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ABSTRACT In this paper, iterative learning control (ILC) is employed in discrete spatial-temporal parabolic
distributed parameter systems (DPSs), where the trial lengths vary randomly. A distributed ILC strategy
is proposed, in which containing spatial variable, utilizes all past tracking information to improve current
performance. Through rigorous theoretical analysis, the convergence of the system output error is proved
under mathematical expectation along the iteration axis. Finally, the proposedmethod is applied to numerical
simulation to illustrate its effectiveness.

INDEX TERMS Iterative learning control, distributed parameter systems, partial difference equations,
random, convergence.

I. INTRODUCTION
Any learning method needs an inherent requirement, that
is repeatability. In a repetitive environment, the accumu-
lated experience can be fully adopted to improve the current
method for achieving the desired objective. Hence, it is rea-
sonable to consider repeatability and accuracy as two major
learning components in the control system [1], [2]. It is well
known, as a powerful and simple control strategy, iterative
learning control (ILC) received extensive attention since it
was proposed in 1984 [3]. Classic ILC often requires the
system can operate repeatedly so that the input signals can
be continuously optimized along the iteration axis, and then
achieve full tracking [4]–[10]. With the decades of devel-
opment of ILC, it has been widely applied in distributed
parameter systems (DPSs) [11]–[21]. Such as the author
considers applying ILC to the high-order DPSs described
by one-dimensional fourth order partial differential equations
(PDEs) [11], and the boundedness of the system output errors
is proved. In [12], for a class of parabolic DPSs, the paper
proposes an ILC scheme based on the system eigenspec-
trum. In views of the ILC strategy, the desired trajectory
can be repeatedly tracked by the system both in time and
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space. Furthermore, in the existing literature [13], an ILC
problem for a class of MIMO distributed parameter systems
consisting of second-order hyperbolic PDEs with uncertain-
ties is considered. Unlike the lumped parameter systems,
the distributed parameter systems described by the partial
differential equations contain both time and space variables,
which makes their research complicated. The above literature
shows that the ILC is an effective methodology for the DPSs.
However, the trial lengths all are fixed in this literature.
In this paper, we apply ILC to DPSs governed by parabolic
partial difference equations with non-uniform trial lengths.
Traditional ILC requires that the control object must have
fixed trial lengths under strictly repetitive environment; once
it is not satisfied, the tracking error can only achieve bounded
convergence [22].

In fact, the situation that trial lengths vary randomly exists
in many practical applications of ILC, especially biomedical
systems and anthropomorphic robots. The trial lengths are
often non-uniform due to unknown dynamics and complex
factors [23]. For example, in [24], for some patients with
muscle atrophy and limb paralysis caused by the disuse of
upper limbmuscles, it can be relieved and cured by functional
electrical stimulation (FES). Precise stimulation patterns are
essential in FES, which requires us to know the detailed dis-
tribution of the atrophic muscles and apply accurate electrical
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stimulation therapy. For continuous learning of such stimulus
distributions, it is theoretically feasible to use ILC algo-
rithms that can achieve full tracking for the desired trajectory.
Complex electrical stimulation therapy often requires mul-
tiple trial attempts. However, considering the patient’s own
physical condition and uncontrollable external factors in the
trial, the actual output trajectory is likely to be affected and
deviated. It should be noted that if the difference between
the output trajectory and the desired trajectory is too high,
the trial must be terminated immediately to ensure the safety
of patients. Therefore, the time length is not fixed and chang-
ing randomly in each electrical stimulation. Nevertheless,
if there is a way to address the information of these electrical
stimulations with different time lengths, a lot of valuable data
can be collected for learning. Similar examples are included
in the gait-assisted FES process [24] and the anthropomor-
phic simulation of gait in [25]. These examples are almost due
to various unavoidable reasons, resulting in different lengths
of time in the learning process. In short, in these practical
application examples, the requirement of classic ILC that trial
lengths must be fixed in the iteration domain is no longer
satisfied. It makes us need to consider the applicability of ILC
in the context of non-uniform trial lengths.

Recently, some studies have been done on the stochastic
ILC problems with trial lengths varying randomly in the
learning process [23]–[31]. In the literature [24], the author
first defines the maximum trial length as the full length and
shorter than the maximum trial length as the incomplete
length. Then, in order to satisfy the strict repeatability of
classic ILC, the incomplete trial lengths are replenished as
full length by filling errors of the shortage parts with 0.
In [26], the author designs a new ILC algorithm with the
iteration-average operator and proves the convergence of the
system output errors under mathematical expectation. Also,
[27] further considers the case of the system with continuous-
time nonlinear based on the results of existing literature [26].
Moreover, in [28], the author reveals that the traditional
P-type ILC scheme is robust for the factor of the trial
lengths vary randomly, then the almost sure and mean-square
convergence conditions of the output error are established
without presupposing any probability distribution, etc.. How-
ever, the above examples all applied random ILC to lumped
parameter systems which only define the system states by
time variable but do not contain spatial variable. As far as
I know, there are currently no works applying ILC to the
distributed parameter system where the trial lengths vary
randomly. In this paper, under the premise of considering both
the spatial-temporal variables and the unfixed trial lengths
in the system, a distributed ILC algorithm is introduced, and
then the convergence of the system error is guaranteed under
mathematical expectation.

The main contributions of this paper are given as follow:
(1) This paper first applies ILC to discrete parabolic

distributed parameter systems where trial lengths are non-
uniform. The research of discrete system provides a theoret-
ical basis for digital computer process control. A distributed

learning algorithm with the iteration-average operator is pro-
posed.

(2) The detailed convergence analysis of system error
under mathematical expectation in the sense of L2 norm and
effective numerical simulation are presented. It should be
noted that the L2 norm containing the space variables is used
for the convergent analysis, which leads to the square terms
will be involved in the proof process. Therefore, it makes the
convergence analysis more complicated.

The structure of this paper is organized as follows: Firstly,
in Section II, we formulate the ILC design problem and
give the system description. Then, the learning algorithm
design and convergence proof are presented in Section III.
Further, in Section IV, an effective simulation example is
given. We summarize this paper in Section V.
Notations: In this paper, N denotes the set of natural num-

bers, Td , Tk , Tm are represented as the desired iteration length,
the actual iteration length and the minimum iteration length
respectively. In addition, ‖ · ‖ is denoted as L2 norm that

‖ g ‖= (
I∑
η=1

g2(η))
1
2 where g(η) ∈ R for 1 6 η 6 I , and

I is a given integer. ‖ fk ‖2(L2,λ)= sup
06τ6Td

{‖ fk (·, τ ) ‖2 λτ }

as (L2, λ) norm of a function fk (η, τ ) ∈ R with 1 6 η 6 I ,
0 6 τ 6 Td . Moreover, E{ϑ} represents the expectation of
stochastic variable ϑ , and P{ζ } is defined as the probability
of occurrence of event ζ .

II. PROBLEM FORMULATION
Consider the following discrete parabolic distributed param-
eter systems in a repeatable environment

12xk (η, τ ) = a12
1xk (η−1, τ )+ gxk (η, τ )

+ buk (η, τ ),
yk (η, τ ) = cxk (η, τ ),

(1)

where k ∈ N stands for the iteration index, 16η6 I , 06τ6
Td denote space and time variables, respectively, and I ,Td
are given integers. a > 0 is a constant number. b, g and c
are known constant numbers.Moreover, in the kth iteration,
the state, input, and output of the system (1) are represented
by xk (η, τ ), uk (η, τ ), yk (η, τ )∈R, respectively.
Remark 1: As the main class of distributed parame-

ter systems, parabolic distributed parameter systems have
been extensively studied and have a broad industrial back-
ground [32]. Many practical continuous systems can be
described by parabolic partial difference equations after dis-
cretization. For example, in [33], the author utilized the
discrete parabolic partial difference equations to express a
diffusion process with a domain control. Discrete-time mod-
els of parabolic DPSs are considered for application to the
estimation of sulfur dioxide concentration in the atmosphere
in [34]. Also, the system (1) is obtained by discretizing a
continuous parabolic distributed parameter system consisting
of partial differential equations.
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The difference symbol 1 in system (1) are defined as
follows

12xk (η, τ ) = xk (η, τ + 1)− xk (η, τ ),
12

1xk (η − 1, τ ) = xk (η + 1, τ )− 2xk (η, τ )
+ xk (η − 1, τ ).

(2)

The initial value and boundary value of the system (1) are set
as

xk (η, 0)= xd (η, 0)=φ(η), 1 6 η 6 I . k = 1, 2 · · · , (3)

xk (0, τ ) = 0 = xk (I+1, τ ), 0 6 τ 6 Td , (4)

where φ(η) is a bounded function for 1 6 η 6 I .
For desired output yd (η, τ ), there exists a unique system

input ud (η, τ )∈R satisfying that
12xd (η, τ ) = a12

1xd (η − 1, τ )+ gxd (η, τ )
+ bud (η, τ ),

yd (η, τ ) = cxd (η, τ ),

(5)

where the ud (η, τ ) is uniformly bounded for all 1 6 η 6 I ,
0 6 τ 6 Td .
This paper is mainly to investigate the problem that the

lengths of time vary randomly in the iteration domain, which
prompts us to consider the relationship between the desired
iteration length Td and the actual iteration length Tk . When
Tk < Td , the learning information is lost from Tk + 1 to Td ,
which means that the system output errors are unmeasurable
during this period, and we regard these output errors as 0.
The other scenario is Tk > Td , that is, the output errors are
measurable from 0 to Td , which can be used as valuable
learning information. Further, it is worth noting, when Tk >
Td , the system errors from Td+1 to Tk are useless for learning
updates, so we also regard Tk > Td as Tk = Td (see [23],
[26]). In addition, because of the existence of the minimum
iteration length Tm, the actual iteration time lengths will not
vary randomly from 0 to Tm, it also means that the system
inputs uk (η, τ ) at τ ∈ {0, 1 · · · Tm} are updated continuously,
and the lengths of time vary on {Tm+1, · · · ,Td }. Thus, in the
subsequent analysis, we only need to consider the situation
that the actual trial length Tk changes randomly from Tm+1
to Td in the iteration process [25].

III. ALGORITHM DESIGN AND CONVERGENCE ANALYSIS
In the section, for describing the probability of the system
error happens at each moment, this paper considers defin-
ing it by the probabilities of the random iteration lengths
occur. Firstly, we set the value of the random variable τ ∈
{Tm + 1,Tm + 2, · · · ,Td }, which is the iteration length as
an event Aτ . It is worth noting that when τ = Tk , Tk ∈
{Tm+1,Tm+2, · · · ,Td }, event ATk means the system errors
on τ ∈ {0, 1, · · · ,Tk} is measurable, but the information of
output errors is lost on {Tk+1, · · · ,Td }. Further, because the
range of random iteration length is {Tm+1, · · · ,Td }, we have
the equation

∑Td
τ=Tm+1

P(Aτ )=1.
In addition, we define a random variable θk (τ ), τ ∈
{0, 1, · · · ,Td } obeying the Bernoulli binomial distribution,

when θk (τ )= 1 which stands for the system error is measur-
able at τ moment in the kth iteration. For example, if the sys-
tem error is measurable at τ0 moment which means θk (τ0) =
1, τ0∈{0, 1, · · · ,Td }, that is, in the same trial, for 06τ6τ0,
16η6 I , the output errors ek (η, τ ) are measurable. For con-
venience, we rewrite the probability of θk (τ )=1,P(θk (τ )=1)
as p(τ ), p(τ ) ∈ (0, 1]. It is not hard to find p(τ ) = 1, τ ∈
{0, 1, · · · ,Tm} and p(Tm + 1) > p(Tm + 2) > · · · > p(Td ).
The other case is θk (τ )= 0, which means that the system

error is unmeasurable at τ moment. It is also easy to realize
that if the output error is unmeasurable at τ0, in the same
trial, for τ0 6 τ 6 Td , 1 6 η 6 I , the information of output
errors ek (η, τ ) is lost, and we use 1−p(τ ) to represent the
probability of θk (τ )=0. According to the above explanation,
in kth iteration, the expression that uses the probabilities of
occurrences of the iteration lengths to describe the probability
of the error which occurs at τ moment can be written as
p(τ )=

∑Td
Tk=τ P(ATk ), τ ∈ {0, 1, · · · ,Td }.

Since the iteration lengths actually only vary on {Tm,Tm+
1, . . . ,Td }, we can divide the tracking error into two cases.
One case is Tk = Td , which means the actual iteration length
is fixed and not varying random in iteration domain. In this
case, the output errors are not affected by the random factor.
The other case is Tm<Tk<Td , which indicates that the actual
iteration length is less than the desired iteration length. At this
point, the information of system errors at {Tk ,Tk+1, · · · ,Td }
is lost and cannot be used for learning update, so the tracking
errors during this period are set as 0.

From the above analysis, we can denote the actual output
error e∗k (η, τ )=θk (τ )ek (η, τ ). When Tk<Td we obtain

e∗k (η, τ ) =

{
ek (η, τ ), τ ∈ {0, 1, · · · ,Tk},
0, τ ∈ {Tk + 1,Tk + 2, · · · ,Td },

(6)

where η∈{1, 2, · · · , I }. When Tk=Td , it follows that

e∗k (η, τ ) = ek (η, τ ), η∈{1, 2, · · · , I }, τ ∈{0, 1, · · · ,Td },

(7)

where ek (η, τ ) = yd (η, τ )− yk (η, τ ).
Since θk (τ ) is a random variable obeying the Bernoulli

binomial distribution, we can get

E{θk (τ ) = 1} = (1− p(τ )) ·0+ p(τ ) · 1 = p(τ ). (8)

For system (1), in order to design the ILC algorithm, we intro-
duce the iteration-average operator [4]

A{fk (·)} ,
1

k+1

k∑
s=0

fs(·), (9)

The distributed ILC scheme is adopted as follow

uk+1(η, τ )=A{uk (η, τ )}+
k+2
k+1

γ

k∑
s=0

e∗s (η, τ+1), (10)

where γ is the learning gain, and η ∈ [0, I ], τ ∈ [0,Td ].
We define x̄k (η, τ ),xd (η, τ )−xk (η, τ ), ūk (η, τ ),ud (η, τ )−
uk (η, τ ). xd (η, τ ), ud (η, τ ) respectively denote the desired
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state and desired input of the system (1). Combining these
definitions and the system (1), we have

12x̄k (η, τ ) = a12
1x̄k (η−1, τ )+gx̄k (η, τ )
+ būk (η, τ ),

ek (η, τ ) = cx̄k (η, τ ).

(11)

For proving the convergence of the output error under mathe-
matical expectation, the operates E{·},A{·} are applied on both
sides of (11), that is
E{A{12x̄k (η, τ )}} = E{A{a12

1x̄k (η−1, τ )}}
+E{A{gx̄k (η, τ )}}
+E{A{būk (η, τ )}}, (12-a)

E{A{ek (η, τ )}} = E{A{cx̄k (η, τ )}}. (12-b)

By the definition of difference symbols (2), one yields

E{A{12x̄k (η, τ )}} = E{A{x̄(η, τ + 1)− x̄(η, τ )}}

= E{A{x̄(η, τ + 1)}} − E{A{x̄(η, τ )}}.
(13)

Similarly, we can obtain

E{A{12
1x̄k (η−1, τ )}}

= E{A{x̄k (η+1, τ )− 2x̄k (η, τ )+ x̄k (η−1, τ )}}

= E{A{x̄k (η+1, τ )}} − 2E{A{x̄k (η, τ )}}
+E{A{x̄k (η−1, τ )}}. (14)

Then, according to the initial value and boundary value
assumptions of the system (1), there is

E{A{x̄k (η, 0)}} = E{A{φ(η)}}−E{A{φ(η)}}
= 0, (15)

E{A{x̄k (0, τ )}} = 0=E{A{x̄k (I + 1, τ )}}, (16)

where 1 6 η 6 I , 0 ≤ τ ≤ Td , k = 1, 2 · · · .
Next, we introduce the four Lemmas which will be needed

in the following proof process.
Lemma 1 [35]: Let {z(η)}, {R(η)}, {Q(η)} be real sequences

and η > 0, by the condition

z(η + 1) 6 R(η)z(η)+ Q(η), R(η) > 0, η > 0, (17)

we have

z(τ )6
τ−1∏
η=0

R(η)z(0)+
τ−1∑
η=1

Q(η)
τ−1∏
s=η+1

R(s),∀τ60. (18)

Lemma 2 [36]: If the non-negative real number sequence µk
satisfies that {µk+1 6 ωµk + νk}, where 0 6 ω < 1 and
lim
k→∞

νk=0, it follows lim
k→∞

µk=0.

Lemma 3: Consider equations (13), (14) and boundary
value condition (16) of the system (12), we have the following
equation

I∑
η=1

E{A{x̄k (η, τ )}}E{A{12
1x̄k (η − 1, τ )}}

= −

I∑
η=1

(E{A{11x̄k (η, τ )}})2. (19)

Proof: Firstly, by the equation (14), we can express∑I
η=1E{A{x̄k (η, τ )}}E{A{12

1x̄k (η−1, τ )}} as

I∑
η=1

E{A{x̄k (η, τ )}}E{A{12
1x̄k (η − 1, τ )}}

=

I∑
η=1

E{A{x̄k (η, τ )}}[E{A{x̄k (η + 1, τ )}}

−E{A{x̄k (η, τ )}}]−
I∑
η=1

E{A{x̄k (η, τ )}}

× [E{A{x̄k (η, τ )}} − E{A{x̄k (η − 1, τ )}}]. (20)

Then, in terms of equations (20) and (13), it follows that

I∑
η=1

E{A{x̄k (η, τ )}}E{A{12
1x̄k (η−1, τ )}}

= E{A{x̄k (I , τ )}}E{A{11x̄k (I , τ )}}

−

I−1∑
η=1

(E{A{11x̄k (η, τ )}})2. (21)

In addition, considering E{A{x̄k (I , τ )}}E{A{11x̄k (I , τ )}} in
(21), according to (16), we have

E{A{x̄k (I , τ )}}E{A{11x̄k (I , τ )}}

= E{A{x̄k (I , τ )}}E{A{11x̄k (I , τ )}}

−E{A{x̄k (I + 1, τ )}}E{A{11x̄k (I , τ )}}

= −(E{A{11x̄k (I , τ )}})2. (22)

Further, Substituting (22) into (21), one yields

I∑
η=1

E{A{x̄k (η, τ )}}E{A{12
1x̄k (η − 1, τ )}}

= −

I∑
η=1

(E{A{11x̄k (η, τ )}})2. (23)

The proof of Lemma 3 is finished.
Lemma 4: Consider the initial and boundary value condi-

tions (15), (16) and system (12), we can get the inequality
concerning E{A{x̄k (η, τ )}} and E{A{ūk (η, τ )}} as follow

‖ (E{A{x̄k (·, τ )}})‖26
τ−1∑
t=0

M2 ‖ (E{A{ūk (·, t)}})‖2 M (τ−t−1)
1 ,

(24)

whereM1 = 1+2g+|b|+4(g−2a)2+8a2,M2 = |b|+4a2.
Proof: By equation (12-a), we can obtain

E{A{x̄k (η, τ + 1)}}

= aE{A{12
1x̄k (η − 1, τ )}}

+ (g+ 1)E{A{x̄k (η, τ )}}+ bE{A{ūk (η, τ )}}. (25)

Multiplying on both sides of (25) by E{A{x̄k (η, τ )}}, there is

E{A{x̄k (η, τ )}}E{A{x̄k (η, τ + 1)}}
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= aE{A{x̄k (η, τ )}}E{A{12
1x̄k (η − 1, τ )}}

+ (g+ 1)(E{A{x̄k (η, τ )}})2

+ bE{A{ūk (η, τ )}}E{A{x̄k (η, τ )}}. (26)

According to the definition

(E{A{12x̄k (η, τ )}})2

= (E{A{x̄k (η, τ + 1)}})2

− 2E{A{x̄k (η, τ )}}E{A{x̄k (η, τ+1)}}
+ (E{A{x̄k (η, τ )}})2, (27)

we can get

(E{A{x̄k (η, τ+1)}})2

= (E{A{12x̄k (η, τ )}})2

+ 2E{A{x̄k (η, τ )}}E{A{x̄k (η, τ+1)}}
− (E{A{x̄k (η, τ )}})2. (28)

Substituting (26) into (28), one obtains

(E{A{x̄k (η, τ+1)}})2

= (E{A{12x̄k (η, τ )}})2

+ 2aE{A{x̄k (η, τ )}}E{A{12
1x̄k (η−1, τ )}}

+ (2g+ 1)(E{A{x̄k (η, τ )}})2

+ 2b(E{A{ūk (η, τ )}})(E{A{x̄k (η, τ )}}). (29)

By summing up η from 1 to I on both sides of (29),∑I
η=1(E{A{x̄k (η, τ + 1)}})2 can be regarded as

I∑
η=1

(E{A{x̄k (η, τ + 1)}})2 , <1 +<2 +<3 +<4. (30)

where

<1 =
∑I

η=1
(E{A{12x̄k (η, τ )}})2,

<2 =
∑I

η=1
2aE{A{x̄k (η, τ )}}E{A{12

1x̄k (η − 1, τ )}},

<3 =
∑I

η=1
(2g+ 1)(E{A{x̄k (η, τ )}})2,

<4 =
∑I

η=1
2b(E{A{ūk (η, τ )}})(E{A{x̄k (η, τ )}}).

Then, equations (13), (16) and (12-a) are used to estimate<1,
that is

<1 =

I∑
η=1

(E{A{12x̄k (η, τ )}})2

6 4
I∑
η=1

{[2a2 + (g− 2a)2](E{A{x̄k (η, τ )}})2

+ b2(E{A{ūk (η, τ )}})2}. (31)

Next, estimating <2 by Lemma 3, we have

<2=

I∑
η=1

2aE{A{x̄k (η, τ )}}E{A{12
1x̄k (η−1, τ )}}

= −2a
I∑
η=1

(E{A{11x̄k (η, τ )}})260. (32)

Further, <4 is estimated by Hölder inequality as follow

<4= 2b
I∑
η=1

E{A{x̄k (η, τ )}}E{A{ūk (η, τ )}}

6 |b|
I∑
η=1

[(E{A{x̄k (η, τ )}})2

+ (E{A{ūk (η, τ )}})2]. (33)

Substituting the estimated results of (31), (32) and (33) back
into (30), one yields

I∑
η=1

(E{A{x̄k (η, τ + 1)}})2

6 [1+2g+|b|+4(g−2a)2 + 8a2]
I∑
η=1

(E{A{x̄k (η, τ )}})2

+ (|b| + 4b2)
I∑
η=1

(E{A{ūk (η, τ )}})2. (34)

Let M1= 1+2g+|b|+4(g−2a)2+8a2, M2= |b|+4a2, and
replacing them into (34), it follows

I∑
η=1

(E{A{x̄k (η, τ + 1)}})2

6M1

I∑
η=1

(E{A{x̄k (η, τ )}})2

+M2

I∑
η=1

(E{A{ūk (η, τ )}})2. (35)

According to Lemma 1, inequality (35) has

I∑
η=1

(E{A{x̄k (η, τ )}})2

6 M τ
1

I∑
η=1

(E{A{x̄k (η, 0)}})2

+

τ−1∑
t=0

M2

I∑
η=1

(E{A{ūk (η, τ )}})2M (τ−t−1)
1 . (36)

Then, substituting (15) into (36) leads to

‖ (E{A{x̄k (·, τ )}})‖26
τ−1∑
t=0

M2 ‖ (E{A{ūk (·, t)}})‖2 M (τ−t−1)
1 .

(37)

The proof of Lemma 4 is completed.
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Theorem 1: Consider the systems (1) and the ILC scheme
(10) under Assumptions (3)-(5), by the condition of the learn-
ing gain γ satisfies

sup
06τ6Td

{(1− p(τ )γ cb)2} <
1
2
, (38)

then, we have limk→∞ ‖E{ek (·, τ )}‖ = 0. It is worth noting
that the probability distribution of the trial length τ can
be estimated through many past experiments in practice.
Therefore, the probability P(Aτ ), τ ∈ {0, 1, · · · ,Td } can
be regarded as known information to calculate p(τ ), τ ∈
{0, 1, · · · ,Td } by equation p(τ )=

∑Td
Tk=τ P(ATk ).

Proof: The following proof about Theorem 1 can be
roughly divided into the three steps. In Step 1, this paper
considers using Lemma 4 to estimate ‖ E{A{ūk+1(·, τ )}} ‖2.
Contraction mapping principle and D’Alembert’s principle
are utilized to prove limk→∞ ‖ E{ūk (·, τ )} ‖2= 0 in Step
2. In Step 3, by combining Lemma 2 and some conclusions
obtained from the previous part of the certificate, we have
finished the proof of Theorem 1.

Step 1: From the definition of the iteration-average opera-
tor (9), A{ūk+1(η, τ )} can be rewritten as

A{ūk+1(η, τ )} =
1

k + 2
[ūk+1(η, τ )+ (k + 1)A{ūk (η, τ )}].

(39)

In addition, it should be noted that ud (η, τ ) = A{ud (η, τ )}.
Both sides of the learning law (9) are subtracted by ud (η, τ ),
we can get

ūk+1(η, τ )

= A{ud (η, τ )− uk (η, τ )} −
k + 2
k + 1

γ

k∑
s=0

e∗s (η, τ + 1)

= A{ūk (η, τ )} −
k + 2
k + 1

γ

k∑
s=0

e∗s (η, τ + 1). (40)

Further, substituting (40) into (39), we obtain
A{ūk+1(η, τ )}

=
1

k + 2
[A{ūk (η, τ )} −

k + 2
k + 1

γ

k∑
s=0

e∗s (η, τ + 1)

+ (k + 1)A{ūk (η, τ )}]
= A{ūk (η, τ )} − γA{ē∗k (η, τ + 1)}. (41)

Because E{·} and A{·} are both linear operators, the order
of operations can be exchanged. Taking expectations on both
sides of (41) and using e∗k (η, τ )=θk (τ )ek (η, τ ), it follows

E{A{ūk+1(η, τ )}}
= E{A{ūk (η, τ )}} − γE{A{ē∗k (η, τ + 1)}}

= E{A{ūk (η, τ )}}−p(τ + 1)γE{A{ek (η, τ + 1)}}. (42)

Then, combing ek (η, τ+1) = cx̄k (η, τ+1) and (42), we have

E{A{ūk+1(η, τ )}} = E{A{ūk(η, τ )}}
− p(τ + 1)γ cE{A{x̄k (η, τ + 1)}}. (43)

Next, substituting (25) into (43), one yields

E{A{ūk+1(η, τ )}}
= (1− p(τ + 1)γ cb)E{A{ūk (η, τ )}}
− p(τ + 1)γ caE{A{12

1x̄k (η − 1, τ )}}

− p(τ + 1)γ c(g+ 1)E{A{x̄k (η, τ )}}. (44)

Simultaneously squaring both sides of (44) and according to
(a+ b)2 6 2a2 + 2b2, we obtain

(E{A{ūk+1(η, τ )}})2

6 2(1− p(τ + 1)γ cb)2(E{A{ūk (η, τ )}})2

+ 4(p(τ + 1)γ ca)2(E{A{12
1x̄k (η − 1, τ )}})2

+ 4(p(τ + 1)γ c(g+ 1))2(E{A{x̄k (η, τ )}})2. (45)

Further, summing up η from 1 to I on both sides of the (45),
we can get
I∑
η=1

(E{A{ūk+1(η, τ )}})2

6 2(1− p(τ + 1)γ cb)2
I∑
τ=1

(E{A{ūk (η, τ )}})2

+ 4(p(τ + 1)γ ca)2
I∑
τ=1

(E{A{12
1x̄k (η − 1, τ )}})2

+ 4(p(τ + 1)γ c(g+ 1))2
I∑
τ=1

(E{A{x̄k (η, τ )}})2. (46)

Let sup
06τ6Td

{1− p(τ + 1)γ cb} = ρ1, sup
06τ6Td

{p(τ + 1)γ ca} =

ρ2 and sup
06τ6Td

{p(τ + 1)γ c(g+ 1)} = ρ3, there is

I∑
i=1

(E{A{ūk+1(η, τ )}})2

6 2ρ21

I∑
η=1

(E{A{ūk (η, τ )}})2

+ 4ρ22

I∑
η=1

(E{A{12
1x̄k (η − 1, τ )}})2

+ 4ρ23

I∑
η=1

(E{A{x̄k (η, τ )}})2. (47)

According to the equations (14) and (16), we can rewrite∑I
η=1(E{A{12

1x̄k (η − 1, τ )}})2 as follows
I∑
η=1

(E{A{12
1x̄k (η − 1, τ ))}})2

6 3
I∑
η=1

[(E{A{x̄k (η + 1, τ )}})2 + 4(E{A{x̄k (η, τ )}})2

+ (E{A{x̄k (η − 1, τ )}})2]

6 18
I∑
η=1

(E{A{x̄k (η, τ )}})2. (48)

115588 VOLUME 7, 2019



W. Zhang et al.: ILC for Discrete DPSs With Randomly Varying Trial Lengths

Combining (47) and (48), we obtain

‖ (E{A{ūk+1(·, τ )}})‖2

6 2ρ21 ‖ (E{A{ūk (·, τ )}})‖
2

+ (72ρ22 + 4ρ23 ) ‖ (E{A{x̄k (·, τ )}})‖
2 . (49)

An application of Lemma 4 to (49), it follows

‖E{A{ūk+1(·, τ )}}‖2

6 2ρ21 ‖E{A{ūk (·, τ )}}‖
2
+(72ρ22

+ 4ρ23 )
τ−1∑
t=0

M2 ‖E{A{ūk (·, t)}}‖2 M (τ−t−1)
1 . (50)

Then, multiplying on both sides of (50) by λτ (0 < λ < 1),
according to the definition of (L2, λ) norm, there is

‖E{A{ūk+1(·, τ )}}‖2 λτ

6 2ρ21 ‖E{A{ūk}}‖
2
(L2,λ) +(72ρ

2
2

+ 4ρ23 )
τ−1∑
t=0

M2 ‖E{A{ūk}}‖2(L2,λ) (λM1)(τ−t−1)λ

6 (2ρ21+(72ρ
2
2

+ 4ρ23 )M2
λ

1− λM1
) ‖E{A{ūk}}‖2(L2,λ) . (51)

Let ρ0 = 2ρ21+(72ρ
2
2+4ρ

2
3 )M2

λ
1−λM1

which can be replaced
into (51), we have

‖E{A{ūk+1}}‖2(L2,λ)6 ρ0 ‖E{A{ūk}}‖2(L2,λ) . (52)

Step 2: When λ is sufficiently small, from (52) we have 0 <
ρ0 < 1. Then, in views of contraction mapping principle,
we obtain

lim
k→∞
‖E{A{ūk}}‖2(L2,λ) = 0. (53)

Multiplying on both sides of (52) by (k + 2)2, yields

‖E{
k+1∑
s=0

ūs}‖2(L2,λ)6 ρ0(
k + 2
k + 1

)2 ‖E{
k∑
s=0

ūs}‖2(L2,λ) . (54)

In addition, let both sides of inequality (54) be divided by
‖E{

∑k
s=0 ūs}‖

2
(L2,λ)

, we can get

ξk+1

ξk
6 ρ0(

k + 2
k + 1

)2, (55)

where 0 < ρ0 < 1, ξk+1 =‖ E{
∑k+1

s=0 ūs} ‖
2
(L2,λ)

and ξk =‖

E{
∑k

s=0ūs}‖
2
(L2,λ)

. According to D’Alembert’s principle and
inequality (55), we can obtain limk→∞ ξk = 0, that is

lim
k→∞
‖E{

k∑
s=0

ūs}‖2(L2,λ) = 0. (56)

Moreover

‖E{
k∑
s=0

ūs(·, τ )}‖2 = λ−τλτ ‖E{
k∑
s=0

ūs(·, τ )}‖2

6 sup
06τ6Td

{‖E{
k∑
s=0

ūs(·, τ )}‖2 λτ }λ−Td

= λ−Td ‖E{
k∑
s=0

ūs}‖2(L2,λ) . (57)

Combing (56) and (57), we have

lim
k→∞
‖E{

k∑
s=0

ūs(·, τ )}‖2 = 0. (58)

Consider the definition of L2 norm, we can rewrite (58) as
follow

lim
k→∞

I∑
η=1

(E{
k∑
s=0

ūs(η, τ )})2 = 0. (59)

Based on (59), we express limk→∞
∑I
η=1(E{ūk (η, τ )})2 as

lim
k→∞

I∑
η=1

(E{ūk (η, τ )})2

= lim
k→∞

I∑
η=1

(E{
k∑
s=0

ūs(η, τ )} − E{
k−1∑
s=0

ūs(η, τ )})2

6 lim
k→∞

I∑
η=1

[2(E{
k∑
s=0

ūs(η, τ )})2+2(E{
k−1∑
s=0

ūs(η, τ )})2]

= 0. (60)

From (60), we can get

lim
k→∞

‖E{ūk (·, τ )}‖2= 0. (61)

Step 3: Next, we consider proving limk→∞ ‖E{ēk (·, τ )}‖2=
0 by using (61). Firstly, multiplying on both sides of (37) by
λτ , it follows that

1−λM1

M2
‖E{A{x̄k}}‖2(L2,λ)6λ ‖E{A{ūk}}‖

2
(L2,λ) . (62)

Then, from (62) we have

1− λM1

M2
‖E{A{x̄k+1}}‖2(L2,λ)6 λ ‖E{A{ūk+1}}‖2(L2,λ) .

(63)

By multiplying on both sides of (49) by λτ , we have

‖E{A{ūk+1}}‖2(L2,λ)
6 2ρ21 ‖E{A{ūk}}‖

2
(L2,λ)

+ (72ρ22 + 4ρ23 ) ‖E{A{x̄k}}‖
2
(L2,λ) . (64)

In addition, combing (63) and (64) leads to

‖E{A{x̄k+1}}‖2(L2,λ)

6
(72ρ22 + 4ρ23 )λM2

1− λM1
‖E{A{x̄k}}‖2(L2,λ)

+
2ρ21λM2

1− λM1
‖E{A{ūk}}‖2(L2,λ) . (65)
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By denoting
λM2(72ρ22+4ρ

2
3 )

1−λM1
= ρ4,

2ρ21λM2
1−λM1

= ρ5 respectively,
we can express (65) as

‖E{A{x̄k+1}}‖2(L2,λ)6 ρ4 ‖E{A{x̄k}}‖2(L2,λ)
+ ρ5 ‖E{A{ūk}}‖2(L2,λ) . (66)

It is not hard to find 0 <ρ4< 1, 0 <ρ5< 1 when λ is small
enough. Since limk→∞ ‖E{A{ūk}}‖2(L2,λ) = 0, combing (66)
with Lemma 2, we can obtain

lim
k→∞
‖E{A{x̄k}}‖2(L2,λ) = 0. (67)

According to ek (η, τ ) = cx̄k (η, τ ), multiplying on both sides
of (66) by c2, there is

‖E{A{ēk+1}}‖2(L2,λ)6 ρ4 ‖E{A{ek}}‖2(L2,λ)
+ ρ6 ‖E{A{ūk}}‖2(L2,λ), (68)

where ρ6 = c2ρ5.
Then, combining (53) and (68), we have

lim
k→∞
‖E{A{ek}}‖2(L2,λ) = 0. (69)

Multiplying on both sides of (68) by (k + 2)2, there is

‖ E{
k+1∑
s=0

es} ‖2(L2,λ)

6 2ρ4 ‖ E{
k∑
s=0

es} ‖2(L2,λ) +2ρ4 ‖ E{A{ek}} ‖
2
(L2,λ)

+ 2ρ6 ‖ E{
k∑
s=0

ūs} ‖2(L2,λ) +2ρ6 ‖ E{A{ūk}} ‖
2
(L2,λ) .

(70)
Based on some conclusions obtained from the previous part
of the certificate such as (53), (56) and (69), when λ is chosen
to be small enough and k is close to infinity, we can directly
derive

lim
k→∞
‖E{

k∑
s=0

es(·, τ )}‖2 = 0. (71)

Consider the definition of L2 norm, (71) can be rewritten as

lim
k→∞

I∑
η=1

(E{
k∑
s=0

es(η, τ )})2 = 0. (72)

Next, by (72), we have

lim
k→∞

I∑
η=1

(E{ek (η, τ )})2

= lim
k→∞

I∑
η=1

(E{
k∑
s=0

es(η, τ )} − E{
k−1∑
s=0

es(η, τ )})2

6 lim
k→∞

I∑
η=1

[2(E{
k∑
s=0

es(η, τ )})2

+ 2(E{
k−1∑
s=0

es(η, τ )})2] = 0. (73)

From (73) we can get

lim
k→∞

‖E{ēk (·, τ )}‖2= 0. (74)

The proof of Theorem 1 is finished.

IV. NUMERICAL SIMULATIONS
Consider the following discrete parabolic distributed param-
eter systems

12xk (η, τ ) = 0.3112
1xk (η − 1, τ )− 0.34xk (η, τ )

+ 0.9uk (η, τ ),
yk (η, τ ) = 0.91xk (η, τ ),

(75)

where (η, τ ) ∈ [1, 10]× [0, 80].
The conditions of initial value and boundary value in the

system (73) are set as follows

xk (η, 0)= xd (η, 0)=φ(η), 16η 6 I . k=1, 2 · · · , (76)

xk (0, τ ) = 0 = xk (I+1, τ ), 0 ≤ τ ≤ Td , (77)

where ϕ(η) is bounded function for η ∈ [1, I ].
The desired tracking trajectory is given as

yd (η, τ )=0.8 sin(τ ) sin(
η − 1
50

π ) sin((2(I + 1− η)). (78)

It should be remarked that in the simulation, the minimum
iteration length is chosen as Tm = 75, the full iteration length
is assumed to be Td = 80, and the actual iteration time Tk
follows a uniform probability distribution at 76 to 85. This
means the probability of the actual iteration length P(Aτ ) =
1/10, τ ∈ [76, 85], then, according to the definition of the
probability p(τ ) occurring at a specific moment in this paper,
we can express it as

p(τ ) =

1, τ ∈ {0, 1, · · · , 75},
86− τ
10

, τ ∈ {76, 77, · · · , 80}.
(79)

The distributed learning algorithm is designed as follow

uk+1(η, τ )=A{uk (η, τ )}+
k+2
k+1

γ

k∑
s=0

e∗s (η, τ+1), (80)

where the learning gain γ = 0.8, which renders to sup
06τ6Td

{(1−

p(τ )γ cb)2}< 1
2 , the condition of Theorem 1 is satisfied.

From Fig.1∼Fig.7, it is showed that the system errors
under mathematical expectation decay with the iteration axis.
Because the trial lengths vary randomly in the iteration pro-
cess, unlike the desired tracking surface Fig.1 with full trial
length, there is a lack of tracking information in part-time
length in the 80th output surface Fig.7.When k = 80 in Fig.5,
the maximum absolute value of output error under mathemat-
ical expectation decreases to 4.32× 10−3. Since the iteration
length varies randomly from 76 to 85, which means that the
system errors at these moments are not all measurable during
each iteration. However, at period form 0 to 75, which is not
affected by the random factor, useful learning information
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FIGURE 1. Desired output surface yd (η, τ ).

FIGURE 2. The expectation of error surface E{ek (η, τ )}(k = 5).

FIGURE 3. The expectation of error surface E{ek (η, τ )}(k = 10).

FIGURE 4. The expectation of error surface E{ek (η, τ )}(k = 20).

can be obtained and continuously used in updating the sys-
tem inputs during each iteration. Therefore, the convergence
effects of system errors under mathematical expectation are
quite different in these two periods (see Fig.4∼Fig.6).

FIGURE 5. The expectation of error surface E{ek (η, τ )}(k = 80).

FIGURE 6. The expectation of error surface E{ek (η, τ )}(k = 200).

FIGURE 7. Output surface yk (η, τ )(k = 80).

Consider the situation that trial lengths are fixed, based
on the system (75) and learning algorithm (80), we give the
maximum tracking error curve Fig.8. It should be noted that
in this case, the probability of trial lengths p(τ ) = 1, τ ∈
{0, 1, · · · ,Td } and the random variable θk (τ ) = 1, τ ∈
{0, 1, · · · ,Td } are always established. In this paper, we can
only get the surfaces of system error under mathematical
expectation Fig.2∼Fig.6 in the situation that the trial lengths
change randomly. However, in the situation of fixed time
lengths, we can obtain the simulation result of maximum
tracking error curve Fig.8. In addition, we can see that under
the condition of the fixed trial lengths, the convergence rate
of system error is faster than that when the batch lengths
vary randomly. This is because that the information of system
errors from 0 to Td can be utilized to improve the system
inputs during each iteration when the trial lengths are fixed.
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FIGURE 8. Maximum tracking error curve under the fixed trial lengths.

Remark 2: In [26], in the case of non-uniform trial lengths,
only the convergence of the tracking error under mathemat-
ical expectation is proved. Similarly, in this paper, we also
get only the convergence results of system error under math-
ematical expectation in the situation that trial lengths vary
randomly. Therefore, we consider that it is reasonable to give
the simulation surfaces of system error under mathematical
expectation to illustrate the effectiveness of the distributed
learning algorithm. In addition, for the simulation results of
the tracking error under the mathematical expectation in this
paper, since the systems we use are DPSs that contain time
and space variables, the simulation results are different from
the simulation curves obtained in [26], but presented in the
form of surfaces (see Fig.2∼Fig.6).

V. CONCLUSION
In this paper, we consider applying ILC to discrete spatial-
temporal parabolic distributed parameter systems consisting
of partial difference equations, where the trial lengths are
non-uniform. The iteration-average operator is used to design
the distributed ILC algorithm. By rigorous theoretical analy-
sis, the convergence of the output error under mathematical
expectation is proved and the effectiveness of the algorithm
is illustrated by numerical simulation.
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