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ABSTRACT This study investigated minimum-entropy hybrid fault-tolerant control (FTC) theory for
non-Gaussian stochastic systems with compound faults. After fuzzy linearization for the singular systems,
the output probability density function (PDF) is generated by rational square root B-splines. To deal with
the compound faults consisting of single sensor fault and intermittent multiple actuator faults, an active-
passive hybrid adaptive FTC scheme is proposed: A passive compensation function can directly reconstruct
the algorithm to mask the sensor fault; then, actuator fault estimation accurately tracks the multiple actuator
faults. Hence, the hybrid FTC combines estimated information and passive compensation simultaneously
implements active actuator fault repair and passive sensor fault shielding. A novel variable parameter
algorithm that mimics animal predation behavior is designed and incorporated into learning rates, making
the controller more sensitive to the incipient deviations in actuator faults. Finally, with the optimal indicators
containing entropy and mean of non-Gaussian PDF, the minimum-entropy FTC is achieved. Lyapunov and
indicator functions prove the stability, simulation verifies the effectiveness of the methods.

INDEX TERMS Control theory, fault-tolerant control, compound faults, entropy, stochastic systems.

I. INTRODUCTION
Non-Gaussian stochastic distribution control (SDC) has
a wide range of application scenarios; it can describe
industrial processes such as parallel vibration tables,
aerospace engine tail flames, and pulper fiber distribution
control [1]–[4]. Studying such systems’ fault diagnosis (FD)
and fault-tolerant control (FTC) can compensate for the
faults that cannot be displayed by traditional system out-
puts, provide new ideas for anti-laser hypersonic vehicles
and industrial process safety design. There are some under
consequential issues in this research area, including FTC
of compound faults, estimation of incipient or intermittent
faults, and optimal control when the expected output is
unknown.

Multiple or compound faults are different types of faults
occurring simultaneo4usly, or the same fault occurring simul-
taneously at different internal locations [5], [6]. It is difficult
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for a single FTC algorithm to compensate for compound
faults. Therefore, special FTC schemes are needed to deal
with such faults. In [7], the problem of diagnosing compound
faults over time was solved using a framework based on a
coupled-factorial hidden Markov model. In [8], a frequency-
blind deconvolution algorithm based on an adaptive gen-
eralized morphological filter was proposed for extracting
useful signals from signals contaminated by compound faults.
In [9], a nonlinear FTC and multiple-sensor FD approach for
longitudinal dynamics of hypersonic vehicles was designed.
In [10], a composite loop for FTC under compound faults was
subsequently developed, where a newly developed multivari-
able integral sliding-mode control was integrated. In [11],
an improved fast-spectrum kurtosis method combined with
variational mode decomposition was proposed to improve
the tracking accuracy for compound faults. In [12], an expo-
nentially weighted moving average control chart was con-
structed to diagnose compound faults at an early stage.
In [13], a low-complexity state feedback FTC scheme that
guarantees prescribed performance was designed for actuator
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and component faults. In [14], an FTC scheme with higher
order sliding-mode-based observers was proposed to provide
continuous drive operation regardless of any sensor faults.
In [15], a robust adaptive FTC was designed to address
the tracking control problem with prescribed performance
guarantees for a system subject to unknown inertia properties,
actuator faults, and saturation nonlinearities. In [16]–[18],
the actuator and sensor compound faults were considered
simultaneously when designing controllers, and a similar
approach was also applied to systems with multiple complex
conditions. Based on the previous research, part of this study
was conducted to solve the problem of FTC for actuator-
sensor compound faults.

A background of incipient and intermittent faults repre-
sents the early signs before large permanent faults occur.
In [19], under the principal component analysis framework,
a new data-driven FD method was proposed to extract the
incipient faults. In [20], an interval sliding mode observer and
an incipient sensor fault detection method were proposed for
a class of nonlinear control systems with observer unmatched
uncertainties. In [21], a new method for FD of transformers
with dissolved gas analysis was used to detect incipient faults
in oil-cooled transformers. In [22], the realization form of
multiplicative faults was first studied with the aid of coprime
factorization techniques. Then, a fault-tolerant margin was
designed in the closed-loop setup, aiming at characterizing
fault induced performance degradation. In [23], non-fragile
FTC was addressed for a class of nonlinear jump systems
with intermittent multiple actuator faults. In [24], a method
based on chaotic spread-spectrum sequence was proposed
for synchronous online diagnosis of intermittent faults for
complex networks, such as aircraft power systems. In [25],
event-triggered filtering and intermittent fault detection prob-
lems were investigated for a class of time-varying systems
with stochastic parameter uncertainty and sensor satura-
tion. In [26], output feedback controller and linear matrix
inequality (LMI) were designed for the Takagi-Sugeno (T-S)
fuzzy systems with input parameter uncertainties, exoge-
nous disturbances, measurement noise, and multiple inter-
mittent faults. These research results motivated part of the
present study to solve the problem of FTC of intermittent
time-varying step faults involving incipient faults.

Some research results have been obtained in FD and FTC
of non-Gaussian stochastic systems. In [27], a generalized
correntropy filter-based diagnosis and repair strategy were
proposed for stochastic systems with heavy-tailed distributed
non-Gaussian noise. In [28], T-S fuzzy theory was used for
non-Gaussian stochastic systems; a sliding-mode algorithm
compensated for the fault impacts. In [29], algorithms were
proposed for singular time-delay systems with non-Gaussian
stochastic output and probability density function (PDF)
approximation error. In [30], an adaptive observer and novel
fault-tolerant proportional-integral controller were designed
because of the singular and delay of non-Gaussian stochas-
tic systems. In [31], using the rational square-root B-spline
model for the shape control of the system output PDF,

a nonlinear adaptive observer-based FD algorithm was pro-
posed to diagnose the fault.

The motivation of minimum-entropy SDC is that the
expected output PDF is unknown [31]. We design a novel
hybrid FTC scheme, where non-Gaussian stochastic systems
can achieve the optimal FTC of entropy index under the
compound faults and unknown expected PDF conditions. The
main contributions of this study include:

1) Construction of fuzzy singular non-Gaussian systems
and a performance index with mean and entropy, designing
fusion adaptive control combining fuzzy premise variables
and fault information to achieve the minimum-entropy opti-
mal control.

2) Design of an active-passive hybrid FTC scheme. When
sensor faults occur, passive minimum-entropy FTC without
detection is achieved; when sensor-actuator compound faults
occur, the scheme estimates and actively compensates actua-
tor faults while shielding sensor faults.

3) Design of a novel variable parameter algorithm imi-
tating animal predation behavior, making the systems more
sensitive to time-varying step faults with incipient deviation,
improving the estimation and FTC performance.

This paper is organized as follows. Section II establishes
the general non-Gaussian stochastic systems with compo-und
faults and provides the fault expressions. Section III. A dis-
cusses the design of an adaptive observer for actuator
time-varying step faults, Section III. B discusses the design
of a hybrid minimum-entropy FTC scheme, and Section III.
C covers the design of a variable-parameter prey algorithm.
Section IV describes the simulation conducted to verify the
effectiveness of all methods.

II. MODEL SYSTEMS AND FAULTS
We take γ (y, u(t)) as the output PDF of a non-Gaussian
stochastic system, where y is a stochastic variable defined
in the real interval [a, b]. Then, a class of compound faults
with actuator and sensor faults is introduced, so the system
expression under one of the T-S fuzzy rules is as follows:

The ith rule: IF $1(t) is βi1, and . . ., and $ι(t) is βiι,
THEN: {

Eẋ(t) = Aix(t)+ Biu(t)+ NiFtvs(t)
V (t) = Dix(t)

(1)√
γ (y+ c, u(t)) =

C(y+ c)V (t)√
V T (t)6iV (t)

(2)

where $η(η = 1, . . . , ι) are the premise variables, ι is the
number of premise variables, and βiη(i = 1, . . . , n̄) are the
fuzzy sets.

The membership function for each linear modal is as
follows:

hi($ (t)) =
ι∏

η=1

βiη($ (t))/
n̄∑
i=1

ι∏
η=1

βiη($ (t)) ≥ 0

n̄∑
i=1

hi($ (t)) = 1

(3)
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Therefore the non-Gaussian nonlinear stochastic systems
after fuzzy approximation is expressed as follows:

Eẋ(t) =
n̄∑
i=1

hi($ (t))(Aix(t)+ Biu(t)+ NiFtvs(t))

V (t) =
n̄∑
i=1

hi($ (t))Dix(t)

(4)

√
γ (y+ c, u(t)) =

n̄∑
i=1

hi($ (t))3iC(y+ c)V (t) (5)

In (4) and (5), x(t) ∈ Rn×1 is the state vector, V (t) ∈
R(n−1)×1 is the system output weight vector, u(t) ∈ Rm×1

is the control input vector, c ∈ R is the single sensor initial
fault, and Ftvs(t) ∈ Rm×1 is the vector with multiple actuator
faults. Actuator faults are a class of intermittent time-varying
step faults with the incipient fault interval defined by litera-
ture [19], and satisfy:

Ftvs(t) =

{
Fσ (t), t ∈ (tσ1, tσ2]
0, otherwise

(6)

Fσ (t) =

{
Fσ,inc(t), t ∈ (tσ1, tσ3]
Fσ,non−inc(t), t ∈ (tσ3, tσ2]

(7){∥∥Fσ,inc(t)/(Biu∗(t))∥∥ ≤ 10%∥∥Fσ,non−inc(t)/(Biu∗(t))∥∥ > 10%
(8)

where Ftvs(t) are the intermittent faults with step-varying
characteristics; Fσ (t) are the values in the fault time inter-
val; Fσ,inc(t) are the values in the incipient amplitude interval;
Fσ,non-inc(t) are the values in the residual amplitude interval;
σ = 1, . . . , σ0 is the number of fault windows; and ‖Biu∗(t)‖
is the minimum norm when no compound faults occur. The
judgment method is in Remark 2.

The system parameter matrices and their dimensions sat-
isfy: Ai ∈ Rn×n, Bi ∈ Rn×m, Di ∈ R(n−1)×n, E ∈ Rn×n, and
Ni ∈ Rn×n. rank(E) = q < n, where E is the singular matrix.
Equation (5) is a PDF staticmodel fitted by the rational square
root B-spline functions, where:

3i = 1/
√
V T (t)(6i +16i)V (t) (9)

6i +16i =

∫ b

a
CT (y+ c)UiC(y+ c)dy

=

∫ b

a
(CT (y)+1CT )Ui(C(y)+1C)dy

=

∫ b

a
(CT (y)UiC(y)+ CT (y)Ui1C

+1CTUiC(y)+1CTUi1C)dy (10)

C(y+ c) = [B1(y+ c) B2(y+ c) . . . Bn(y+ c)]

= [B1(y)+1B1 B2(y)+1B2 . . . Bn(y)+1Bn]

= [B1(y) B2(y) . . .Bn(y)]+[1B1 1B2 . . . 1Bn]

= C(y)+1C (11)

V (t) = [v1(t) v2(t) . . . vn(t)]T (12)

6i =

∫ b

a
CT (y)UiC(y)dy (13)

16i =

∫ b

a
(CT (y)Ui1C +1CTUiC(y)

+1CTUi1C)dy (14)

vj(u(t))(j= 1, 2, . . . ,n) are the weights associated with input
u(t),Bj(y+c)(j = 1, 2, . . . , n) are the predetermined basis
functions, and n is the number of basis functions. Ui is
an independently set parameter matrix that compensates for
interpolation errors with the changes of premise variables.
C(y) = [B1(y),B2(y), . . . ,Bn(y)] is the basis function vector
for sensorless faults, and1C and16i are the effect of sensor
initial fault on the basis function vector.
Remark 1: There are multiple actuator faults and a single

sensor fault in the system, so in this paper, the description is:
‘‘actuator faults’’ and ‘‘sensor fault.’’
Assumption 1: System (4) is pulseless and regular, i.e.

rankE= deg(| sE − Ai |) and | sE − Ai |6= 0.
According to Assumption 1, two non-singular matrices Qi

and Pi can be found and satisfy

n̄∑
i=1

hi($ (t))QiEPi =
[
Iq 0
0 0

]
(15)

n̄∑
i=1

hi($ (t))QiAiPi =
n̄∑
i=1

hi($ (t))
[
Ai1 0
0 In−q

]
(16)

where Qi, Pi ∈ Rn×n, Ai1 ∈ Rq×q, and Iq is a q-order unit
matrix.

Set the following state transformation

x(t) =
n̄∑
i=1

hi($ (t))Pi

[
x1(t)
x2(t)

]
(17)

where x1(t) ∈ Rq×1, x2(t) ∈ R(n−q)×1; hence, systems (4) and
(5) can be transformed into

ẋ1(t) =
n̄∑
i=1

hi($ (t))(Ai1x1(t)+ Bi1u(t)+ Ni1Ftvs(t))

x2(t) =
n̄∑
i=1

hi($ (t))(−Bi2u(t)− Ni2Ftvs(t))

V (t) =
n̄∑
i=1

hi($ (t))(Di1x1(t)+ Di2x2(t))

√
γ (y+ c, u(t)) =

n̄∑
i=1

hi($ (t))3i(C(y)+1C)V (t)

(18)

where Bi1,Ni1 ∈ Rq×m,Bi2,Ni2 ∈ R(n−q)×m,Di1 ∈
R(n−1)×q, and Di2 ∈ R(n−1)×(n−q), and satisfy QiBi =
[BTi1 B

T
i2 ]

T ,QiNi = [NT
i1 N

T
i2 ]

T ,DiPi = [Di1 Di2 ].
The model does not change after the state transition, so the

systems (4) to (5) and (18) are equivalent.
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III. FTC SCHEME DESIGN
This section designs an active-passive hybrid FTC scheme
for compound faults. In an actuator fault observer, the com-
pensation learning rates shield sensor initial fault; hence,
the fusion adaptive observer tracks the actuator faults. Then,
the fault-tolerant controller uses a compensation function to
passively repair the sensor fault, simultaneously using the
prey algorithm and estimation results to actively repair the
actuator faults.
Remark 2: The sensor initial fault c is the fault being born

with sensor, it is simple and does not need to design an
independent observer. Engineers can determine the indirect
effects of such faults based on measurable functions con-
taining c-information such as feedback errors. Because of
the complex errors produced by the environment, fault c is
difficult to separate from the output measured value y. We use
the observer residual with c-information design algorithms
to indirectly shield c on actuator fault estimation and active
FTC. In short, hybrid FTC has automatic shielding function
for partial faults compared with prior art.

A. FAULT ESTIMATION
This section describes the design of an adaptive observer to
estimate the actuator faults in non-Gaussian stochastic sys-
tems in order to subsequently implement the actuator faults
and active FTC in the hybrid FTC. The observer is as follows:

ẋ1m(t) =
n̄∑
i=1

hi($ (t))(Ai1x1m(t)+ Bi1u(t)

+ Ni1F̂tvs(t)+ Kiεm(t))

x2m(t) =
n̄∑
i=1

hi($ (t))(−Bi1u(t)− Ni2F̂tvs(t))

Vm(t) =
n̄∑
i=1

hi($ (t))(Di1mx1m(t)+ Di2mx2m(t))

√
γm(y+ c, u(t)) =

n̄∑
i=1

hi($ (t))3im(C(y)+1C)Vm(t)

εm(t) =
∫ b

a
σ (y+c)[

√
γ (y+c, u(t))−

√
γm(y+ c, u(t))]dy

(19)

˙̂Ftvs(t) =
n̄∑
i=1

hi($ (t))(−prey(Ri)F̂tvs(t)+ri,cεm(t)) (20)

where xjm(t)(j = 1, 2) are the state estimation values, εm(t)
is the residual signal, Ki is an observer gain, and prey(Ri),
ri,c are the fusion adaptive learning matrices with a certain
dimension. prey(Ri) contains information about actuator fault
estimation and fuzzy premise variables; ri,c contains informa-
tion about fuzzy premise variables and residual. F̂tvs(t) is the
estimation of Ftvs(t).

3im = 1/
√
V T
m (t)(6i +16i)Vm(t) (21)

Remark 3: prey(·) is the prey algorithm that increases
an independent switching dimension of the learning rates

and does not affect the stability proof. Compared with the
state-of-art in [31], prey algorithm increases the adjustment
freedom of learning rates and makes the systems adapt to
more environmental factors. This algorithm’s characteristics
are described in Section III.C.

According to (19), (20) and (21), the observation error and
fault estimation error are

e1m(t) = x1(t)− x1m(t) (22)

F̃tvs(t) = Ftvs(t)− F̂tvs(t) (23)

The residual signal can be expressed as

εm(t) =
∫ b

a
σ (y+ c)[

√
γ (y+ c, u(t))−

√
γm(y+ c, u(t))]dy

=

n̄∑
i=1

hi($ (t))(3i(0 +10)V (t)

+3im(0 +10)Di1e1m(t)−3im(0

+10)Di2Ni2F̃(t)−3im(0 +10)V (t)) (24)

where

0 +10 =

∫ b

a
σ (y+ c)(C(y)+1C)dy

=

∫ b

a
σ (y+ c)C(y)dy+

∫ b

a
σ (y+ c)1Cdy (25)

0 =

∫ b

a
σ (y+ c)C(y)dy

10 =

∫ b

a
σ (y+ c)1Cdy

(26)

The first derivative of fault estimation error is

˙̃Ftvs(t) = −
˙̂Ftvs(t)

=

n̄∑
i=1

hi($ (t))(prey(Ri)F̂tvs(t)− ri,cεm(t))

=

n̄∑
i=1

hi($ (t)){prey(Ri)Ftvs(t)− prey(Ri)F̃tvs(t)

− ri,c[3im(0 +10)Di1e1m(t)

−3im(0 +10)Di2Ni2F̃tvs(t)]

− ri,c[3i(0 +10)V (t)−3im(0 +10)V (t)]}

(27)

According to (27), the first derivative of error e1m(t) is
further obtained:

ė1m(t) = ẋ1(t)− ẋ1m(t)

=

n̄∑
i=1

hi($ (t)){[Ai1 − Li1(0 +10)Di1]e1m(t)

+ [Ni1 + Li1(0 +10)Di2Ni2]F̃tvs(t)+ Li1(0

+10)V (t)3iλ1(‖V (t)‖ −
∥∥∥V̂m(t)∥∥∥)}
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=

n̄∑
i=1

hi($ (t)){[Ai1−Li1(0 +10)Di1]e1m(t)+ [Ni1

+Li1(0+10)Di2Ni2]F̃tvs(t)+ Li1(0 +10)h1(t)}

(28)

where

Ki1 = Li1/3im (29)

h1(t) = V (t)3iλ1(‖V (t)‖ − ‖Vm(t)‖) (30)

According to the literature [32], inequality (31) can be
obtained as

hT1 (t)h1(t) ≤
n̄∑
i=1

hi($ (t))(T2 ‖Di0‖ /
√
‖6i +16i‖)2

× [eT1m(t)e1m(t)+ F̃
T
tvs(t)N

T
i2Ni2F̃tvs(t)]

=

n̄∑
i=1

hi($ (t))[α1eT1m(t)e1m(t)

+α1F̃Ttvs(t)N
T
i2Ni2F̃tvs(t)] (31)

where

Di0 = DiPi = [Di1Di2] (32)

α1 = (T2 ‖Di0‖)2/ ‖6i +16i‖ (33)

Remark 4: A positive threshold τ1 of approximately zero
can describe the effect of the sensor initial fault c on the
residual εm. The absolute value of the residual exceeds τ1
to indicate the influence of c in the systems. If not exceeds,
it indicates that there is no impact of c in the systems. A pos-
itive threshold τ2 is the actuator faults judgment threshold.
If the norm of multiple actuator fault vector exceeds τ2,
the systems determine that actuator faults have occurred.
Assumption 2: ∀t ≥ 0, actuator faults and sensor fault

satisfy 
∥∥∥F̃tvs(t)∥∥∥ ≤ M
‖Ftvs(t)‖ ≤ 0.5M
c ≤ Mc

(34)

where M and Mc are the positive constants. The integral
interval [a, b] satisfies{

a ≤ min{y+ c}
b ≥ max{y+ c}

(35)

Theorem 1: For the suitable parameters κ > 0, µ > 0,
α1 > 0, and Li2,c, there exists a matrix Y1 = Y T

1 > 0 that
satisfies the following inequality:

4 =


8i + κI Y1Gi − [Li2,c(0 +10)Di1]T

∗ −2[prey(Ri)− Li2,c(0 +10)Di2Ni2]
∗ ∗

∗ ∗

−Y1Li1(0 +10) 0

−Li2,c(0 +10)
√
α1

µ
NT
i2

−
1
µ2 I 0

∗ −I

 < 0 (36)

Then, the error system (28) is stable, where

8i = (Ai1 − Li1(0 +10)Di1)TY1 + Y1(Ai1 − Li1(0

+10)Di1)+
α1

µ2 I (37)

Gi = Ni1 + Li1(0 +10)Di2Ni2 (38)

ri,c = Li2,c
√
V T
m (t)(6i +16i)Vm(t) (39)

Li2,c = li2 + 01εn02 (40)

εn =

{
0, ‖εm‖ ≤ τ1

εm, ‖εm‖ > τ1
(41)

Li2,c is a fusion passive compensation function for the sensor
initial fault. 01 and 02 are the shielding parameters with
appropriate dimensions.
Proof: Select the Lyapunov function as:

5(t) =
n̄∑
i=1

hi($ (t)){eT1m(t)Y1e1m(t)+ F̃
T
tvs(t)F̃tvs(t)

+
1
µ2

∫ t

0
[α1(eT1m(τ )e1m(τ )+ F̃

T
tvs(τ )N

T
i2Ni2F̃tvs(τ ))

− hT1 (τ )h1(τ )]dτ } (42)

The first derivative of this Lyapunov function is:

5̇(t) =
n̄∑
i=1

hi($ (t))[ėT1m(t)Y1e1m(t)+ e
T
1m(t)Y1ė1m(t)

+ 2F̃tvs(t)T
˙̃Ftvs(t)+

α1

µ2 (e
T
1m(t)e1m(t)

+ F̃tvs(t)TNT
i2Ni2F̃tvs(t))−

1
µ2 h

T
1 (t)h1(t)]

=

n̄∑
i=1

hi($ (t)){eT1m(t)[(Ai1 − Li1(0 +10)Di1)
TY1

+Y1(Ai1 − Li1(0 +10)Di1)]e1m(t)

+ 2eT1m(t)Y1GiF̃tvs(t)+ 2F̃tvs(t)TLi2,c(0 +10)h1

+ 2F̃tvs(t)T prey(Ri)Ftvs(t)− 2F̃tvs(t)T prey(Ri)F̃tvs(t)

− 2F̃tvs(t)TLi2,c(0 +10)(Di1e1m(t)

− 2F̃tvs(t)TDi2Ni2F̃tvs(t)+
α1

µ2 (e
T
1m(t)e1m(t)

+ F̃tvs(t)TNT
i2Ni2F̃tvs(t))−

1
µ2 h

T
1 (t)h1(t)

+ 2eT1m(t)Y1Li1(0 +10)h1(t)} (43)
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By combining similar quadratic matrices, (44) is obtained:

5̇(t) =
n̄∑
i=1

hi($ (t)){eT1m(t)[(Ai1 − Li1(0 +10)Di1)
TY1

+Y1(Ai1 − Li1(0 +10)Di1)+
α1

µ2 I ]e1m(t)

− 2F̃tvs(t)T (prey(Ri)− Li2,c(0 +10)Di2Ni2

−
α1

2µ2N
T
i2Ni2)F̃tvs(t)−

1
µ2 h

T
1 (t)h1(t)

+ 2eT1m(t)Y1GiF̃tvs(t)− 2F̃tvs(t)TLi2,c(0

+10)Di1e1m(t)+ 2eT1m(t)Y1Li1(0 +10)h1(t)

+ 2F̃tvs(t)TLi2,c(0 +10)h1(t)

+ 2F̃tvs(t)T prey(Ri)Ftvs(t)}

=

n̄∑
i=1

hi($ (t))(XT4i1X + 2F̃tvs(t)T prey(Ri)Ftvs(t))

(44)

where

XT = [eT1m(t) F̃tvs(t)
T hT2 ] (45)

4i1=


8i Y1Gi − (Li2,c(0+10)Di1)T −Y1Li1(0+10)
∗ ϒi −Li2,c(0+10)

∗ ∗ −
1
µ2 I


(46)

ϒi = −2[prey(Ri)− Li2,c(0 +10)Di2Ni2 −
α1

2µ2N
T
i2Ni2]

(47)

Therefore by means of the LMI theory, (44) can satisfy
the following inequality according to Assumption 2 and
Theorem 1:

5̇(t) ≤ −κ ‖e1m(t)‖2 +M2
‖prey(Ri)‖ (48)

Thus, when (49) holds, we can obtain inequality (50) as
follows:

‖e1m(t)‖2 >
M2 ‖prey(Ri)‖

κ
(49)

5̇(t) ≤ 0 (50)

Thence:

‖e1m(t)‖2 ≤ min{e1m(0),
M2 ‖prey(Ri)‖

κ
} = α (51)

This indicates that the estimation error (28) is stable when
compound faults exist in the systems (4) and (5).�

The proof of stability in the absence of compound faults is
highly similar to the preceding proof and will not be repeated.
Ultimately, the observer can use LMI to accurately track
actuator faults in the event of a shielding sensor fault.

B. HYBRID COMPENSATION
The FTC process should select the best compensation solu-
tion on the basis of estimation results and consider different
compound fault conditions. After fault estimation, for sys-
tems (1) and (2) when the target output PDF is unknown,
the FTC method of minimum Shannon entropy should be
adopted, and the performance index function is constructed
as follows:

J (V (t), u(t)) = −S1

∫ b

a
γ (y+ c, u(t)) ln γ (y+ c, u(t))dy

+S2[µ− µg]2 + uT (t)Ru(t) (52)

In (52), the first term is the output Shannon entropy;
the second term is the output mean, and satisfies

µ =

∫ b

a
(y+ c)γ (y+ c, u(t))dy (53)

µg is the expected mean, the third term is the limitation on
the input energy, and R = RT > 0. In order to minimize the
performance index, control input u(t) is chosen such that J is
monotonic and not increasing, i.e.: dJ/dt < 0.

Set J1 and J2 as:

J1 = −S1

∫ b

a
γ (y+ c, u(t)) ln γ (y+ c, u(t))dy (54)

J2 = S2[µ− µg]2 (55)

By means of the performance indicator and by proving
Theorem 2, it can be shown that the selection of a control
algorithm ensures the stability of minimum-entropy FTC.
Theorem 2: There is a fusion adjustment parameter

λprey,c > 0 and the following controller:

u(t)TRu̇(t) = −λprey,c
∣∣µ− µg∣∣+ [S1

∫ b

a
(ln(γ (y

+ c, u(t)))+ 1)
n̄∑
i=1

hi($ (t))Widy− 2S2(µ

−µg)
∫ b

a
(y+ c)

n̄∑
i=1

hi($ (t))Widy]V̇ (t)

(56)

where

Wi = 2V T (t)(CT (y)+1CT )(C(y)+1C)32
i − 2(C(y)

+1C)V (t)V T (t)(6i +16i)34
i (57)

Controller (56) makes mean closed-loop non-Gaussian
stochastic systems achieve the stability of minimum-entropy
FTC based on performance index J .
Proof: The first derivative of performance indicator J can

be expressed as:

dJ
dt
=
dJ1
dt
+
dJ2
dt
+ u(t)TRu̇(t) (58)
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because

γ (y+ c, u(t)) =
n̄∑
i=1

hi($ (t))32
i (C(y+ c)V (t))

T (C(y

+ c)V (t))

=

n̄∑
i=1

hi($ (t))32
i [(C(y)+1C)V (t)]

T [(C(y)

+1C)V (t)]

=

n̄∑
i=1

hi($ (t))32
i [V

T (t)CT (y)C(y)V (t)

+V T (t)CT (y)1CV (t)

+V T (t)1CTC(y)V (t)

+V T (t)1CT1CV (t)] (59)

According to Theorem 2 and (57), partial derivation (60)
can be obtained:

Wi =
∂γ (y+ c, u(t))

∂V (t)

=
2V T (t)(CT (y)+1CT )(C(y)+1C)/32

i

1/34
i

−
2(C(y)+1C)V (t)(V T (t)(6i +16i))

1/34
i

= 2V T (t)(CT (y)+1CT )(C(y)+1C)32
i

− 2(C(y)+1C)V (t)V T (t)(6i +16i)34
i (60)

Deriving J1 and J2 separately, we can obtain:

dJ1
dt
= −S1

∫ b

a
(
∂γ (y+ c, u(t)

∂V (t)
V̇ (t) ln γ (y+ c, u(t))

+
∂γ (y+ c, u(t)

∂V (t)
V̇ (t))dy (61)

= −S1

∫ b

a
(ln γ (y+ c, u(t))+1)

n̄∑
i=1

hi($ (t))WidyV̇ (t)

dJ2
dt
= 2S2(µ− µg)

∫ b

a
(y+ c)

n̄∑
i=1

hi($ (t))WidyV̇ (t) (62)

because

V̇ (t) =
n̄∑
i=1

hi($ (t))Di1ẋ1(t)

=

n̄∑
i=1

hi($ (t))Di1(Ai1x1(t)+ Bi1u(t)+ Ni1Ftvs(t))

(63)

Therefore, by substituting equation (61) and (62) into (58),
(64) can be obtained:

dJ
dt
= 2S2(µ− µg)

∫ b

a
(y+ c)

n̄∑
i=1

hi($ (t))WidyV̇ (t)

− S1

∫ b

a
(ln(γ (y+ c, u(t)))+1)

n̄∑
i=1

hi($ (t))WidyV̇ (t)

+ u(t)TRu̇(t) (64)

Construct the following controller:

u(t)TRu̇(t) = −λprey,c
∣∣µ− µg∣∣− 2S2(µ− µg)

∫ b

a
(y

+ c)
n̄∑
i=1

hi($ (t))WidyV̇ (t)+ S1

∫ b

a
(ln(γ (y

+ c, u(t)))+ 1)
n̄∑
i=1

hi($ (t))WidyV̇ (t)

= −λprey,c
∣∣µ− µg∣∣+ (S1

∫ b

a
(ln(γ (y+ c, u(t)))

+ 1)
n̄∑
i=1

hi($ (t))Widy− 2S2(µ− µg)
∫ b

a
(y

+ c)
n̄∑
i=1

hi($ (t))Widy)V̇ (t) (65)

where λprey,c > 0, the following inequality holds:

dJ
dt
= −λprey,c

∣∣µ− µg∣∣ < 0 (66)

Therefore, the closed-loop system is stable. �

The limited function λprey,c is a proportional link, and can
re-define the output steady-state value. It fuses fault estima-
tion and observer residual information; the structure is as
follows:

λprey,c = prey(λ)+ 03εn (67)

The sensor fault produces an output mean transmission
deviation, which causes the controller to use the received
wrong mean as the judgment condition, so systems cannot
accurately track the expected value. 03εn indirectly cali-
brates the transmission deviation and redefines the output
steady-state value, hence passively compensates for sen-
sor fault. The function with fault estimation information is
prey(λ) and its significance of active compensation are in
Section III. C.

When there is no fault, according to Remark 2,
Remark 4 and (41), c and εn can be ignored; the controller
expression is as follows:

u(t)TRu̇(t) = −prey(λ)
∣∣µ− µg∣∣+ [S1

∫ b

a
(ln(γ (y, u(t)))

+ 1)
n̄∑
i=1

hi($ (t))Widy− 2S2(µ
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FIGURE 1. Positional relationship of two animals.

−µg)
∫ b

a
y

n̄∑
i=1

hi($ (t))Widy]

×Di1(Ai1x1(t)+ Bi1u(t)) (68)

When only the sensor initial fault occurs, c and εn can be
ignored. The controller expression is as follows:

u(t)TRu̇(t) = −(prey(λ)+ 03εn)
∣∣µ− µg∣∣+ [S1

∫ b

a
(ln(γ (y

+ c, u(t)))+ 1)
n̄∑
i=1

hi($ (t))Widy− 2S2(µ

−µg)
∫ b

a
(y+ c)

n̄∑
i=1

hi($ (t))Widy]

×Di1(Ai1x1(t)+ Bi1u(t)) (69)

When the actuator-sensor compound faults occur,
the reconstructed controller expression is as follows:

u(t)TRu̇(t) = −(prey(λ)+ 03εn)
∣∣µ− µg∣∣+ [S1

∫ b

a
(ln(γ (y

+ c, u(t)))+ 1)
n̄∑
i=1

hi($ (t))Widy− 2S2(µ

−µg)
∫ b

a
(y+ c)

n̄∑
i=1

hi($ (t))Widy]

×Di1(Ai1x1m(t)+ Bi1u1(t)+ Ni1F̂tvs(t)) (70)

In summary, controller (56) utilizes the composite perfor-
mance index to achieve the minimum-entropy FTC under
unknown expected PDF conditions on the whole and imple-
ments the mean tracking control in concert.

C. PREY ALGORITHM
The prey algorithm is a variable-parameter method based
on the predation game between cheetah and antelope.
To judge the degree of threat from the cheetah and respond
to it, an antelope can use the surrounding alerted birds. Based
on this judgement, it can respond in twoways: run or continue
to graze.

The idea of an antelope’s response is related to the cheetah
and birds. If the cheetah is slowly approaching, the distance
is long, and the birds do not fly, then the antelope decides
not to move. If the birds are alerted (i.e., they fly away),

TABLE 1. Insensitive prey strategy.

TABLE 2. Sensitive prey strategy.

TABLE 3. FTC insensitive prey algorithm.

TABLE 4. FTC insensitive prey algorithm.

the antelope will become sensitive: if the cheetah is slowly
approaching and the distance is short, then the antelope
runs; if the cheetah runs and the distance is short, then the
antelope keeps running. If the birds do not fly, the antelope
will become insensitive: if the cheetah is slowly approaching
and the distance is short, the antelope will not move; if the
cheetah runs and the distance is short, then the antelope runs.
Therefore, the prey strategy can be subdivided into sensitive
and insensitive prey strategies based on the behavior of the
birds; the correspondence is shown in Tables 1 and 2.

Replace the cheetah with Ftvs, the antelope with u(t), and
the birds with εn. Tables 3 and 4 show the corresponding
relationship of the prey algorithm, where Ri1,Ri2, λ1, and
λ2 are LMI-compliant adaptive learning rates and χ satisfies
‖Ftvs‖ = χ .

The algorithm steps are as follows:
Step 1: Fault amplitude is less than or equal to τ2, no fault,

par- ameters are set to Ri1, λ1.
Step 2: Fault amplitude is larger than τ2 and less than

or equal to 0.1‖Biu∗(t)‖, incipient fault, if feedback error
integral is less than τ1, parameters are insensitive and set to
Ri1, λ1.

Step 3: Fault amplitude is larger than τ2 and less than
or equal to 0.1‖Biu∗(t)‖, incipient fault, if feedback error
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integral is larger than or equal to τ1, parameters are sensitive
and set to Ri2, λ2.
Step 4: Fault amplitude is larger than 0.1‖Biu∗(t)‖, large

value fault, parameters are set to Ri2, λ2.
Step 5: Return to Step 1 without modifying content.
From the prey algorithm, (20) and (67) can be

summarized as
˙̂Ftvs(t) =

n̄∑
i=1

hi($ (t))(−prey(Ri)F̂tvs(t)+ ri,cεm(t))

λprey,c = prey(λ)+ 03εn

(71)

where prey(·) is the adaptive switching law described as

prey(Ri, λ)=


Ri1, λ1 if χ̂ ∈ (0, τ2]
Ri1, λ1 if χ̂ ∈ (τ2, 0.1] and ‖εm‖ ∈ [0, τ1)
Ri2, λ2 if χ̂ ∈ (τ2, 0.1] and ‖εm‖∈ [τ1,+∞)
Ri2, λ2 if χ̂ ∈ (0.1, 0.5M ]

(72)

The systems can use the prey algorithm to achieve fast and
accurate estimation of incipient actuator faults, while avoid-
ing the interaction between sensor fault FTC and actuator
faults FTC, ensuring the control performance.

IV. SIMULATION
In this section, a reentry hypersonic vehicle model with three
inputs and single non-Gaussian stochastic output is used to
verify the above methods. Similar models are often used
for simulation verification to show the broad applicability
of theory [13], [30]. For the systems described in (1) and
(2), the output PDF can be approximated by the following
B-spline Bj(y)(j = 1, 2, 3):

B1(y) = 0.5(y− 2)2I1 + (−y2 + 7y− 11.5)I2
+ 0.5(y− 5)2I3 (73)

B2(y) = 0.5(y− 3)2I2 + (−y2 + 9y− 19.5)I3
+ 0.5(y− 6)2I4 (74)

B3(y) = 0.5(y− 4)2I3 + (−y2 + 11y− 29.5)I4
+ 0.5(y− 7)2I5 (75)

where Iζ (y)(ζ = 1, . . . , 5) represents the interval function,
defined as

Iζ (y) =

{
1, y ∈ [ζ + 1, ζ + 2]
0, otherwise.

The deviation of the sensor fault appears in 20 s and is
defined as

c =

{
0.03rand(1), t ∈ [0, 20s)
0.98+ 0.03rand(1), t ∈ [20s,+∞)

(76)

where rand(1) is a random function that changes between
0 and 1 in MATLAB. We set an incipient random signal only
to simulate the real environment; the controllers do not need
to consider this.

Condition (35) in Assumption 2 ensures that the output
y+ c of the sensor fault is in the integration interval [a, b].

The nonlinearity of system is caused mainly by output
weight v1 in V (t). v1 has two related fuzzy sets {v1 = 0.05π}
and {v1 = 0.25π}; then, i = 1, 2, and the corresponding
membership functions are given by


h1(v1 = 0.05π ) = (1−

1
1+ exp(6− 16v1)

)

×
1

1+ exp(−6− 16v1)
h2(v1 = 0.25π ) = 1− h1(v1 = 0.05π )

(77)

Thus, the fuzzy rules can be described as follows:
Rule 1: If v1 is approximately 0.05π , then i = 1.
Rule 2: If v1 is approximately 0.25π , then i = 2.
The linear modal parameter matrices in systems (1) and (2)

are set as follows:

E =

 1 0 0
0 1 0
0 0 0

 , A1 =

 0.05 3.02 −2.5
−0.01 0 0.25

0 −0.11 0.05

 ,
A2 =

 0.06 2.98 −3.75
−0.01 0 0.37
0.01 −0.19 0.06

 , B1 =

−2.9347−2.3109
2.1123

 ,
B2 =

−2.06182.2123
2.1006

, N1=

 0.5804
0.7715
−0.3275

0.5804
0.7715
−0.3275

0.5804
0.7715
−0.3275

,
N2 =

 0.1721
0.0993
−0.6198

0.1721
0.0993
−0.6198

0.1721
0.0993
−0.6198

 ,
D1 =

 0.1456 −2.0671 −6.9217
1.1488 −0.7724 3.3891
0.2891 −0.5067 −2.6979

 ,
D2 =

 0.1456 0 0
0 −0.7724 0
0 0 −2.6979

 ,
U1 =

 0.4 0 0
0 0.8 0
0 0 1

 ,U2 =

 1 0 0
0 0.8 0
0 0 0.4


.

The desired mean is changed from 5 to 6 at 20 s. When
|u(t)| < 1, the system parameter matrices can be transformed
into an equivalent condition where |u(t)| ≥ 1; the values
of the parameter matrices have considered this equivalent.
Select appropriate non-singular matrix Pi,Qi and define the
intermittent time-varying step actuator faults form as:

Ftvs(t) = [F1tvs(t) F2tvs(t) F3tvs(t) ]T (78)

F1tvs(t) = 2F2tvs(t) = 4F3tvs(t) (79)

F1tvs(t) =

{
F1σ (t), t ∈ (tσ1, tσ2]
0, otherwise

(80)
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TABLE 5. Simulation comparison of performance for fault estimation.

By considering σ0 = 2 and setting the fault window
intervals, the fault assignment is given as

F1tvs(t) =


F11(t), t ∈ (20s, 80s]
F12(t), t ∈ (100s, 160s]
0, otherwise

,

F11(t) =

{
F11,inc(t), t ∈ (20s, 40s]
F11,non−inc(t), t ∈ (40s, 80s]

,

F12(t) =

{
F12,inc(t), t ∈ (100s, 120s]
F12,non−inc(t), t ∈ (120s, 160s]

.

According to the definition of incipient faults, B1 and B2,
the actuator fault F1tvs can be assigned twice:

F11,inc(t) = F12,inc(t) = 0.2,
t ∈ (20s, 40s], (100s, 120s]

F11,non−inc(t) = F12,non−inc(t) = 1.2,
t ∈ (40s, 60s], (120s, 140s]

F11,non−inc(t) = F12,non−inc(t) = 1,
t ∈ (60s, 80s], (140s, 160s].

Change from 1.2 to 1 is to simulate a superimposed actu-
ator fault generated by the multi-electromagnetic inter-
ference sources in the superimposed interference interval.
The remaining actuator faults also have this engineering
background.

Table 5 and Table 6 show the performance comparison of
our new method and the state-of-art in [31] in addressing
multiple compound faults. These two tables show that the
performance of the proposed method is stable and accurate.
The traditional method does not have passive compensation
and prey algorithms, so it is unable to estimate actuator faults
especially incipient faults therein, the fault-tolerant tracking
control of the mean cannot be realized.

In Table 5 and Table 6, ess1, ess2, and ess3 are the steady-
state estimation errors of F1tvs, F2tvs, and F3tvs, respec-
tively. ess,NF , ess,SF , and ess,CF are the steady-state errors
of mean tracking control under faultless, sensor fault, and
compound fault conditions, respectively. T1, T2, T3, and
T4 are the fault-free time (0–20 s), incipient fault time
(20–40 s and 100–120 s), superimposed fault time (40–60 s
and 120–140 s), and after-incipient fault time period (60–80 s

FIGURE 2. Actuator faults estimation.

TABLE 6. Simulation comparison of performance for FTC.

and 140–160 s), respectively. Each value is the maximum
value in the corresponding time period.

Figure 2–5 are simulation diagrams of the new method.
Figure 2 shows the estimation of multiple actuator faults.

Figure 3 and Figure 4 show the FTC results under differ-
ent fault conditions. The hybrid control scheme implements
mean tracking control and minimum-entropy optimization.
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FIGURE 3. Mean tracking control of PDF.

TABLE 7. Gradual contrast of entropy under different indicators.

Entropy continues to decrease during the optimization,
some progressive changes cannot be directly perceived from
Figure 4. Table 7 shows the decrease at several moments.
Ent1 and Ent2 are the optimizations without and with entropy
indicators (J1), respectively, the result of Ent2 is smaller and
more ideal.

Figure 4 and Table 7 show that the entropy can reach the
optimal interval in 1 s and continue to decrease to a small
stable value under the reconstruction for compound faults.
Thus, minimum-entropy control is achieved.

Figure 5 shows the output PDF. With the stabilization
of the mean and entropy, finally the controller achieves

FIGURE 4. Optimal control of entropy.

FIGURE 5. 3-dimensional output PDF.

stable optimization of the output PDF shape. Therefore,
the tracking control and minimum-entropy optimization with
non-Gaussian stochastic outputs under compound faults are
theoretically feasible.

V. CONCLUSION
The hybrid FTC scheme developed in this study effec-
tively implements automatic repair of compound faults of
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non-Gaussian stochastic systems. The adaptive algorithm that
mimics animal predation behavior is novel and intuitive.
By combining the fuzzy premise variables with fault informa-
tion in the prey algorithm, the controller has the ability to esti-
mate and self-repair incipient faults. On this basis, the hybrid
FTC scheme performed well in simulations: The actuator
fault observer shields the sensor fault, and thus accurately
estimates the incipient and large deviation actuator faults;
the fault-tolerant controller uses a compensation function to
passively shield the sensor fault, then actively repairs the
actuator faults using estimation information. Then, the system
accurately tracks the mean of the expected output PDF under
every fault condition. The minimization of entropy is accom-
panied by the optimization of the performance indicator.
Finally, by means of the fault-fuzzy information fusion and
active-passive hybrid FTC scheme, non-Gaussian stochas-
tic systems implement all objectives, including mean track-
ing control and minimum entropy optimization without an
expected PDF.
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