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ABSTRACT Cervical cancer is the fourth most prevalent disease in women. Accurate and timely cancer
detection can save lives. Automatic and reliable cervical cancer detection methods can be devised through the
accurate segmentation and classification of Pap smear cell images. This paper presents an approach to whole
cervical cell segmentation using a mask regional convolutional neural network (Mask R-CNN) and classifies
this using a smaller Visual Geometry Group-like Network (VGG-like Net). ResNet10 is used to make full use
of spatial information and prior knowledge as the backbone of the Mask R-CNN. We evaluate our proposed
method on the Herlev Pap Smear dataset. In the segmentation phase, when Mask R-CNN is applied on the
whole cell, it outperforms the previous segmentation method in precision (0.92+0.06), recall (0.91£0.05)
and ZSI (0.9140.04). In the classification phase, VGG-like Net is applied on the whole segmented cell and
yields a sensitivity score of more than 96% with low standard deviation (£2.8%) for the binary classification
problem and yields a higher result of more than 95% with low standard deviation (maximum 4.2% in accuracy

measurement) for the 7-class problem in terms of sensitivity, specificity, accuracy, h-mean, and F1 score.

INDEX TERMS Mask R-CNN, VGG-like Net, cell segmentation, cell classification, pap smear.

I. INTRODUCTION

Cancer is a life-threatening disease and has become a major
burden worldwide. Global cancer data reveals that cervical
cancer is the fourth most prevalent disease among females,
with an approximately 90% fatality rate in underdeveloped
and developing nations due to the absence of public knowl-
edge of its causes and impacts [1]. Fortunately, this lethal
disease can be detected by the regular Pap smear testing of
the cervical cells. The cell samples which are collected at the
outer opening of the cervix are placed on a glass tube and
stained by a pathologist for examination under a microscope
to determine if there are any defects/abnormalities that indi-
cate a pre-cancerous phase [2].

The associate editor coordinating the review of this article and approving
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Manual cell screening often results in large variations in
the quality of specimens, such as the uneven distribution of
the cellular material that can lead to dense clumps which
light cannot penetrate whereas other parts of the specimen
may have many overlapping cells which hinders an accurate
interpretation. Moreover, a manual visual examination is time
consuming and the analysis and classification of hundreds
or thousands of cells can be inaccurate due to human error.
When cell examination for abnormality is carried out by a
computer, the cell must be scanned at high resolution to
reliably extract the features. Due to size and shape variations
of normal and abnormal cells, accurate cell segmentation and
classification is crucial to differentiate between normal and
abnormal cells.

Several research studies have been undertaken to develop
an automated screening system through the image analysis
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method [3]-[6]. Such systems automatically classify normal
and abnormal cervical cells. However, an automatic two-level
cascade classification system proposed in [7] produced both
a false negative rate and false positive rate of 1.44%.

The aim of this paper is to develop a better system for
the automatic detection of cancer cells using a deep learning
approach on Pap smear images. Deep learning techniques can
be used to identify patterns in complex big data starting with
preprocessing the data, training the model and testing it [8].
The primary contributions of this paper are as follows.

(1) As far as we know, this work is the first to implement
Mask R-CNN and the transfer learning technique to segment
the whole cervical cell.

(2) As far as we are aware, this work is the first to
implement a VGG-like Net in which whole cervical cells are
classified.

We evaluate the accuracy, sensitivity, specificity, and Zijd-
henbos similarity index (ZSI) of the models.

The rest of this paper is structured as follows.
Section 2 overviews the related works on cervical cell seg-
mentation and classification; Section 3 discusses the materi-
als and describes the methods used to segment and classify
cervical cells. The experiment analysis and evaluation of
segmentation and classification is given in Section 4 and
a discussion is presented in Section 5. Finally, this study
concludes in Section 6.

Il. RELATED WORKS

Research on the automated screening of Pap smears has
moved from cytology to histology over recent years. The
combination of information from a multitude of comput-
erized histology and cytology documents was used on the
Brazilian Cervical Cancer Information System (SISCOLO)
for sensitivities above 90% [9]. However, cytology testing
continues to be used in most countries because of its afford-
ability and efficiency in identifying cervical cancer in routine
testing.

In almost all imaging system analysis, image segmenta-
tion is an important and demanding task. It is difficult for
individuals to precisely analyze the segmentation of all parts
of cervical cells (nuclei and cytoplasm) in Pap smears. Poor
cell segmentation can lead to poor analysis results. Accurate
and automatic computer-assisted segmentation on the whole
cervical cell is necessary for cervical cancer screening and
diagnosis. A set of 50 images was screened for the segmen-
tation of cervical cells using mean-shift and median filtering,
and for the further processing of the segmentation result using
morphological operators [10].

Three SVM-based approaches (standard SVM, SVM com-
bined with RFE algorithm, and SVM combined with the PCA
algorithm) are used to classify the cervical cancer dataset
from the repository of University of California at Irvine
[11]. Nucleus and cytoplasm segmentation and classification
using multi-class SVM classifiers such as polynomial SVMs,
quadratic SVMs, Gaussian RBF SVMs, and linear SVMs
resulted in 95% accuracy [12]. SVMs were also used to
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separate the nucleus from the cervical smear model with
95.134% precision for adaptive segmentation based on the
GVF Snake model [13]. In order to improve the classification
performance, the artifacts were removed from the cytology
images in the Bethesda System dataset using an SVM, result-
ing in a true classification of normal and abnormal cells
of 85.19% and 88.1% respectively [14]. Using ultra-large
cervical histological digital images, a combination of SVMs
and the block-based segmentation technique utilizes robust
texture feature vectors to enhance classification efficiency for
cervical intraepithelial neoplasia (CIN) diagnosis [15].

A segmentation method is applied to separate the cell
nuclei from its cytoplasm and then classifies them using
the K-Nearest Neighbor (KNN), which resulted in an 84.3%
classification accuracy with no validation and 82.9% clas-
sification accuracy with 5-fold cross validation [16], [17].
A KNN method is also used to classify normal and cancerous
cells on microscopic biopsy images after the segmentation
process using k-means [18].

A clustering technique using fuzzy C-means (FCM) was
used to segment Pap smear images [19]. One of the draw-
backs of FCM clustering is that it fails to detect all the valid
clusters in a colour image segmentation. William et al. [20]
presented a Trainable Weka Segmentation classifier for cell
segmentation and an enhanced fuzzy C-means algorithm to
classify cervical cells.

Deep learning has achieved enormous success in many
applications, including cancer research. Deep learning was
used to segment abnormal cells from conventional Pap smear
digital images [21], [22]. Song et al. [23] proposed cervical
cytoplasm and nuclei segmentation using superpixels and
convolutional neural networks (CNNs). The automatic seg-
mentation of cervical nuclei using Mask R-CNN in com-
bination with the local fully connected conditional random
field (LFCCRF) is presented by Liu et al. [24].

Several research studies on segmenting and classifying
the nucleus have been overviewed in this section. However,
it might not be possible to classify cervical cells with only
nucleus data. The segmentation of the whole cell is therefore
more suitable [25]-[28]. Each cell is then classified using
specific classifiers after the segmentation step. Su et al. [7]
created a two-level cascade classifier to automatically detect
cervical cancer cells from thin liquid-based cytology slides.
The neural MLP feedforward network of Levenberg - Mar-
quardt was used to classify the cervical images of 100
patients [29]. Classification of cervical cell images is done
with deep learning [30], [31]. The performance of this type
of classification, however, is not very high [32].

In this study, the whole Pap smear cell is segmented and
classified using deep learning. The evaluation was carried
out on the Herlev Pap smear dataset [2], [33]. Mask R-CNN
was used in the segmentation process. A cell image is
segmented into cell (a combination of nucleus and cyto-
plasm) and background. Mask R-CNN, an extension of Faster
R-CNN, is a well-known method for tackling the issue of
instance segmentation by predicting a segmentation mask
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TABLE 1. Distribution of 7-classes of HERLEV Pap smear dataset.

Class Cell Type Cell Count  Category

1 Superficial squamous 74 Normal
epithelial

2 Intermediate squamous 70 Normal
epithelial

3 Columnar epithelial 98 Normal

4 Mild squamous non- 182 Abnormal
keratinizing dysplasia

5 Moderate squamous non- 146 Abnormal
keratinizing dysplasia

6 Severe squamous non- 197 Abnormal
keratinizing dysplasia

7 Squamous cell carcinoma in 150 Abnormal

situ intermediate

pixel-to-pixel for each region of interest (Rol). Mask R-CNN
implementation is simple and requires only a small computa-
tional overhead, therefore quick experimentation is possible.
The segmented whole cell (nucleus and cytoplasm) regions
from the segmentation step are classified into a 2-class prob-
lem (normal and abnormal) and a 7-class problem (super-
ficial squamous, intermediate squamous, columnar, mild
dysplasia, moderate squamous, severe dysplasia, carcinoma
in situ) using a smaller Visual Geometry Group-like Network
(VGG-like Net).

lll. METHOD

A. DATASET

The Herlev Pap smear dataset collected by Herlev University
Hospital (Denmark) and the Technical University of Den-
mark [2], [33] was used to evaluate the proposed framework.
The dataset consists of 917 images, categorized manually
by qualified cytotechnicians and physicians into 7 classes as
outlined in Table 1.

B. PROPOSED METHOD
The objective of this work is to develop a method to seg-
ment whole cervical cells, both single and overlapping, from
conventional Pap smear images, and then classify them to
identify normal and abnormal cells. The proposed method
comprises two steps. The first stage partitions the cell regions
using Mask R-CNN segmentation. The second stage defines
the whole cell area (nucleus and cytoplasm) by classifying
the segments from the initial stage. The classification in
the second phase includes a training and testing phase as
shown in Figure 1. We employ Mask R-CNN in the proposed
segmentation process and use ResNet10 to fully utilize the
spatial information and prior knowledge as the backbone of
the Mask R-CNN. The primary concept of Mask R-CNN
is to segment and build pixel masks for each image item
automatically. We employ a smaller VGG-like Net to classify
the segmentation results, which is inspired by the family of
VGG networks.

In the segmentation training stage as shown in Figure 1(a),
transfer learning is applied on Mask R-CNN weights trained
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FIGURE 1. Proposed method for the automatic detection of cervical cells.

using the COCO dataset. The COCO dataset has 2,500,000
labeled instances in 328,000 images and contains 91 common
object categories with 82 of these having more than 5,000
labeled instances [34]. In this proposed method, the purpose
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FIGURE 2. Image rotation and translation on the Herlev dataset.

of segmentation is to isolate the cervical cell area from its
surroundings. The segmented area of the cervical cell covers
both nuclei and cytoplasm. The cytoplasm can influence how
a cervical cell is classified.

The results of the segmentation are then applied on the
original image dataset before being handed over to the clas-
sification training algorithm, as illustrated in Figure 1(b).
The input image (image source) for classification is the
cervical cell (colored black), as shown in Figure 2. In the
classification stage, we employ the VGG-like network, which
is a more compact version of the VGG network for faster
training.

Figure 1(c) illustrates the testing process during classifi-
cation. The cervical cell images are segmented using Mask
R-CNN to isolate the cervical cells and then they are pro-
cessed in the trained VGG-like network. Based on the final
score for each class (the 2 or 7 classification problem),
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the system determines in which class the cervical image
belongs.

C. DATA PREPROCESSING

The training phase in segmentation and classification has a
different preprocessing scheme. In the segmentation stage,
preprocessing begins by separating the image data of the
cervical cell from its mask. In the case of the Herlev dataset
that we use, the original image and mask data are still mixed
in one folder which corresponds to the cancer class name.
This collection of images is read based on the file name
pattern and is then separated into only two types of images,
namely the original image of the cervical cell and the mask.
When the preprocessing application finds that what is being
read is a mask image, the image will be converted into a
binary image, that is, white for pixels which are a part of the
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cervical cells (a combination of cell nuclei and cytoplasm)
and black for the other pixels. The original image of the
cervical cell and its binary mask image is then resized into
200 pixels with a length that is proportionally adjusted based
on the new width. The two groups of images are ready
for further processing, namely network training using Mask
R-CNN.

In the classification section, the application will read all the
images in the Herlev dataset based on the cancer class. The
images used at the classification stage are only the cervical
cell regions. By involving the image’s mask, before the image
of the cervical cell is copied and grouped according to the
cancer class, the binary mask image will be applied to the
original image so that a new image consists of only two parts,
namely the cell part of the cervix and the background (colored
black). This new image is then resized into 200 pixels for its
width and is proportional in length. The image that has been
resized is then copied into a specific folder according to the
classification case that we want to train, namely two folders
for binary classification cases and seven folders for 7 class
classification cases. The dataset is then ready to be trained by
the VGG-like network.

D. DATA AUGMENTATION
The aim of applying data augmentation is to increase the
generalizability of the model which can increase the dataset
size and classification accuracy while preventing overfit-
ting [35]. In this study, data augmentation is used both in
the segmentation training phase and the classification training
phase. We used several geometric transformation methods
on the Herlev dataset for data augmentation, i.e. top-down
translation, left-right translation, horizontal reflection, ver-
tical reflection and rotation. For each training data image,
the application will select randomly what kind of geometric
transformations will be applied to the image.

Figure 2 shows the augmented data results for classifi-
cation using 30-degree rotations and 5 pixels of translation
applied on the Herlev dataset.

E. SEGMENTATION

There are three primary goals of object detection [36] i.e.,
given an input image to obtain 1) a list of bounding boxes for
each object in the image, 2) a class label associated with each
bounding box and 3) the confidence score associated with
each bounding box and class label. Instance segmentation
takes object detection a step further. Instead of predicting
a bounding box for each object in an image, we now want
to predict a mask for each object, giving us a pixel-wise
segmentation of the object rather than a coarse, perhaps even
unreliable bounding box.

Instance segmentation algorithms attempt to partition the
image into meaningful parts and associate every pixel in
an input image with a class label (e.g., person, road, car,
bus) [37]. While object detection produces a bounding box,
instance segmentation produces a pixel-wise mask for each
individual object. However, instance segmentation does not
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require every pixel in an image to be associated with a
label. Instance segmentation can be solved using two steps,
i.e., performing object detection to draw bounding boxes
around each instance of a class and then performing semantic
segmentation on each of the bounding boxes [37].

The Mask R-CNN algorithm was first introduced by
He et al. [38]. Mask R-CNN is based on the previous object
detection work of R-CNN, Fast R-CNN, and Faster R-CNN
by Girshick et al. The first R-CNN paper, Rich Feature Hier-
archies for Accurate Object Detection and Semantic Segmen-
tation, was published in 2014 by Girshick et al. [39]. In the
first step, we input an image to the R-CNN algorithm. We then
run a region proposal algorithm such as Selective Search
(or equivalent). The Selective Search algorithm takes the
place of sliding windows and image pyramids, intelligently
examining the input image at various scales and locations,
thereby dramatically reducing the total number of proposed
ROIs that will be sent to the network for classification. We can
thus think of Selective Search as a smart sliding window and
image pyramid algorithm.

Once we have our proposed locations, we crop each of
them individually from the input image and apply trans-
fer learning via feature extraction. R-CNN utilizes feature
extraction to enable a downstream classifier to learn more
discriminating patterns from these CNN features. The fourth
and final step is to train a series of SVMs on top of these
extracted features for each class.

The problem with the original R-CNN approach is that
it is still incredibly slow. Furthermore, we are not actually
learning to localize via deep neural network, instead, we are
leaving the localization to the Selective Search algorithm.
R-CNN only classifies the ROI once it has been determined as
“interesting” and ‘“worth examining” by the region proposal
algorithm, which is Selective Search.

Similar to the original R-CNN, the Fast R-CNN algo-
rithm [40] still utilizes Selective Search to obtain region
proposals, but a novel contribution, Region of Interest (ROI)
Pooling, is made. In this new approach, Fast R-CNN applies
the CNN to all the input images and extracts a feature map
from it. ROI Pooling works by extracting a fixed-size window
from the feature map and then passing it into a set of fully-
connected layers to obtain the output label for the ROI.

The network of the Fast R-CNN comprises the following
phases: (1) use an image and its bounding box as the inputs;
(2) extract the feature map; (3) obtain the ROI feature vector
by applying ROI Pooling; (4) for each region proposal, calcu-
late the bounding box location and the class label prediction
using two fully connected layers.

Due to dependency in the Selective Search (or equivalent)
for the region proposal algorithm, although the network is
now end-to-end trainable, the inference time performance
(i.e. at prediction) dramatically declines. Ren et al. collabo-
rated with Ren ez al. [41] to create an additional component to
create the R-CNN architecture, a Region Proposal Network
(RPN). As the name suggests, the goal of the RPN is to
remove the requirement of running Selective Search prior to
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region
proposal regions.

feature maps

FIGURE 3. Mask R-CNN architecture.

inference and instead, makes the region proposal directly into
the R-CNN architecture.

An input image is presented to the network and its features
are extracted via the pre-trained CNN (i.e., the base network).
These features, in parallel, are sent to two different compo-
nents of the Faster R-CNN architecture. The first component,
the RPN, is used to determine where in an image a potential
object could be. At this point, we do not know what the object
is, just that there is potentially an object at a certain location in
the image. The proposed bounding box ROIs are based on the
ROI Pooling module of the network along with the features
extracted in the previous step. ROI Pooling is used to extract
fixed-size windows of features which are then passed into two
fully connected layers (one for the class labels and one for the
bounding box coordinates) to obtain our final localizations.
In essence, we now place anchors spaced uniformly across
the whole image at varying scales and aspect ratios. The RPN
will then examine these anchors and output a set of proposals
as to where it is possible an object exists. In this Faster
R-CNN, the complete object detection pipeline which takes
place inside the network is: (1) region proposal; (2) feature
extraction; (3) computing the bounding box coordinates of
the objects; and (4) providing class labels for each bounding
box.

The Mask R-CNN approach builds on the Faster R-CNN
and makes two significant contributions: (1) it replaces the
ROI Pooling module with a more accurate ROI Align module;
and (2) it adds a branch for each ROI, as shown in Fig-
ure 3. This additional branch is responsible for predicting
the actual mask of an object/class. The masking branch
splits off from the ROI Align module prior to our FC lay-
ers and then consists of two CONV layers responsible for
creating the mask predictions themselves. The Mask R-
CNN output has three kinds of prediction, i.e. class/label
prediction, bounding box prediction and mask prediction.
Mask R-CNN can leverage different architectures such as
ResNet, VGG, SqueezeNet, and MobileNet as their back-
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end/backbone, making it possible to decrease the size of
the model produced by the segmentation training stage,
making it feasible for deployment on a mobile device and
potentially increase frame per second (FPS) throughput
as well. In our study, the Mask-RCNN backbone is applied
as a ResNet-based Feature Pyramid Network (FPN) with the
refined extraction layers of features and the reduced subse-
quent extraction layers of features according to all the cervical
cell images.

Mask R-CNN utilizes a region proposal network (RPN)
to generate image regions that possibly contain an object.
Each region is ranked based on its "objectness score" (i.e. the
probability of an object being present in a specified area) and
then the top N most probable object regions are maintained.

The value 2000 was used as the N-value in the original
Faster R-CNN [41]. In practice, a much lower N, such as
N = 10, 100, 200 and 300 can be used to obtain reasonable
results. In this paper, we use the same N value as He et al. [38],
which is 300. Each of these 300 ROIs passes through three
separate network sections to predict the label, the bounding
box and the image mask itself.

F. CLASSIFICATION

We employ a VGG-like network as the basis of our deep
learning training for the classification stage. The idea of
VGGNet introduced by Simonyan and Zisserman [42] is to
improve the recognition performance by increasing the depth
of the CNN. The network has deep architectures from 11 to
19 weight layers and only uses small filters (3 x 3 convolution
layer filters). The deeper the network used, the larger the
number of filters learned by each convolution layer. To reduce
the volume size, max pooling layers (2 x 2) are applied every
time the number of convolutional filters doubles. Another
characteristic of VGGNet is that there are several fully
connected layers at the end of the network before the last
layer, which uses the softmax activation function as a clas-
sifier. This framework achieves state-of-the-art results which
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TABLE 2. VGG-like net architecture.

Input Convl Conv2  Conv3d  Conv4  Conv5 Fco6 Fc7
Filter size - 3x3 3x3 3x3 3x3 3x3 - -
Channels/shape 200x200x3 32 64 64 128 128 1024 2or7
Activation - ReLU ReLU RelLU ReLLU ReLU RelLU Softmax
Batch Normalization - True True True True True True
Max Pooling - 3x3 - 2x2 - 2x2 -
Dropout - 0.25 - 0.25 - 0.25 0.5
7 precision, recall, a Zijdenbos similarity index (ZSI) and
_‘ specificity, whereas the performance of the classification is
7 \\£= evaluated using F1 score, accuracy, sensitivity, spemflclty,
> 3 e and h-mean. The prediction results obtained from the con-

h

FIGURE 4. Sample of VGGNet applied in this study.

are equivalent to the results obtained by GooglLeNet [43]
on ILSVRC 2014 classification without outside training
data.

For our proposed method, we use a more compact version
of VGGNet. We design a network architecture with a total
of 7 layers and with a convolution filter channel value that
is smaller (a maximum of 128 channels) than the original
version of VGGNet. We do this to save computing costs and
speed up the calculation process.

Unlike the original VGGNet which uses 3 fully connected
layers before the softmax layer, we only use 1 fully connected
layer. In each convolution layer that uses the max pooling
layer, a dropout layer is added with a ratio of 0.25 while the
dropout ratio of the only fully connected layer (beside the
softmax layer) is 0.5. In addition, there is a batch normaliza-
tion at each network layer except in the input and softmax
layers. The proposed VGG-like Net architecture is shown
in Table 2.

A given sample in this study using VGG-like Net, shown
in Figure 4, has a stack of convolutional layers with small
filters (3 x 3) and a (7 x 7) receptive field of the input image
as a result of segmentation.

G. PERFORMANCE MEASURES
We implemented the algorithm in Python and performed all of
the experiments using NVidia K80s 12GB, Linux operating
system, 4 virtual CPUs and 61 GB memory. We trained the
Mask-RCNN using ResNet101 as a backbone architecture for
40 epochs using a learning momentum of 0.9, a learning rate
of 0.001, and weights decayed by 0.0001.

In this study, there are two kinds of performance mea-
surements, i.e. segmentation and classification performance.
We summarize the performance of our segmentation using
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fusion matrix include:
o True Positives (TP): The number of pixels correctly

identified as a mask (white pixels).

o True Negatives (TN): The number of pixels correctly
identified as not part of a mask (black pixels).

« False Positives (FP): The number of pixels incorrectly
identified as a mask.

« False Negatives (FN): The number of pixels incorrectly
identified as not part of a mask.

. P )
r = —
precision = o F
. TP
Recall, Sensitivity = ———— )
TP + FN
2TP
78l = ———————— 3)
2TP + FP + FN
Specificity = — 4)
pecificity = IN L FP
TP + TN
Accuracy = ©)
TP + TN + FP+ FN
2TP
F1score = ————— (6)
2TP + FP + FN

Precision denotes a classifiers’ exactness measure,
whereas recall denotes a classifiers’ completeness measure.
Using both recall and precision, the F1 score is used to
evaluate the detection results. An excellent performance for
both recall and precision is preferred over an exceptionally
good performance in one aspect and a bad performance in the
other. According to Zijdenbos et al. [44], if ZS1 s greater than
0.7, it shows the detected segmentation boundary is extremely
well matched with the ground truth.

Accuracy refers to a classifier being correctly categorized
in a two-class issue, i.e., normal or abnormal, whereas
in the seven-class problem, accuracy refers to a classi-
fier being correctly classified as carcinoma insitu, mild
dysplasia, moderate dysplasia, columnar, intermediate squa-
mous, superficial squamous, or severe dysplasia. Sensitiv-
ity denotes that a classifier correctly classifies abnormal
data as abnormal (true positive). Specificity denotes that a
classifier correctly classifies normal data as normal (true
negative).
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FIGURE 5. Sample of cervical cell segmentation results using Mask R-CNN.

IV. RESULTS

A. CERVICAL CELL SEGMENTATION

The objective of cervical segmentation is to divide a cell
into two areas, i.e., the whole cell which consists of the
cytoplasm and nucleus, and the background. Sample images
from the Herlev data set at every phase in the Mask-RCNN
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segmentation are shown in Figure 6. The original images were
masked with a white color for cytoplasm and nuclei, and
black for the background.

Asseen in Figure 5, the image source column is the cervical
cell images taken from the Herlev dataset as is, without any
image processing. The original mask is converted from the
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TABLE 3. Cell segmentation performance results using mask R-CNN.

Cell Type Precision Recall ZS1 Specificity
Carcinoma in situ 0.93 £ 0.06 0.91+0.05 0.92+0.04 0.81£0.12
Mild dysplasia 0.92 £ 0.06 0.92+£0.04 0.92+0.03 0.83+0.10
Moderate dysplasia 0.91 +£0.08 0.91+0.05 0.91+0.05 0.81+0.11
Columnar 0.86+£0.10 0.89 £ 0.06 0.87 £ 0.07 0.76 £ 0.14
Intermediate squamous 0.97 £0.02 0.92+0.03 0.95+0.02 0.93+0.05
Superficial squamous 0.96 £0.03 0.92 £0.06 0.94 £0.03 0.91 £0.06
Severe dysplasia 0.91 £0.07 0.91+0.04 0.91+£0.04 0.78 £0.12
Average 0.92 + 0.06 0.91 £ 0.05 0.91 £+ 0.04 0.831+0.10
- training process of our VGG-like network during its
Training Loss and Accuracy . e .
. 250 epochs for the binary classification problem in one of
o e E::Q—fjj Mt Taa o o e s e s e its folds. The training accuracy is quite stable while the
vl o validation accuracy sometimes drops in the middle of a full
0.8- epoch. Therefore, we train the network in hundreds of epochs
without an early stopping mechanism to reduce overfitting.
O Table 4 shows that our proposed method for the binary
m 0.6 o . . .
5 classification problem (normal and abnormal) achieves high
o . . . .
i performance results with low standard deviation in all met-
§ 0.4 rics for 250 epochs, i.e. 96.5% F1 score, 98.1% accuracy,
- 96.7% sensitivity, 98.6% specificity, and 97.7% h-mean. The
. confusion matrices on the testing dataset and on all the
datasets confirm this claim, as shown in Table 5 and Table 6,
MMM respectively. From all the datasets, as shown in Table 6, only
0.0- one instance of abnormal cells was misclassified as normal
0 50 100 150 200 250 and three instances of normal cells were misclassified as

Epoch #

FIGURE 6. Training and validation graph for the binary classification of
cervical cells.

ground truth mask (from color to a binary image) provided in
the original Herlev dataset. This converted mask will be used
to train the Mask R-CNN and to measure the quality of our
network. The predicted mask is the binary mask generated by
the trained Mask-RCNN while the overlaid image shows the
area from the image source which is predicted as the cell area
and will be fed to the VGG-like network.

As shown in Table 3, our proposed segmentation using
Mask R-CNN produces high average performance, i.e. 92%
precision, 91% recall and 91% ZSI for all cell types with low
standard deviation. Only the normal columnar type produces
a performance result below 90%.

B. CERVICAL CELL CLASSIFICATION
We implemented two classification scenarios i.e. 2-class
and 7-class classification problems. Figure 6 illustrates the
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abnormal.

Table 7 details the confusion matrix of the testing dataset
(20% of all datasets) in 7-class classification. The classifica-
tion report as shown in Table 8 achieves 94% F1 score of the
micro average, 94% F1 score of the macro average, and 95%
weighted average.

Table 9 details the confusion matrix of all the datasets
(917 data) in 7-class classification. The classification report,
as shown in Table 10, achieves 99% F1 score of the micro
average, 99% F1 score of the macro average, and 99%
weighted average.

Figure 7 shows that the 7-class problem network training
suffers the same issue as that of the binary classification
problem, namely the validation accuracy sometimes drops
significantly in the middle of its full epoch training.

Table 11 shows that the same proposed VGG-like network
can also address the 7-classification problem without suffer-
ing much loss to the binary classification. The average results
of classification performance yield a high accuracy of 95.9%,
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TABLE 4. Two-class classification performance (normal and abnormal) using 30 degree rotation and 5 pixel translation.

Epoch Fold F1 score Accuracy Sensitivity Specificity h-mean
1 92.9% 96.1% 95% 96.6% 95.8%
2 94.8% 97.3% 95% 98% 96.5%
3 97.7% 98.8% 97.1% 99.4% 98.2%
250 4 99.7% 98.8% 97.5% 99.3% 98.4%
5 99.2% 99.6% 98.8% 99.9% 99.3%
Average 96.5% £ 2.5% 98.1% £ 1.4% 96.7% £ 1.6% 98.6% £ 1.3% 97.7% £ 1.4%
1 86.4% 92.4% 92.1% 92.4% 92.3%
2 97.7% 98.8% 98.3% 99% 98.7%
3 98.8% 99.3% 98.3% 99.7% 99%
400 4 97.8% 98.8% 99.2% 98.7% 98.9%
5 99% 99.5% 98.3% 99.9% 99.1%
Average 95.9% £ 5.3% 97.8% + 4% 97.3% £ 2.8% 97.9% £ 3.1% 97.6% £ 2.9%

TABLE 5. Confusion matrix of testing dataset in binary classification.

Predicted
Abnormal Normal
Abnormal 135 0
Actual N0 al 3 45

TABLE 6. Confusion matrix of all datasets in binary classification.

Predicted
Abnormal Normal
Abnormal 674 1
Actual
Normal 3 45
Training Loss and Accuracy
10 - —— train_loss Ryaacms IR e e IV YOS
—— train_acc |
val_acc
0.8 -
>
o
© 0.6
=
o
%)
<
W
o 0.4-
9

0.2 -

0.0 -
0 50 100 150 200 250
Epoch #

FIGURE 7. Training and validation graph for 7-class classification of
cervical cells.

high sensitivity of 96.2%;, high specificity of 99.3%, and high
h-mean of 97.7%. The results detailed in Table 9 show the
confusion matrix of all images in the Herlev dataset. The most
misclassified cell type is moderate dysplastic with 3 instances
(wrongly) predicted as mild/light dysplastic which is still in
the same category as abnormal cells.
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V. DISCUSSION

This section provides an in-depth discussion of the segmen-
tation and classification results applied on the Herlev dataset
obtained by the proposed method. Previous approaches
applied to the problem of cervical cell detection in the Her-
lev dataset are compared to the results obtained from our
research. We employed Mask-RCNN which builds on the
Faster R-CNN as a promising approach that uses pixel-level
prior information to acquire better semantic features so that it
can efficiently detect and localize the whole cervical bound-
ary regions with high accuracy while simultaneously gener-
ating a high-quality segmentation mask for each instance.
It overcomes the difficulties that are widespread in whole
cervical cell images. More importantly, the Mask R-CNN
approach is conceptually simple to implement because it
does not need complex pre-processing steps since feature
selection is conducted by the Mask R-CNN algorithm. Mask
R-CNN has a small computational overhead that enables a
rapid system for training.

Most of the existing segmentation algorithms in the Her-
lev dataset focus on nuclei segmentation [23], [31], [32],
and scant research focuses on whole cell segmentation
which involves both nuclei and cytoplasm. In Table 12,
the performance of several segmentation methods and our
method are compared. Our method on whole cell segmen-
tation using Mask R-CNN achieves more than 91% with
low standard deviation. Specifically, the values for preci-
sion, recall, and ZSI are 0.924+0.06, 0.91+0.05, 0.91+0.04,
respectively. Compared to previous research on whole cell
segmentation using FCM proposed by Chankong et al. [25]
and HCM proposed by Bezdek [45] as shown in Table 12,
in terms of precision average, they both achieve 0.95+0.08,
while Mask R-CNN achieves 0.92+0.06, a slight differ-
ence of 0.03 in precision average. In terms of recall aver-
age and ZSI average, Mask R-CNN achieves satisfactory
performance with 0.91£0.05 and 0.9140.04, respectively,
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TABLE 7. Confusion matrix of the testing dataset (181 data) in 7-class classification.

Predicted
Carcinoma Mild Moderate Columnar Inter Sup Severe
in situ dysp dysp squamous squamous dysp
Carcinoma in situ 27 1 0 0 0 0 0
Mild dysp 0 36 0 0 0 0 0
Moderate dysp 0 3 26 0 0 0 0
Actual Columnar 0 0 1 18 0 0 0
Inter squamous 0 0 0 0 13 1 0
Sup squamous 0 0 0 0 0 14 0
Severe dyspl 0 0 0 0 0 0 37
TABLE 8. Classification report of testing dataset in 7-class classification.
Precision Recall F1 score Support
Carcinoma in situ 1.00 0.90 0.95 30
Mild dysp 0.86 1.00 0.92 36
Moderate dysp 0.96 0.90 0.93 29
Columnar 1.00 0.95 0.97 19
Inter squamous 1.00 0.93 0.96 14
Sup squamous 0.82 1.00 0.90 14
Severe dyspl 1.00 0.95 0.97 39
Micro avg 0.94 0.94 0.94 181
Macro avg 0.95 0.95 0.94 181
Weighted avg 0.95 0.94 0.95 181
TABLE 9. Confusion matrix of all datasets (917 data) in the 7-class problem.
Predicted
Carcinoma Mild Moderate Columnar Inter Sup Severe
in situ dysp dysp squamous squamous dysp
Carcinoma in situ 146 2 0 0 0 0 0
Mild dysp 0 182 0 0 0 0 0
Moderate dysp 0 3 143 0 0 0 0
Actual Columnar 0 0 1 97 0 0 0
Inter squamous 0 0 0 0 69 1 0
Sup squamous 0 0 0 0 0 74 0
Severe dyspl 0 0 0 0 0 0 195

whereas Chankong et al. [25] achieves 0.8040.12 for recall
average and 0.86£0.08 ZSI average, Bezdek [45] achieves
0.79+0.13 recall average and 0.85+0.09 for ZSI average.
Our study results are higher compared to the Watershed
method [46].

The approach used by Chankong et al. [25] applied feature
extraction from the nucleus and cytoplasm in each image,
whereas feature extraction in our work is conducted by deep
CNN that will simplify the pre-processing steps. Chankong’s
approach also involves manual selection to choose the best
threshold that gives the minimum error both when applying
the median filter and the FCM result to build the mask of
an object. Our approach using Mask R-CNN inserts an addi-
tional branch to predict automatically the actual mask of an
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object so Mask R-CNN is fast to train. Chankong’s approach
using FCM involves the manual selection of threshold and
produces a slight difference of 0.03 for precision which
is higher compared to the approach using Mask R-CNN.
A higher result for precision indicates that the approach is
able to detect more pixels which are identified correctly as
part of a mask. On the other side, lower recall shows that the
approach detects more pixels which are identified correctly
as not part of a mask. Chankong’s and Bezdek’s approach
shows a higher difference of 0.15 and 0.16 between precision
and recall, respectively. Our approach using Mask R-CNN
has a very slight difference of only 0.01 between precision
and recall which is almost a balance between both of them as
well as a ZSI measure which achieves 0.91, which is the same
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TABLE 10. Classification report of all datasets in the 7-class problem.

Precision Recall F1 score Support
Carcinoma in situ 1.00 0.97 0.99 150
Mild dysp 0.96 1.00 0.98 182
Moderate dysp 0.99 0.98 0.99 146
Columnar 1.00 0.99 0.99 98
Inter squamous 1.00 0.99 0.99 70
Sup squamous 0.96 1.00 0.98 74
Severe dyspl 1.00 0.99 0.99 197
Micro avg 0.99 0.99 0.99 917
Macro avg 0.99 0.99 0.99 917
Weighted avg 0.99 0.99 0.99 917
TABLE 11. Performance results for 7-classification problem using 30 degree rotation and pixel translation.
Fold Accuracy Sensitivity Specificity h-mean
1 89.3% 90.2% 98.2% 94%
2 94.3% 94.7% 99% 96.8%
3 97.6% 97.8% 99.6% 98.7%
4 99.3% 99.4% 99.9% 99.6%
5 98.8% 98.8% 99.8% 99.3%
Average 95.9% +4.2% 96.2% * 3.8% 99.3% £ 0.7% 97.7% £ 2.3%

result as recall. The value of ZSI in our study is greater than
0.9 which shows that the detected segmentation boundary is
extremely well matched with the ground truth.

Devi et al. [47] demonstrate that their segmentation method
using NGCS achieves higher average precision and recall
compared to Mask R-CNN. Devi’s approach has more
complex segmentation steps, consisting of 6 layers and each
layer has a different algorithm. Devi’s approach and our
approach are not significantly different, with only a slight
difference of 0.03 in precision and 0.04 in recall.

Table 13 and Table 14 compare the performance results of
previous classifiers and our method in terms of sensitivity,
specificity, accuracy, h-mean, and F1 score for the 2-class
problem and 7-class problem, respectively. A higher result for
the precision of segmentation will lead to a higher sensitivity
of the classification result, whereas a higher result for recall of
segmentation will lead to the higher specificity of the classi-
fication results. Most of the existing classification algorithms
for both the 2-class problem and 7-class problem result in an
accuracy of above 90%, except for KNN and Bayesian, which
when applied on the nucleus, yield an accuracy of below
90% for the 2-class problem, while the SVM classifier with
watershed segmentation achieved a lower performance with
an accuracy below 80%.

The classification performance of our method on the
2-class problem is: 96.7% sensitivity, 98.6% specificity,
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98.1% accuracy, 97.7% h-mean and 96.5% F1 score. Sim-
ilarly, the classification performance of our method on the
7-class problem is: 96.2% sensitivity, 99.3% specificity,
95.9% accuracy, 97.7% h-mean and 99% F1 score. The
results show that our method, when applied on the whole cell,
achieves a higher accuracy of 95.9% and the best specificity
of 99.3% for the 7-class problem, and a specificity of 98.6%
for the 2-class problem, compared to the method presented by
Chankong et al. [25].

Whole cell segmentation is a more difficult problem than
nucleus segmentation. Accurate whole cell segmentation is
paramount to achieving high accuracy in classification per-
formance. The advantages of applying Mask R-CNN as our
segmentation method compared to the other aforementioned
methods are: (1) it is simple, flexible, and fast to train and
does not need complex algorithms or parameter tuning; (2) it
selects the features automatically; (3) it is conceptually sim-
ple and does not need complex pre-processing steps; and
(4) it is flexible and can leverage different architectures such
as ResNet, VGG, SqueezeNet, and MobileNet as its back-
bone. The advantages of applying VGG-like Net are: (1) our
network is deep enough to obtain high accuracy; (2) it is
faster for training; (3) it is possible to decrease the size of
the model produced by the segmentation training stage; and
(4) it is feasible for deployment on a mobile device and
potentially increase frame per second (FPS) throughput as
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TABLE 12. Performance comparison of segmentation method on herlev dataset.

Author Method Coverage Cell Type Precision Recall ZS1
Carcinoma in situ 0.89+£0.15 0.90 £ 0.08 0.92+0.17
Mild dysplasia 0.88 £0.17 0.86 £0.16 0.96 £0.16
Moderate dysplasia 0.91+£0.10 0.86 £ 0.14 0.97 £0.07
g;ﬁcm" etal Multi scale hierarchical Nuclei Columnar 085+0.15  0.77+0.18 0.98+0.05
segmentation algorithm Intermediate squamous 0.79 £0.29 0.73 £ 0.31 0.98 £0.12
Superficial squamous 0.69 £0.37 0.63 £0.37 0.98 +£0.12
Severe dysplasia 0.90£0.12 0.89£0.11 0.95+0.13
Average 0.88 £ 0.15 0.93 £ 0.15 0.89+0.15
Carcinoma in situ 0.96 £0.05 0.96 £0.10 0.95 £0.09
Mild dysplasia 0.96 £ 0.04 0.98 £0.07 0.97 £0.07
Moderate dysplasia 0.96 £ 0.04 0.97+£0.08 0.96 +0.08
Liu et al. [24] Nuclei Columnar 0.93£0.10 0.94£0.17 0.92+0.16
Mask R-CNN + LFC-CRF Intermediate squamous ~ 0.95 £0.05 0.9 % 0.02 0.97 £0.02
Superficial squamous 0.96 £0.06 0.97£0.12 0.95+0.16
Severe dysplasia 0.97 £ 0.04 0.95+0.12 0.95+£0.12
Average 0.96 + 0.05 0.96 +0.11 0.95+0.10
Carcinoma in situ 0.84 £0.18 0.88 +0.11 0.86 £ 0.24
Mild dysplasia 0.92+£0.13 0.90 £0.16 0.96 +0.08
Moderate dysplasia 0.89£0.15 0.87+0.17 0.94£0.13
Lietal. [26] o , Nuclei Columnar 083+0.16  0.76 £0.20 0.97+0.08
Radiating Gradient Vector Intermediate squamous ~ 0.95+0.03  0.92+0.06 0.98 +0.02
Flow (RGVF) Superficial squamous ~ 0.92+0.12  0.88+0.14 0.98 +0.02
Severe dysplasia 0.88£0.15 0.90£0.13 0.90 £0.19
Average 0.83 +£0.20 0.96 + 0.13 0.87+0.19
élg’]“g ctal. zgéléizivﬁg‘gﬁ“é; Networks  nyclei Average - - 0.92:+0.09
Carcinoma in situ 0.93£0.08 0.81£0.11 0.86 = 0.06
Mild dysplasia 0.96 £ 0.07 0.78 £0.11 0.85+0.07
Moderate dysplasia 0.95£0.07 0.77£0.12 0.85+0.08
g;nk‘mg etal Euzzy C-Means (FCM) Whole gy Columnar 095+007  0.72+0.15 0.81+0.10
Intermediate squamous 0.97£0.12 0.87£0.12 091£0.13
Superficial squamous 0.99 £0.04 0.84+£0.13 0.90 £ 0.08
Severe dysplasia 0.93 £0.08 0.80+0.11 0.85+£0.07
Average 0.95 + 0.08 0.80 + 0.12 0.86 £ 0.08
Carcinoma in situ 0.92£0.10 0.81£0.11 0.85+0.07
Mild dysplasia 0.95+0.08 0.78 £0.12 0.85+0.07
Moderate dysplasia 0.93 £0.09 0.77£0.12 0.84 +£0.08
Columnar 0.93 £0.09 0.73£0.16 0.80+0.10
Bezdek [43] Hard C-Means (HCM) Wholecell - mediate squamous 098009 0.83 £0.16 0.8820.13
Superficial squamous 0.99 £0.04 0.82£0.14 0.89+0.09
Severe dysplasia 091 £0.10 0.80£0.11 0.85+0.08
Average 0.95 + 0.08 0.79 £ 0.13 0.85 £ 0.09
Carcinoma in situ 0.63+0.17 0.90 +£0.13 0.72£0.11
Mild dysplasia 0.74 £0.29 0.85+0.14 0.74 £0.20
Moderate dysplasia 0.66 £0.27 0.86£0.14 0.70 £0.17
Soille et al. Columnar 0.77£0.22 0.76 £0.17 0.73£0.13
[46] Watershed Wholecell 1 ermediate squamous 096 40.12  0.87+0.14 0.91+0.13
Superficial squamous 0.96 £0.05 0.88£0.10 0.91 £0.06
Severe dysplasia 0.58 £0.23 0.89+0.16 0.66+0.16
Average 0.76 + 0.19 0.86 + 0.14 0.77 £ 0.14
Devi et al. [47] E;ig"ssggr‘l‘gngsgg (NGes)  Wholecell  Average 095011  0.96+0.06 -
Carcinoma in situ 0.93 £0.06 091 £0.05 0.92+0.04
Mild dysplasia 0.92 £ 0.06 0.92£0.04 0.92 +£0.03
Moderate dysplasia 0.91 £0.08 091 £0.05 0.91 £0.05
Our study Mask R-CNN Whole cell Columnar 0.86 £0.10 0.89 +£0.06 0.87 £0.07
Intermediate squamous 0.97 £0.02 0.92+0.03 0.95£0.02
Superficial squamous 0.96 £0.03 0.92 £0.06 0.94+0.03
Severe dysplasia 091 £0.07 091 £0.04 0.91 £0.04
Average 0.92 + 0.06 0.91 + 0.05 0.91 + 0.04
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TABLE 13. Performance comparison of classification method on herlev dataset for 2-class problem.

Method Coverage Segmentation Classifier Sensitivity  Specificity Accuracy h-mean F1 score
Commercial
Jantzenetal.  \opeys  Software Benchmark 98.8% 79.3% 98.6% 88.0% NA
[16] Package
CHAMP
Zhang et al Deep .
' Nucleus - Convolutional 98.2% 98.3% 98.3% 98.3% 98.8%
[30]
Network
Maximally
i‘ga ctal Stable Extremal g?::srf‘fll’gf 98.96% 89.67% 96.51% NA 93.13%
[48] Nudl Region (MSER)
ucleus Bayesian Bayesian 97.78% 60.42% 87.98% NA 72.50%
SVM SVM 97.93% 87.50% 95.20% NA 90.52%
KNN KNN 80.49% 81.82% 89.39% NA 90.00%
Minimum o o o
F:;l]l ctal Nucleus K-Means Cluster ~ Distance 89.29% 100% 92.37% NA NA
KNN 97.62% 100% 98.31% NA NA
. Neutrosophic
aﬁ;\il e Nucleus + Graph Cut-
ve et . based 98.52% 99.42% 99.42% NA NA
cytoplasm .
Segmentation
(NGCS)
s Commercial
Marinakis et Nucleus + software package Ngarest NA NA 92.8% NA NA
al. [50] cytoplasm CHAMP neighbour
e Nucleus.
William et al. ’ .
cytoplasm, Trainable Weka Enhanced o o o
(201 background,  Segmentation Fuzzy C-Means 99.28% 97.47% 98.88% NA NA
debris
FCM ANN 99.85% 96.53% 99.27% NA NA
Chank . SVM 95.11% 96.53% 95.36% NA NA
o ?;;“g ¢ Wholecell ~ HCM ANN 99.26% 92.36% 98.05% NA NA
’ SVM 97.33% 95.14% 96.95% NA NA
Watershed ANN 98.96% 88.89% 97.19% NA NA
SVM 95.70% 88.89% 94.51% NA NA
Our study Whole cell ~ Mask R-CNN Deep CNN 96.7% 98.6% 98.1% 97.7% 96.5%
TABLE 14. Performance comparison of classification method on herlev dataset for 7-class problem.
Method Coverage Segmentation Classifier Sensitivity Specificity Accuracy h-mean F1 score
Marinakis et al. ~ Nucleus + Commercial
’ software package  Nearest Neighbour NA NA 92.8% NA NA
[50] cytoplasm CHAMP
FCM ANN 98.96% 96.69% 93.78% NA NA
SVM 94.22% 92.56% 85.39% NA NA
Chankong etal. Wholecell ~HCM ANN 98.07% 87.60% 88.88% NA NA
[25] SVM 95.70% 91.74% 83.53% NA NA
Watershed ANN 96.59% 83.47% 85.39% NA NA
SVM 88.74% 85.54% 76.12% NA NA
Our study Whole cell ~ Mask R-CNN Deep CNN 96.2% 99.3% 95.9% 97.7% 99%

well. In general, the results show that our work using Mask
R-CNN and a deep CNN classifier with a smaller VGGNet is
effective.

VI. CONCLUSION AND FUTURE WORKS

This work proposes a method of cervical cell segmenta-
tion and classification. The Herlev Pap smear dataset was
used for testing. First, we employed the Mask R-CNN seg-
mentation algorithm to partition the cell regions. Second,
by classifying the segments detected from the first phase with
a smaller Visual Geometry Group Network, we identified
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the whole cell areas. To fully utilize the spatial information
and prior knowledge in Mask R-CNN, we use RestNet10 as
the network backbone. In this paper, we use two types of
performance measures, i.e., segmentation and classification
performance. We summarize the performance of our segmen-
tation using precision, recall, ZSI and specificity, whereas
the classification performance is evaluated using F1 score,
accuracy, sensitivity, specificity and h-mean.

Our proposed segmentation using Mask R-CNN pro-
duces the best average performance, i.e. 0.924+0.06 preci-
sion, 0.91£0.05 recall and 0.91+0.04 ZSI and 0.83+0.10
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specificity for all cell types with a low standard deviation.
Only the normal columnar type produces a lower perfor-
mance result of below 0.90.

We implemented two classification scenarios i.e. 2-class
and 7-class classification problems. Our proposed method
for the binary classification problem (normal and abnormal)
yields high performance results with a low standard deviation
for all metrics for 250 epochs, i.e. 96.5% F1 score, 98.1%
accuracy, 96.7% sensitivity, 98.6% specificity, and 97.7% h-
mean, whereas the classification performance for the 7-class
problem yields a high accuracy of 95.9%, high sensitivity
of 96.2%, high specificity of 99.3%, and high h-mean of
97.7%.

The advantage of our method is that we do not need com-
plex pre-processing steps since feature selection is conducted
by the Mask R-CNN algorithm. The limitation of our work is
the need for higher processing power compared to the other
methods. Future study should focus on the use of a deeper
network to improve the performance results.
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