

fu )(ĤFAP-Est
ofu wFAP′

fu )H + σ 2
olIM

)−1
× ĤMUE-Est

ol wMUE
ol . (33)

The details coordinated MMSE algorithm for the MUEs is
presented in Algorithm 2.

3) CONVERGENCE ANALYSIS
In this subsection, we analyze some details of the algo-
rithms proposed for the FAPs and MUEs during the first time
slot, Algorithm 1 and 2, respectively. Let the minimum sum
MSE be denotedH(W,D) whereW represents the variables
recomputed in the precoder update and D is recomputed
in the decoder update. It is noted that when the value of
H(W,D) approaches zero, the minimum sum MSE of the
system is achieved.We assumed to obtained the optimal solu-
tions in the t th-iteration of the proposed iterative algorithms
(Algorithm 1 and 2) as

{
W (t),D(t)

}
.

Algorithm 2 Coordinated MMSE for MUEs During the First
Time Slot
1: Initialize and construct the estimated channels using the

LS and MMSE estimators as (4) - (9), respectively.
2: Initialize the MUEs pre-coders wMUE

ol with each ele-
ment drawn i.i.d. from the standard Gaussian distribution
CN (0, 1).

3: Initialize the MUEs decoder dMUE
o1 , · · · , dMUE

ol by
CN (0, 1).

4: Compute the wFAP′
fu ,wCUE′

rk as (12), (13)
5: Calculate the sum MSE ε =

∑M
l=1 E

[
‖ŝMUE
ol − sMUE

ol ‖
2
]

as in (31)
6: Set i = 0 and δo = ε
7: repeat
8: Update the MUE decoder dMUE

o1 , · · · , dMUE
ol as (33).

9: Calculate theMUE pre-coderwMUE
o1 , · · · ,wMUE

ol (32)
with the updated decoder.

10: Calculate ε with the new pre-coder and decoder
11: set i = i+ 1
12: δi = δi−i − ε

13: until ε ≈ 0

In the pre-coder update at the t th-iteration, W (t) are
chosen to minimize the MSE for a given D(t−1). Thus,
H(W (t),D(t−1)) ≤ H(W,D(t−1)) for any W and in
particular,

H
(
W (t),D(t−1)

)
≤ H

(
W (t−1),D(t−1)

)
.

Similarly, the variables in D(t) are chosen to minimize the
sumMSE for fixedW (t). We definitely haveH(W (t),D(t)) ≤
H(W (t),D) for any D and therefore,

H
(
W (t),D(t)

)
≤ H

(
W (t),D(t−1)

)
.

After combining these two results, we can see that the min-
imum sum MSE is monotonically decreasing during the
iteration,

H
(
W (t),D(t)

)
≤ H

(
W (t),D(t−1)

)
≤ H

(
W (t−1),D(t−1)

)
Then, we obtain

H
(
W (t),D(t)

)
≤ H

(
W (t−1),D(t−1)

)
≤

...

≤ H
(
W (1),D(1)

)
≤ H

(
W (0),D(0)

)

The transceivers of FUEs and MUEs are obtained iteratively
by solving a problem of minimising the sum MSE. We know
that the objective function, sum MSE is bounded below zero
and is decreasing at each iteration. Since the minimum sum

VOLUME 7, 2019 131087



A. D. Mafuta et al.: Interference Management in LTE-Advanced Cooperative Relay Networks

MSE is lower bounded, this indicates that it is non-negative,
therefore the proposed algorithms converge.

B. COORDINATED MMSE APPROACH FOR UES (CUES
AND MUES) DURING THE SECOND TIME SLOT
Generally, the transceiver design for cooperative RN system
with multiple users is a difficult task since the RN is shared
by multiple users and multi-users interference exists at both
RN and MBS. In the following, an iterative design algorithm
is proposed based on convex quadratic optimization theory.
Specifically, the algorithm iteratively computes the decoder
matrices Do, relay pre-coder matrices Fo and UE pre-coder
matrices WUE, starting with initial values for WUE and Fo.
The decoded information ŝUE of the UE through the RN is
expressed as

ŝ = (Do)H .yMBS-nd
o (34)

where Do is the decoding matrix for UEs. The same process
of minimizing the sum MSE for the UEs to the MBS during
the second time slot is applied and estimated as

min
WUE,Do

E{‖ŝUE − sUE‖2}

s. t. (WUE)(WUE)H ≤
PUE

LUE
,(

Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo

)
≤

PR
LR
, (35)

where PUEmax is the maximum transmit power of the UE and
PR is the maximum transmit power at the RN. The sum MSE
problem for UE in (35) can be rewritten as

min
WUE,Do

[
‖(Do)H ĤEst

o FoĤUE-EstWUE
−1‖2+‖(Do)H‖2Czo

]
s. t. (WUE)(WUE)H ≤

PUE

LUE
,(

Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo

)
≤

PR
LR
, (36)

where Czo is the equivalent noise covariance matrix given by

Czo = E
[
zozHo

]
=

R∑
r=1

E
[ (

ĤEst
o,r Fo,r ñr + no

) (
ĤEst
o,r Fo,r ñr + no

)H ]

=

R∑
r=1

ĤEst
o,r Fo,r (Ĥ

Est
o,r )

H (Fo,r )H + INB . (37)

1) DESIGN OF THE RN PRE-CODING MATRIX
In order to evaluate the RN pre-coder Fo, we consider the
fixed MMSE decoder Do and pre-coder WUE, the sum-MSE

optimization pre-coder with respect to the RN pre-coder can
be formulated as

min
Fo
‖(Do)H ĤEst

o FoĤUEWUE
− 1‖2 + ‖(Do)H‖2Czo

s. t.
(
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo

)
≤

PR
LR
. (38)

The sum-MSE optimization problem is solve with the
Lagrange function and the KKT conditions. The Lagrange
function is written as

LRN(λ,Fo) =
[
‖(Do)H ĤEst

o FoĤUE-EstWUE
− 1‖2

+‖(Do)H‖2Czo

]
+ λ

[
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo −

PR
LR

]
, (39)

where λ is the non-negative Lagrange multiplier, λ ≥ 0. The
KKT conditions are given as

- Stationarity:

∂LRN(λ,Fo)
∂Fo

= 0,

- Primary feasibility:[
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo

]
≤

PR
LR
,

- Complementary Slackness:

λ

[(
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEI

)
FHo

)
− PR

]
= 0,

- Dual feasibility:

λ ≥ 0.

Through the mathematical manipulation, we can derive the
optimal RN pre-coder as

Fo=
(
DHo Ĥ

Est
o FoĤUE-EstWUEDo(ĤEst

o )HFHo (ĤUE-Est)H

(WUE)H + λφ
)−1
× Do(ĤEst

o )HFHo (ĤUE-Est)H (WUE)H ,

(40)

where φ =
(
(ĤUE-Est)HWUE(WUE)H ĤUE-Est

+ σ 2
UEINB

)
.
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2) DESIGN OF THE PRE-CODING AND DECODING MATRICES
To solve the optimization problem in (36), we consider
the Lagrange duality and KKT conditions. The Lagrange
function is formulated as

LUE(µ1, µ2,Do,WUE)

=

[
‖(Do)H ĤEst

o FoĤUE-EstWUE
− 1‖2

+‖(Do)H‖2Czo

]
+µ1

[
(WUE)(WUE)H −

PUE

LUE

]
+µ2

[(
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo

)
−

PR
LR

]
, (41)

where µ1, µ2 are the non-negative Lagrange multipliers,
µ1, µ2 ≥ 0. The KKT conditions for UEs pre-coders are
given as

- Stationarity:

∂LUE(µ1, µ2,Do,WUE)
∂WUE = 0,

- Primary feasibility:

(WUE)(WUE)H ≤
PUE

LUE
,[

Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo

]
≤

PR
LR
,

- Complementary Slackness:

µ1

[
(WUE)(WUE)H −

PUE

LUE

]
= 0,

µ2

[
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H

+ σ 2
UEINB

)
FHo −

PR
LR

]
= 0,

- Dual feasibility:

µ1, µ2 ≥ 0.

To evaluate the derivation of the Lagrange function given
in (41) the matrices Do and DHo are treated independently.
This is also applied toWUE and (WUE)H . Furthermore, it can
be seen that the optimization problem in (36) is convex
with respect to WUE. The Lagrange duality function can be
defined as

f (µ1, µ2) = min
WUE

LUE(µ1, µ2,Do,WUE). (42)

Moreover, the dual problem is defined as

max
µ1,µ2≥0

f (µ1, µ2). (43)

Using the KKT conditions for the resulting problem, the opti-
mal decoder D∗o is obtained with the fixed pre-coders as

D∗o =
(
ĤEst
o FoĤUE-EstWUE(ĤEst

o )HFHo (ĤUE-Est)H (WUE)H

+Czo

)−1
ĤEst
o FoĤUE-EstWUE. (44)

Hence, the MMSE pre-coding vector WUE for UE during
the second time slot is obtained as

WUE∗
=

(
µ1IUE + µ2

(
(ĤUE-Est)HFoFHo Ĥ

UE-Est
))−1

×Do(ĤEst
o )H (ĤUE-Est)HFHo , (45)

where µ1 represents the satisfaction of UE trans-
mit power constraint (WUE)H (WUE) ≤ PUE

LUE
and µ2

represents the satisfaction of the RN transmit power[(
Fo

(
ĤUE-EstWUE(WUE)H (ĤUE-Est)H + σ 2

UEINB

)
FHo

)
−

PR
LR

]
. The details of the proposed decentralized algorithm for

the UEs is presented in Algorithm 3.

Algorithm 3 Coordinated MMSE for CUEs and MUEs
(During the Second Time Slot)

1: Initialize and construct the estimated channels ĤEst
o and

ĤUE-Est using the LS and MMSE channel estimators.
2: Initialize the UEs and RN pre-coders WUE and Fo with

each element drawn i.i.d. from the CN (0, 1).
3: Compute the wMUE′

om ,wFAP′
fu as (11), (12)

4: Initialize the UEs decoder Do by CN (0, 1).
5: Calculate the sum MSE ε = E

[
‖ŝUE − sUE‖2

]
in

(35), (36)
6: Set n = 0 and δo = ε
7: repeat
8: Update the UE decoder Do as (44).
9: Calculate the RN pre-coder Fo (40) with the updated

decoder.
10: Obtain the UE pre-coder with the updated decoder

and RN pre-coder as 45.
11: Calculate ε with the new UE, RN pre-coder and

decoder
12: set n = n+ 1
13: until ε ≈ 0

IV. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of
the proposed schemes for FAPs, MUEs and UEs in the
MU-MIMO relay system through numerical simulations. The
simulated model is illustrated in Fig. 2. This figure shows a
macrocell of dimension 2km × 2km with a MBS placed at
the center of the area at coordinates (1km, 1km). There are 12
MUEs distributed near the cell edge, considered as the CUEs.
The CUEs are grouped into clusters where each cluster has
1 RN and 3 CUEs. The RNs are strategically placed at the
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FIGURE 2. Simulation scenario with fixed MBS, FAPs with their FUEs,
MUEs and CUEs randomly distributed with a certain distance.

TABLE 2. Coordinate parameters.

coordinates detailed in the Table 2. The CUEs are located
at distance dCUE from their respective RN. The RNs are
located at dRN from the MBS. The users (CUEs, FUEs and
MUEs) are randomly placed in the area at the coordinated
detailed in Table 2. There are 10 MUEs deployed in the
macrocell area located at a distance dMUE from the MBS.

We consider 3 FAPs with 2 FUEs each uniformly distributed
with the distance dFAP. All the channel coefficients are
assumed to be Rayleigh fading channels complex Gaussian
random variables with zero mean and variance one. The
propagation loss is modelled for each FUEs, MUEs and UEs
based on their respective distance. The simulation parameters
are similar to [28], [36] and are given in Table 3.

TABLE 3. Simulation parameters.

FIGURE 3. BER performance of the proposed schemes for MUEs with
different values of σ2

ε , SNR = 15 dB.

In several cases, the users and RN pre-coders are derived
by assuming that all channel matrices are perfectly known
at each node. In practical systems, such assumption may not
always be realistic. In this regard, the BER evaluation of the
channel estimation errors effect is further conducted for the
proposed transceiver design for the FAPs, MUEs and UEs
at both time slots. Just like [34], we consider the case of
imperferct CSI scenario with LS and MMSE channel estima-
tors for a realistic network scenario. The BER performance
evaluation versus different value of σ 2

ε for the MUEs during
the first time slot is shown in Fig. 3. The effect of the LS and
MMSE channel estimators is considered and compared. It can
be observed that for a chosen value of SNR, as the estimation
value of σ 2

ε increases, the BER performance increases as
well until a maximum estimation value is achieved. It then
starts decreasing as the estimation value decreases. This
indicates that the maximum estimation value σ 2

ε improves
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the performance of the MUEs in terms of BER evaluation
versus the SNR and can achieve the optimal performance.
For the LS and MMSE channel estimators, the maximum
estimation value is achieved at σ 2

ε = 0.04 and σ 2
ε = 0.05,

respectively. The BER performance versus the different val-
ues of σ 2

ε is illustrated in Fig. 4 for FAPs with SNR = 15dB.
Although, the effect of the channel estimation errors is
considered, the proposed scheme for FAP still performed
well. As observed, the BER performance increases when σ 2

ε

increases and decreases after a certain value of σ 2
ε . For the

proposed scheme with LS estimator, the maximum value for
σ 2
ε to achieve an optimal BER performance is σ 2

ε = 0.06
while for the proposed scheme with MMSE estimator is
σ 2
ε = 0.05.

FIGURE 4. BER performance of the proposed schemes for FAP with
different values of σ2

ε , SNR = 15 dB.

FIGURE 5. BER performance versus SNR for the FAP during the first
time slot.

The BER performance as a function of SNR for FAPs is
illustrated in Fig. 5, for the LS andMMSE channel estimators
with σ 2

ε = 0 and σ 2
ε = 0.04. It can be observed that, the pro-

posed schemewithMMSE channel estimator outperforms the
BER performance with the LS estimator effect regardless the
value of σ 2

ε . Another interesting observation is that the value

of σ 2
ε affects the BER of the proposed schemes such that it can

increase the performance at the maximum value and decrease
after the maximum value. With the value of σ 2

ε = 0.04 for LS
andMMSE estimators at SNR= 15dB, it can be seen that the
achieved BER performances in Fig. 5 are similar to the ones
in Fig. 4.

FIGURE 6. BER performance versus different values σ2
ε for the CUEs with

and without the RN.

Figure 6 illustrates the BER performance as a function of
σ 2
ε for the CUE with and without cooperative RN during the

first time slot with SNR = 20dB. It can be observed that,
the BER performance of a system without cooperative RNs
is not as good as a system with cooperative RNs. However,
the performance of the proposed scheme with ‘‘No RN’’ is
improved when adding estimation values to the ZF assump-
tions. For LS and MMSE estimators of the proposed scheme
with ‘‘No RN’’, the maximum σ 2

ε is achieved between 0.05
and 0.06, respectively. The proposed scheme, on the other
hand, achieves far better BER performance when σ 2

ε = 0.06
for LS estimator and σ 2

ε = 0.05 for the MMSE estimator.
Therefore, with the parameters considered, we showed that
very significant performances are obtained by adding estima-
tion values to the ZF assumptions.

In Fig. 7, we consider the maximum σ 2
ε in the case of

CUEs with and without RN. For the LS σ 2
ε = 0.05 and

MMSE estimators σ 2
ε = 0.06 for ‘‘No RN’’, the same σ 2

ε

are considered for the proposed scheme. We can observe
that the proposed schemes for the CUEs still provide signifi-
cant improvement with the effect of MMSE and LS channel
estimators than when a RN is not considered. Fig. 9 shows
the BER evaluation versus different values of σ 2

ε for the
UEs during the second time slot with the effect of the LS
and MMSE channel estimators. As observed, the proposed
scheme with the MMSE channel estimator is better than
the LS estimator performance. Interestingly, the maximum
value of σ 2

ε to achieve an optimal BER performance for the
proposed scheme with LS estimator is σ 2

ε = 0.05 while σ 2
ε =

0.06 for the proposed scheme with MMSE estimator. Fig. 8
illustrates the BER performance as a function of the SNR for
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FIGURE 7. BER evaluation as function of the SNR for the CUEs with and
without the RN during the first time slot, for σ2

ε = 0.05 and σ2
ε = 0.06.

FIGURE 8. BER performance of the proposed schemes for the UEs during
the second time slot, for σ2

ε = 0.03.

FIGURE 9. BER performance of the proposed schemes for UEs with
different values of σ2

ε , SNR = 15 dB.

the UEs during the second time slot. This considers the UEs,
which the signal coming from the RN and the MUEs during
the second time slot to the MBS. As observed in the figure,
the proposed scheme with the effect channel estimator errors

still perform well. The reason is that, the proposed schemes
update the Lagrange multiplier at each iteration in addition to
theUEs andRNmatrices. Interestingly, the BERperformance
of the proposed scheme with the MMSE estimator is better
than the LS channel estimator. Furthermore, the proposed
scheme with σ 2

ε = 0.03, obviously outperforms the proposed
schemes with channel estimators when only the ZF σ 2

ε = 0
is considered without adding the estimation error σ 2

ε .

V. CONCLUSION
In this paper, optimal transceivers for the FUEs,MUEs, CUEs
and RN (amplifying matrix) with channel estimators in the
MU-MIMO relay systems have been designed for interfer-
ence management. We considered a decentralized transceiver
design instead of a centralized design which essentially is
computationally impossible to do in this MU-MIMO relay
system due to the unknown interfering terms. The interfering
terms have been assumed to be generated as ZF solutions.
Due to the inaccuracy of the ZF solutions, estimation values
were added to the ZF assumptions in order to achieve bet-
ter performance. The simulation results demonstrate a much
better performance of the proposed schemes in terms of BER
when estimation values are added to the ZF assumptions.
The proposed decentralized schemes further enhance perfor-
mance with respect to non-cooperative MU-MIMO systems.
This confirms the importance of including cooperative RNs
into MU-MIMO systems. Future lines of research could con-
sider the application of the proposed algorithms in a massive
MIMO system.
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