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ABSTRACT Various oscillating (periodic and chaotic) circuits and systems show interesting responses
whose nature changes with varying parameters. It often happens that a change of one element (i.e. resistor)
of a circuit or system may cause a simultaneous change of two (or more) coefficients in the underlying
mathematical model (i.e. a system of nonlinear ordinary differential equations, or ODEs). In this paper we
present two-parameter bifurcation diagrams of such circuits and systems, obtained when two parameters
vary simultaneously. Four different numerical techniques are applied to two selected dynamical systems (an
active oscillating circuit with a memristive element and an electric arc circuit). The focus of this paper is
on the computationally intensive calculations rather than on analytical analysis of the oscillatory responses.
Two-parameter bifurcation diagrams require solving systems of nonlinear ODEs several hundred thousand
(or even a few million) times (depending on the assumed resolution), plus additional work to distinguish
periodic solutions from chaotic ones. Our computations are done using various combinations of the C++,
Fortran/Python and Julia environments with Runge-Kutta order-4 and order-5 numerical solvers and the
0-1 test for chaos. Several two-parameter bifurcation diagrams are presented.

INDEX TERMS Julia and Python programming, oscillatory systems, periodic and chaotic signals,
two-parameter bifurcation diagrams.

I. INTRODUCTION
Many oscillating dynamical systems in physics, electrical,
mechanical, chemical, biological and financial processes
bifurcate with varying parameters. One-parameter bifurac-
tion diagrams are typical graphical representations of those
bifurcations, showing the nature of responses (i.e. peri-
odic, chaotic, asymptotically stable or unstable) [1]–[11].
Within the periodic responses one typically identifies the
type of periodic response (i.e. period-n1 or mixed mode
oscillations). Periodic responses are further analyzed through
local maximum (or minimum) values, while chaotic ones
have positive Lyapunov exponents in certain intervals of a
varying parameter. Specific mixed-mode Ls periodic oscil-
lations are characterized by the natural numbers L and s
denoting the number of large and small amplitude oscil-
lations in one period [12], [13]. Other techniques used in
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1Period-n response is a periodic response with n local maximum values in
one period.

analyzing oscillating circuits and systems are the Poincaré
return maps [14], Lyapunov exponents [4], [15], machine
learning recurrence method [16], [17] and the graphs of theK
values in the 0-1 test for chaos (K ≈ 0 for periodic responses
while K ≈ 1 for chaotic ones) [18]. Each of the above tools
gives different information, and one usually uses two or three
of those tools to fully characterize the analyzed responses.

A more challenging task (mostly due to the comput-
ing time and memory requirements) is to compute two-
parameter bifurcation diagrams illustrating how a nonlinear
circuit or system behaves when two parameters of its model
vary simultaneously [19]–[21]. In this paper we present such
two-parameter diagrams obtained by using four different
numerical techniques (tools). Those techniques are applied to
two particular electrical circuits whose mathematical models
are systems of three ODEs with either one or two, rather
mild, nonlinear terms. A mixed bag of tools is used in the
four techniques. We begin with the classical Runge-Kutta
algorithm of order 4 used with a C++ code in the first
technique. Then, a more advanced and accurate Runge-Kutta
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algorithm of order 5 (Dormand/Prince algorithm) is used
in the Fortran and Python codes (technique II) and Julia
programming language (technique III). Finally, a combina-
tion of order 4 Runge-Kutta algorithm and the 0-1 test for
chaos [22]–[25] is used in technique IV. The goal of our paper
is to test the four techniques and compare the obtained two-
parameter bifurcation diagrams. To the authors knowledge no
such comparison has been done thus far, although various
single algorithms have been used to create two-parameter
bifurcation diagrams. Creation of two-parameter bifurcation
diagrams requires solving the underlying model (system of
nonlinear ODEs) several hundred thousand or even a few
million of times (depending on the assumed resolution in
the two-dimensional space of parameters) [26]. Such a res-
olution of the two-parameter space is impacted by the cir-
cuits or systems under consideration. Some of them change
rapidly their responses with minuscule changes of parame-
ters, while others show less dramatic changes in the bifur-
cation diagrams. Another issue impacting the resolution is
our own goal - a desire to compute the bifurcation diagrams
to a certain level of accuracy (zooming), particularly when
a circuit or system is of a fractal type. See, for example,
the modified Chua’s circuits in [12] having fractal properties.
The issues discussed in this paper are relevant to a large group
of researchers studying bifurcations in nonlinear dynamical
systems, nonlinear circuit analysts, signal processing engi-
neers working in chaotic cryptography and secure transmis-
sion of signals, and computer programmers. A variety of the
techniques presented here make the paper distinctive relative
to the previously published works. In one of the examples
studied in this paper by technique IV (electric arc circuit)
we emphasize the importance of the selection of special
parameter T for the 0-1 test for chaos in relation to the step
size dt used in the Runge-Kutta algorithm of order 4. The
choice of T for the assumed dt should be done by analyzing
the maximum frequency of the analyzed signal, as discussed
in [18]. A link to a publicly available Julia code used to
create some of our two-parameter diagrams in this paper, is
given in Section III. The code can be used to recreate some
of the figures (bifurcation diagrams) presented in this paper.
Also, it is worth mentioning that when looking and analyzing
two-parameter bifurcation diagrams it is often beneficial to
supplement such diagrams with one-parameter ones, as the
later diagrams contain slightly different details. They can be
obtained through various software packages, among which
XPPAUT and AUTO/Matlab combination are perhaps the
most widely used [27], [28].

We would like to emphasize that the topic of this paper is
different from the bifurcations of the first-order distributed-
delay systems [29] and planar cases of limit cycle bifurca-
tions [30], which are both chaos free problems.

Finally, although in our illustrative examples we used
rather simple ODE systems with one or two nonlinear
terms, the obtained two-parameter diagrams are quite compli-
cated. Even more complicated two-parameter diagrams from
the 0-1 test could be expected for the recently formulatted

interesting chaotic systems with infinite number of coexisting
attractors [31] and the 4D chaotic systems used in image
encryption applications [32].

II. COMPUTATIONAL ALGORITHMS AND
SOFTWARE USED
Two relatively simple systems of nonlinear ODEs in the
Appendix are used as test models. Using the dimensionless
parameter models (see Buckingham’s π theorem [33]) one
can show that the first system, the active memristive circuit
presented in Appendix A, has three parameters a, b and c [9].
The second system presented in Appendix B has four parame-
ters R, L, C andm [26]. Suppose that any two parameters, say
a and b in (2), vary simultaneously with certain steps within
their minimum and maximum bounds: amin ≤ ai ≤ amax and
bmin ≤ bj ≤ bmax . To examine the impact of the two selected
parameters on the response of the model (2) we consider
each of the several hundred thousand (or a few million)
points (ai, bj), with c = const , solve (2), identify the type
of response (periodic, chaotic, unstable or asymptotically
stable). Within the perodic type of response we identify the
number n in the period-n response. To each period-n response,
with n = 1, 2, . . . , nmax , we assign a specific color. Then a
two-parameter color diagram is created. We used nmax = 16
and nmax = 64 for systems (2) and (4), respectively. All our
bifurcation diagrams are of size 600 × 600, that is 1 ≤ i ≤
600, 1 ≤ j ≤ 600. Notice that neither system (2) nor (4) is
stiff. The following three techniques (with explicit numerical
solvers) have been used in our computations and analysis
of (2).

I: Classical Runge-Kutta order 4 algorithm [34] (or RK-4
for short) with C++ language.

II: Runge-Kutta order 5 Dormand/Prince method [35]
(RK-5 for short; equivalent to ode45 in Matlab) with Fortran
language and Python for graphics purposes.

III: RK-5 algorithm (the same as in technique II) with Julia
language [36].

In addition, to analyze (4) we used both the first technique
given above, and

IV: the 0-1 test for chaos applied to the responses obtained
with the RK-5 algorithm and C++ language.

In the first technique above the identification of the local
maximum points for one of the three variables in (2) was done
(we chose the y variable) in a certain time interval [tmin, tmax]
using a simple algorithm based on the three consecutive dis-
crete values, say y(tk−1), y(tk ) and y(tk+1). The identification
was done backwards from tmax to tmin. The step size dt in
the RK-4 solver was selected such that dt << T , where T
is the period of oscillations. The value of dt = 0.002 was
proved to be small enough for the intervals of parameters a,
b and c used in this paper. Once, the maximum points are
identified for tmin ≤ t ≤ tmax , then, if possible, the type
of periodic response is established as period-n oscillations,

115830 VOLUME 7, 2019



W. Marszalek et al.: Computing Two-Parameter Bifurcation Diagrams for Oscillating Circuits and Systems

FIGURE 1. Two-parameter bifurcation diagrams obtained with the techniques I (left column [20]), II (middle column) and III (right column), time
step 0.002, a = 1.655, [x(0), y (0), z(0)] = [0.1, 0.0, 0.1] and 600× 600 discrete points. Unstable solutions exist in the green, white and blue areas
for the left, middle and right columns, respectively.

n = 1, 2, . . . 16. All responses with n ≥ 16 are grouped
together and given the status of period–16. This group also
includes chaotic responses. Finally, if a response is unstable

for certain parameters, then the areas with such parameters
are marked by the green color (see the four diagrams in the
left column in Fig. 1 [20].
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In the second and third techniques (RK-5 with Fortran/
Python and RK-5 with Julia, respectively) let assume that
(2) has u ≡ [x, y, z] ∈ R3 and p = [a, b, c] and consider
the parameter-dependent initial value problem u′ = f (u, p),
u(0) = u0. The classification of the response for a given
choice of the parameter vector p (with two varying and
one fixed parameters) was based on the maximum values in
the y-component of u(t) (the same as in technique I). For
this, we needed to compute the roots of y′(t) = 0, that
is the time instants where y′(t) changes its sign. Assume that
the system is integrated numerically by a one–step method
un+1 = ϕ(un, h) (the explicit Runge–Kutta method of order
5 by Dormand/Prince [34]). In an interval [tn, tn+1], if y′n > 0
and y′n+1 ≤ 0, linear interpolation yields

hE = h
y′n

y′n − y
′

n+1
, tE = tn + hE , uE = φ(un, hE ). (1)

Since we chose to analyze variable y(t) in u, the mapping
(h, un+1) 7→ (hE , uE ) defined by (1) is iterated until y′E is
zero or close to it (which is typically achieved with |y′E | <
10−8 within two iteration steps). The event (tE , uE ) is saved
in a queue to be used later to detect cycles. An approximate
period T = tÊ − tE is found when another event (tÊ , uÊ )
with ‖uE − uÊ‖ < ε is detected. The method has been
implemented in Fortran and Python (technique II) and in Julia
(technique III). All computations were performed using a PC
with an Intel(R) E5-2643 CPU running Debian 10.

Since the overall performance will be dominated by the
cost of time stepping, consider as a micro-benchmark prob-
lem the CPU times for taking 107 steps u 7→ u + hf (u) of
the explicit Euler method with h = 10−4 for system (2).
This task takes 0.062 sec in Fortran 90 (gfortran), 1.2 sec
in Matlab, 40 sec in Python and 330 sec in Octave. In
Julia, using the built-in vector type Array{Float64,1},
it takes disappointing 1.8 sec. The cost is dominated by
memory allocations. However, this can be overcome, using
StaticArray.jl and @SVector for u – which is a one-
line change – reduces the running time down to 0.07 sec.

III. TWO-PARAMETER BIFURCATION DIAGRAMS
Fig. 1 shows four two-parameter bifurcation diagrams
obtained by each of the first three techniques described
in the previous section (twelve diagrams total). Three dif-
ferent colorbars were chosen so the readers can select
their preferred one. Note that the diagram shown at
https://sim.mathematik.uni-halle.de/helmut/2019/bif was
created by the code available there.With a slight modification
of that code one can also create all four diagrams shown
in the third column in Fig. 1. Notice that the corresponding
diagrams in the middle and right columns are practically
the same (apart for the different colors used to denote the
same type of response). Those eight diagrams were com-
puted with the same RK-5 algorithm (techniques II and III
described above). However, the speed of computations of
the four diagrams obtained from Fortran (middle column)
and the speed of computations of the four diagrams obtained

FIGURE 2. Bifurcation diagrams of y with the initial condition [0.1, 0, 0.1]
(blue) and [−0.1, 0,−0.1] (red). Based on solutions with RK-4 for
0 ≤ t ≤ 1000 with dt = 0.01.

from Julia (right column) are different, as illustrated by the
micro-benchmark problem in Section II. Besides, the dia-
grams in the middle column were obtained by a combination
of Fortran (computations) and Python (graphics), while the
diagrams in the right column were done (both computations
and graphics) by using Julia only. Also, notice the difference
between the diagrams obtained by the RK-4 algorithm (left
column diagrams in Fig. 1 and the diagrams obtained by
using the RK-5 algorithm (middle and right columns). This is
expected, as the RK-5 algorithm has better properties (error
control and accuracy) than the RK-4 algorithm. Another rea-
son for the difference, as described in the previous section,
is the difference in identifying maximum values of y(t) in
techniques I and II (and III).

A quick verification of two-parameter diagrams is shown
in Fig. 2 which presents one-parameter diagrams computed
along the lines p and q as marked in Fig.1(d). The agreement
between the two- and one-parameter diagrams is excellent
as, for the same pairs of parameters, both diagrams show the
same period-n or chaotic oscillations. Additionally, the one-
parameter diagrams show the maximum values of the ana-
lyzed signal in each type of period-n oscillations.

Next, notice the one-to-one correspondence of the dia-
grams shown in Fig. 3. Gray diagrams in the right column
were computed by solving (4) 360,000 times (by RK-5) for
various pairs of parameters R, L and C and to each of those
solutions the 0-1 test for chaos was applied (technique IV).
We took care of the typical oversampling issue associated
with the 0-1 test for chaos (when applied to continuous non-
linear systems) by using the FFT to select the T parameter
(see [18]) guaranteeing the proper outcome of the 0-1 test
and preventing the oversampling phenomenon in the 0-1 test.
When the underlying mathematical model (4) is solved
numerically and the time series is available at certain n · dt
instants, then to feed the time series values into the 0-1 test,
one needs to use the solution values at every T instant, where
the positive integer T depends, in general, on the system being
analyzed, the value of dt and maximum frequency of the
analyzed chaotic signal. Thus, the time series at the instants
n·T ·dt is used in the 0-1 test. Examples reported in [18], [26]
show that the values of T could range from a single integer
value (T = 7 in [18]) to thousands (T = 3000 in [26]).
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FIGURE 3. Bifurcation diagrams obtained via technique I (left column)
and technique IV (right column; 256 gray levels used),
[x(0), y (0), z(0)] = [0.5, 4.0, 1.0]. The T in the 0-1 test was equal 1700.

The danger is, that the oversampling phenomenon in the
0-1 test, when not properly addressed (incorrect value of T
chosen), may give false results of the 0-1 test. The graybar
on the right hand side of the diagrams in the right column of
Fig. 3 corresponds to the K values obtained from the 0-1 test
for chaos (K ≈ 0 for periodic responses and K ≈ 1 for
chaotic ones).

Finally, even if we underline a need to use parallel com-
putations to obtain some of the two-parameter diagrams
(mainly those from the 0-1 test), since our systems in the
Appendix have only three variables, our approach is differ-
ent from the one presented in [37], in which systems with
thousands of variables are considered.We can only parallelize
the independent integrations for different set of parameters.
There is no communication needed and the speed-up is only
limited by our setup to create the jobs and to collect the
results.

IV. CONCLUSION
Two-parameter bifurcation diagrams for nonlinear dynam-
ical systems have been computed by using various

FIGURE 4. An oscillatory active circuit with memristor.

numerical techniques in different programming environ-
ments (RK-algrorithms, C++, Fortran/Python, Julia, 0-1 test
for chaos). Some computations can be done on typical
laptops, while others (i.e. the 0-1 test for chaos) require
more advanced (possibly parallel) computations [26]. The
running time for the adaptive code varies for different set
of parameters. A typical run for the 600 × 600 graph of the
Julia code with a single thread on Intel Xeon E5-2643 takes
about 4minutes and consumes 250MBytes. The computation
itself takes about the same time with the Fortran 90 code.
It is a matter of personal and subjective preference to use
either of the two approaches (methods). The authors prefer to
use the Julia code, although the Julia environment is not as
mature at the present time as the Fortran/Python environment
is. Computing two-parameter bifurcation diagrams with any
of the techniques presented in this paper for other chaotic sys-
tems, e.g. those reported in [38], seems quite straightforward.
Future research should focus on three- and multi-parameter
bifurcations diagrams. Such a task looks quite challenging
from the points of view of graphical presentation, accessing
diagrams on flat computer screen surfaces and storing data.

APPENDIX A
OSCILLATORY MEMRISTIVE CIRCUIT
Consider the memristive circuit shown in Fig.4(a) for which
the memristive element is emulated as shown in Fig.4(b), and
the overall dimensionless model is

x ′ = −x + y, y′ = −ay+ bz− x2y, z′ = c(z− y) (2)

with the properties (equilibria, symmetry, hysteretic charac-
teristic of memristor, etc.) described in details in [20]. The x,
y and z variables are all linear combinations of the signals V0,
V1 and V2 (see Fig.4), and the three parameters in (2) depend
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FIGURE 5. Electric arc circuits. Circuit B is also described by (4) with a
suitable change of variables.

of the resistors, capacitors and the combined scaling factor
of the multipliers Ma and Mb. The emulator in Fig. 4(b) is
described by

i = (1− gV 2
0 )V1/Rc

V ′0 = −V0/(RbC0)− V1/(RaC0) (3)

and it satisfies the three basic fingerprints of memristors,
see [9], [20].

APPENDIX B
ELECTRIC ARC CIRCUITS
The electric arc circuit in Fig.5(a) is described by the system
of three equations on the left side of (4) below and its dimen-
sionless version on the right side [39]

di
dτ =

1
L (uC −

U (iθ )
iθ

i)
duC
dτ =

1
RC (E − uC − Ri)

di2θ
dτ =

1
θ
(i2 − i2θ )

→

dx
dt =

1
L (y− xz

m)
dy
dt =

1
RC (R+1−y−Rx)

dz
dt = x2 − z

(4)

where x = i/I0, y = uC/U0, z = i2θ/I
2
0 , and iθ , i, uC

are the arc current, current through L and voltage across C ,
respectively. The U0 and I0 are constants from the static
arc voltage-current characteristic U (iθ ) = U0(iθ/I0)n with
n < 0. It is known (see [26]) that the ODE system on the
right hand side of (4) has two equilibrium points: (1, 1, 1) and
(xa, xna , x

2
a ), where xa is the solution of 1+R−Rxa− x

n
a = 0.

The second equilibrium is unstable provided that R+ n > 0,
which is assumed to hold true. Further analytical properties
of (4) are given in [39].
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