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ABSTRACT The flammable and explosive property of hydrogen is the main danger in its safe use, storage
and transportation. In this paper, a novel hydrogen monitoring system is designed based on the principle of
semiconductor, catalytic combustion and heat-conducting gas sensors. Also, the gas sensor will inevitably
fail due to the nature of gas sensitive materials in the long-time monitoring process. To ensure the accuracy
and reliability of hydrogen concentration measurement, a novel fault diagnosis and reconfiguration strategy
for hydrogen sensor array based on moving window principle component analysis and extreme learning
machine (MWPCA-ELM) is proposed. Firstly, online multiple faults detection is carried out by using
MWPCA. Once one or multiple faults are detected, the measured values of other fault-free sensors will
be used to recover the faulty data in real-time by using ELM predictor according to the relevancy among the
hydrogen sensors. Secondly, the hydrogen concentration is reconfigured seamlessly and accurately based on
ELM under the condition of small calibration data sample. Finally, fault diagnosis is conducted by MWPCA
feature extraction coupled with ELMmulti-classifier. In order to illustrate the effectiveness and feasibility of
the proposed fault diagnosis and reconfiguration strategy, a hydrogen concentration monitoring experimental
system was established. The average relative error (ARE) of hydrogen concentration estimation is declined
from 1.18% to 0.82% compared with the traditional regression methods. Particularly, the proposed fault
reconfiguration model can recover the fault data even if the concentration is changed, and the accuracy of
fault diagnosis is 100% within 250 samples.

INDEX TERMS Fault diagnosis, reconfiguration, hydrogen sensor, extreme learning machine, moving
windows principle component analysis.

I. INTRODUCTION
With the gradual depletion of petrochemical resources and
the development of hydrogen industry, the hydrogen detec-
tion plays a prominent role throughout the fields of energy,
metallurgy, national defense and chemical industry. As a
kind of clean energy, hydrogen will only generate water after
burning. Unfortunately, hydrogen is a flammable and explo-
sive gas, whose flammable limits are nearly 4 ∼ 94% vol.
The rapid and quantitative hydrogen concentration
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detection is imminent in the aerospace, navy and national
defense fields [1]. For example, the process of water elec-
trolysis hydrogen produces large amounts of hydrogen and
oxygen. Hydrogen provides clean energy for the aerospace
equipment or underwater equipment and oxygen affords the
life security. There are also many dangerous situations caused
by hydrogen leakage in the aircraft and submarines [2], [3].
In order to ensure the safety of the working environment
and prevent explosion risks, it is essential to monitor the
concentration of hydrogen quantitatively.

According to the different working principles, hydro-
gen sensors mainly include semiconductor type, catalytic
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combustion type and thermal conductivity type. The semi-
conductor hydrogen sensor is mainly based on SnO2, Fe2O3
and other materials. The hydrogen measuring the change of
the sensor’s gas-sensitive resistor. It is a low-cost hydro-
gen sensor with the advantages of quick response and high
sensitivity [4]–[6]. The main disadvantage of semiconduc-
tor components is that the sensor’s response to hydrogen is
non-linear, and it is easy to be affected by environmental
temperature and humidity. It is almost saturated in the case
of high hydrogen concentration, so it can only be hydro-
gen concentration, so it can only be used in the case of
very low concentration. Catalytic combustion catalyzed by
precious metals such as platinum and palladium. Accord-
ing to the principle of catalytic combustion effect, the two
arms of the bridge are composed of the detection element
and the compensation element. When hydrogen is detected,
the resistance of the detection element increases, and the
output voltage of the bridge path changes. The output of the
sensor is nearly linear with the concentration of hydrogen.
The sensor is insensitive to the temperature and humidity of
the environment due to the use of compensation elements.
Its disadvantage is that the element is susceptible to sulfide,
halogen compounds and other effects of poisoning, reduce the
service life, in the high concentration of oxygenmeasurement
error is large. The heat-conducting hydrogen sensor is made
of platinum wire, which is based on the principle of gas ther-
mal conductivity change. When the hydrogen concentration
changes, the output voltage of the bridge also changes, and the
voltage variable increases proportionally with the increase of
the hydrogen concentration. Thermal conductivity hydrogen
sensor integrated temperature compensation, with small drift,
low power consumption, easy integration and other charac-
teristics, and a wide range of concentration measurement,
commonly used to detect high concentration of hydrogen
content. However, the output signal is weak and the sensitivity
is low, and the thermal conductivity does not change signifi-
cantly at a low concentration. Therefore, combining the three
types of hydrogen sensor concentration measurement ranges
can provide a new solution for the seamless and accurate
measurement of hydrogen concentration.

However, due to the characteristics of hydrogen sensor’s
gas-sensitive material, it is easy to be affected by exter-
nal interference and its own fault in the long-term moni-
toring process, leading to a decrease in the accuracy and
reliability of the measurement [7]. In the process of con-
centration monitoring, it is urgent to realize the working
state and performance monitoring of hydrogen sensor. The
self-validating sensor technology is a good choice to imple-
ment this requirement [8]. The concept and model of self-
validating sensor are proposed by Clark and Henry, Oxford
University in 1993 [9], [10]. Self-validating sensor can not
only output the measured values, but also perform fault detec-
tion and isolation, fault diagnosis, fault recovery and working
state evaluation, etc. In 2001, British Standards Institution
established self-validating sensor technology as a standard,
which defined the parameters for measuring data quality and

working state detailly. There is abundant information which
is used to describe the work state in this kind of sensors.
Thus, the reliability and maintainability of the sensor system
is improved.

In the past, the contributions to the theories and applica-
tions of self-validating sensor have been made substantially
by researchers from all over the world. Shen et al. proposed
a multifunction self-validating sensor based on PCA and
RVM [11]. However, the issue of multiple fault isolation
is not considered. The historical information of the faulty
sensor is used for fault recovery and the correlation among
sensors is not taken into consideration. This method can only
achieve short-term recovery. If the concentration changes,
the recovery method will be invalid. Multiple fault recovery
is not considered as well. Chen et al proposed EEMD for fault
detection isolation and diagnosis [12], but the fault recovery
is not considered. Yang et al. proposed a SNMF-SMVR for
fault detection, isolation and recovery [13]. The idea of fault
recovery is based on time series, which is the same as refer-
ence [11]. When the concentration changes, the problem of
fault recovery is still unable to be eliminated. To summarize,
the traditional fault detection, recovery and diagnosis face the
dilemma in multiple fault isolation and recovery.

Extreme learning machine (ELM) [14]–[16] is a machine
learning algorithm for single layer feedforward neural net-
work (SLFN). The mainly feature is the parameters of hidden
layer nodes can be random or given artificially and there
is no need to adjust the parameters. The learning process
only needs to calculate the output weight. ELM is widely
used in classification, regression, clustering, and feature
learning for its high learning efficiency and generalization
ability [17]–[20].

Moving window principle component analysis (MWPCA)
is a kind of feature extraction and fault detection
method which employs moving window to deal with the
data [21]–[24]. Since the hydrogen sensor faced the problem
of small signal detection, moving window is better at small
variations. Thus, MWPCA can more easily find the principal
components which contain abnormal information ignored by
PCA and KPCA [25]–[28].

In order to ensure the accuracy and reliability of hydrogen
concertation measurement, self-validating sensor technology
is introduced into the field of hydrogen concentration mon-
itoring. Because the working principles of different sensors
are different, the selection and design of self-validating algo-
rithm are quite different. Based on the basic principle of
hydrogen concentration measurement by gas sensor array,
a self-validating hydrogen sensor array is presented in this
paper. Aiming at the hardware result and measuring principle
of sensor array, this paper presents a fault diagnosis and
reconfiguration strategy for hydrogen sensor array based on
moving window principle component analysis and extreme
learning machine (MWPCA-ELM). The accuracy and reli-
ability of hydrogen sensor is of great significance to ensure
the safety of industrial production. It is necessary to detect the
working state and performance of the sensor and recover the
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faulty data to obtain the best estimated value, especially under
the inconvenient changed conditions. The hydrogen concen-
tration is measured seamlessly and accurately based on ELM
under the condition of small calibration data sample. Online
multiple fault detection of hydrogen sensor is carried out by
using MWPCA. Once one or multiple faults are detected,
the other fault-free sensors will be utilized to recover the
faulty data in real-time by using ELM predictor according
to the relevancy among the sensitive elements in the sensor
array. Even if the concentration changes, the recovery accu-
racy will not be affected. A fault diagnosis algorithm based
on MWPCA feature extraction and ELM multi-classifier is
employed to identify the hydrogen sensor faults for the sub-
sequent maintenance decisions.

Based on some previous work on hydrogen detec-
tion [29], [30], sensor fault detection, diagnosis and recov-
ery [31]–[33], the objective of this paper is to achieve
quantitative measurement of hydrogen concentration at high
accuracy, and especially at high reliability. In Section II,
the fundamental principle of ELM and MWPCA is analyzed.
In Section III, the selection of hydrogen sensor and cali-
bration data is analysis, as well hydrogen detection model
under small sample of calibration data is built by using ELM
regression model to realize the seamless and quantitative
hydrogen concentration monitoring. In Section IV, the self-
validating method is analysis. Given that the sensor fault may
occur in the hydrogen concentration measurement process,
MWPCAwith squared prediction error (SPE) statistic is used
to detect the fault in real time. To remove the influence of
sensor fault for concentration measurement, ELM predictor
is used to achieve the fault recovery. This method can online
recover the output of fault sensor by using the relevance of
the fault-free sensors. To identify the sensor fault type after
fault detection and recovery, a fault diagnosis method based
on MWPCA feature extraction and ELM multi-classifier is
employed. In Section V, comparative analysis and experimen-
tal results for the proposedmethodology and the conventional
methods are investigated. Finally, the conclusion is accounted
in Section VI.

II. FUNDAMENTAL THEORY
A. EXTREME LEARNING MACHINE
Extreme learning machine (ELM) is a generalized SLFN.
Compared with SLFN, the training time of ELM is
shorter and it is not easy to fall into the local minimum
point [14]–[16]. The weights and biases are random initial-
ized in ELM. There is no need to adjust the input weights
and biases during the training process. As a result, the unique
optional result can be achieved by setting the number of hid-
den layer neurons. Compared with the traditional methods,
ELM has the advantages of fast learning and good general-
ization performance. [14]–[16]

The structure of traditional SLFN is shown as Figure 1.
It is composed of input layer, hidden layer and output layer.
The network is a completely connected network. The input

FIGURE 1. Structure of single layer feedforward neural network.

layer contains n neurons, corresponding to n input variables.
There are i neurons in the hidden layer. The output layer has
m neurons, corresponding to m output variables. The weights
W between input layer and hidden layer are set as

W =


w11 w12 · · · w1n
w21 w22 · · · w2n
...

...
. . .

...

wl1 wl2 · · · wln

 (1)

where wji represents the weight between ith neuron in input
layer and the jth neuron in hidden layer.

The weight β between hidden layer and output layer is
shown as

β =


β11 β12 · · · β1m
β21 β22 · · · β2m
...

...
. . .

...

βl1 βl2 · · · βlm

 (2)

where βji represents the weight between the jth neuron in
hidden layer and kth neuron in output layer.

The bias b of neuron in hidden layer is set as

b =


b1
b2
...

bl


l×1

(3)

Set the input matrix X and the output Y of Q samples as

X =


x11 x12 · · · x1Q
x21 x22 · · · x2Q
...

...
. . .

...

xn1 xn2 · · · xnQ


n×Q

Y =


y11 y12 · · · y1Q
y21 y22 · · · y2Q
...

...
. . .

...

ym1 ym2 · · · ymQ


m×Q

(4)
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Activation function in hidden layer is set as g(x). The
output of the network is known as

T =
[
t1 t2 · · · tm

]
Q×m , (j = 1, 2, · · · ,m) (5)

tj =


t1j
t2j
...

tmj


m×l

=



l∑
i=1

βi1g
(
wixj + bi

)
l∑
i=1

βi2g
(
wixj + bi

)
...

l∑
i=1

βimg
(
wixj + bi

)


m×l

,

(j = 1, 2, · · · ,m) (6)

where wi = [wi1,wi2, · · · ,win] and xj = [x1j, x2j, · · · , xnj].
Thus Eq. (5) can be renew as

Hβ = T ′ (7)

where T ′ is the transposition of T and H is the output matrix
of hidden layer in the neuron network.

H (w1,w2, · · · ,wl, b1, b2, · · · , bl, x1, x2, · · · , xl)

=


g(w1 · x1 + b1) g(w2 · x1 + b2) · · · g(wl · x1 + bl)
g(w1 · x2 + b1) g(w2 · x2 + b2) · · · g(wl · x2 + bl)

· · · · · ·
. . . · · ·

g(w1 · xm + b1) g(w2 · xm + b2) · · · g(wl · xm + bl)


m×l
(8)

Given Q different samples {xi, ti} and a standard SLFN
with l hidden nodes and activation function g(x) which is
infinitely differentiable in any interval. For random chosen
wi ∈ Rn and bi ∈ R, the hidden layer output matrix H of the
SLFN is invertible and

∥∥Hβ − T ′∥∥ = 0.
Given any small positive value ε > 0 and activation

function g(x) which is infinitely differentiable in any interval,
there exists N̂ ≤ N , such that for N different samples {xi, ti}
and any wi ∈ Rn and bi ∈ R randomly chosen from any
intervals, according to any continuous probability distribu-
tion, then with probability one,

∥∥HN×ÑβÑ×m − TN×m∥∥ < ε.
If the number of hidden layer neuron is equal to that of

training samples, for any w and b, SLFN can approximate the
training samples with zero error.

Q∑
j=1

‖ti − yi‖ = 0 (9)

where yj =
[
y1j y2j · · · ymj

]T
(j = 1, 2, · · · ,Q).

However, when the number Q of training sample is large,
in order to reduce the amount of computation, the number of
neurons in hidden layer is usually smaller thanQ. The training
error approximates to ε > 0.

Q∑
j=1

‖ti − yi‖ < ε (10)

Therefore, when the activation function g(x) is infinitely
differentiable, there is no need to adjust all the parameters of
SLFN. w and b can be random chosen before training and
remain unchanged during the training process. The weight
β between hidden layer and output layer can be obtained by
solving the least squares solution of equation set.

min
β

∥∥Hβ − T ′∥∥ (11)

The solution is described as

β̂ = H+T ′ (12)

where H+ is the Moore-Penrose generalized inverse of the
hidden layer output matrix H .
For ELM classification, β can be transformed into the

following optimization problem.

minVELM =
1
2
‖β‖2 +

λ

2

N∑
i=1

‖εi‖
2

h (xi) β = ti − εi, l = 1, 2, · · · ,N (13)

where εi is the training error, λ is the penalty factor. Accord-
ing to Karush-Kuhn-Tucker theorem, Eq. (13) can be changed
to

VELM =
1
2
‖β‖2 +

λ

2

N∑
i=1

‖εi‖
2
−

N∑
l=1

m∑
j=1

alj(h(xi)βj − tij + εij)

(14)

The optimum solution of Eq. (14) is

β = HT
(
I
λ
+ HHT

)−1
T (15)

The decision function is

label (x) = arg max
i∈{1,2,··· ,m}

fi (x) (16)

B. MOVING WINDOW PRICIPLE COMPONENT ANALYSIS
PCA is a statistical method which applying multiple variable
to obtain the key information. PCA utilizes variance analysis
to deal with the obtained historical data. To improve the
effectiveness of multivariate statistical, fault detection can
be improved by data dimensionality reduction. If the mea-
sured data do not match with the principal component model,
the fault can be detected in real time. [11]

MWPCA is a method which apply moving window to PCA
to increase the detection ability. The adjacent several data are
defined as a moving window. When new data is obtained,
the last feature will be added into the moving window, as well
the oldest feature is removed from the moving window. The
window is updated in real time to improve efficiency and
adaptability of the model. [21]

The moving window method is adding the current sam-
pling result to the last k − 1 sampling data to form a new
data sample x, whose window length is k . For ith time point,
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FIGURE 2. Functional block diagram of proposed fault diagnosis and reconfiguration strategy for self-validating hydrogen sensor.

the sampling data xi added to the moving window is shown
as follow.

x ′i = xi + xi−1 + · · · + xi−k+1 (17)

Let ith sensor fail at the jth time point, the data of this
point has been changed to xij + 1bij, where 1bij is the bias
of fault. Let the length of moving window is k , the input is
xij+ xi(j+1)+· · ·+ xi(j+k)+1bij+1bi(j+1)+· · ·+1bi(j+k).
Since the input data has been normalized, the mean value is 0.
The input is considered as xij+1bij+1bi(j+1)+· · ·+1bi(j+k).
Compared with the original data, the bias has been increased.

III. PROPOSED FAULT DIAGNOSIS AND
RECONFIGURATION STRATEGY
A. BASIC PROCEDURE OF PROPOSED STRATEGY
In order to obtain the reliable concentration results mea-
sured by the hydrogen sensor array composed of different
types of hydrogen sensors, a self-validating algorithm for
sensor array is designed. The functional block diagram of
proposed fault diagnosis and reconfiguration strategy for self-
validating hydrogen sensor array is shown in Figure 2.

Firstly, the MWPCA is modelled using the sensor array’s
redundant sensor measurements, and the fault is detected
using SPE statistics. Secondly, the established MWPCA
model is used for fault detection of hydrogen sensor array.
Thirdly, the ELM regression model was modelled using sen-
sor array measurements at different hydrogen concentrations.
Once one or multiple faults are detected, the other fault-
free sensors will be utilized to recover the faulty data in
real-time by using ELM predictor according to the relevancy
among the sensitive elements in the sensor array. Even if
the concentration changes, the recovery accuracy will not
be affected. A fault diagnosis algorithm based on MWPCA
feature extraction and ELM multi-classifier is employed to
identify the hydrogen sensor faults for the subsequent main-
tenance decisions.

FIGURE 3. Sensitive properties of the nine hydrogen sensors.

B. HYDROGEN CONCENTRATION MEASUREMENT
1) SELECTION OF HYDROGEN SENSOR
In order to improve the detect accuracy, multiple sensors
are used to measure hydrogen concentration. To achieve
the quantitative hydrogen detection, three different types of
hydrogen sensor produced by Hanwei Ltd. Co. are employed
in this paper. To be specific, MQ8 series of semiconduc-
tor hydrogen sensor, MC109 series of catalytic combustion
hydrogen sensor and MD61 series of thermal conductivity
hydrogen sensor are adopted to measure hydrogen concentra-
tion for their different characteristics. In this paper, the above
3 types of hydrogen sensors are integrated into an array to
measure the hydrogen concentration seamlessly.

In order to improve reliability of the system, the whole
array contains 9 sensors. The number of each type sensor
is three as shown in Table 1. Particularly, the 3 sensors’
sensitivities are slightly different for accomplishing pattern
recognition algorithm [29], [30], [34]. Figure 3 shows the
sensitive properties of the 9 hydrogen sensors at different
hydrogen concentrations. It can be seen that the output of
each hydrogen sensor presents certain regularity in a certain
concentration range. For example, the output of the semicon-
ductor sensor approaches to saturation when the hydrogen
concentration is greater than 0.8% vol. The output of the
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TABLE 1. Selection of hydrogen sensor.

TABLE 2. Calibration samples of hydrogen concentration.

FIGURE 4. Response process of the nine hydrogen sensors.

thermal conductivity is weak at the low concentration but it
appears linear at the high concentration.

Figure 4 illustrates the response process of the 9 sensors.
The test time is 350 s, and the sensor array is exposed to the
test gas (hydrogen concentration is 2.5% vol) at 150 s. The
work status is 26.3◦C and RH 51.8%.

2) SELECTION OF CALIBRATION DATA
Here, calibration samples are determined by the gas-sensitive
property and the concentration measuring range of each sen-
sor. Experimental data of the sensor array response towards
hydrogen concentration were obtained through the estab-
lished calibration experimental system. In general, the more
the number of calibration samples, the more accurate the
gas concentration measurement. However, a large number of
samples will greatly increase the difficulty and complexity of
the calibration experiment.

Different pivotal concentration points were used to verify
the influence between the calibrated sample size and the
average relative error in the sensor array. The average relative
errors to different sample points are described in Figure 5.
The accuracy of detection is increasing while the calibrated
samples size raises. When the sample size is 11, the detection
accuracy is acceptable, so 11 samples are selected as training
samples, which is shown in Table 2.

FIGURE 5. The selection of calibrated samples number.

3) HYDROGEN CONCENTRATION MEASUREMENT
USING ELM REGRESSION
This paper builds a novel regression model by using the
small sample of hydrogen calibration concentrations and
the 9-value outputs of the hydrogen sensor array. In this
model, the hydrogen concentration is a nonlinear func-
tion of the 9 sensor outputs in the high-dimensional space.
To reconstruct the hydrogen concentration, ELM regression is
employed to fit the nonlinear mapping. Hence, the hydrogen
concentrationmeasurement is equivalent to the 9-value signal
processing of the hydrogen sensor array. The detailed steps
are shown as Table 3 and the input and output matrix is shown
as Eq. (18).

P|T =



MQ8


V11 · · · V1(11n)
...

. . .
...

V31 · · · V3(11n)

MC109


V41 · · · V4(11n)
...

. . .
...

V61 · · · V6(11n)

MD61


V71 · · · V7(11n)
...

. . .
...

V91 · · · V9(11n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C1
...

C11n


(18)

where P is a 9×11×n matrix, which represents the
training input sample of the ELM regression model and
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TABLE 3. Hydrogen concentration measurement using ELM regression.

Vij represent the output voltage of 3 kind of gas sensors in
different concentrations. The range of i is 1,2,. . . ,9, which
means the 9 gas sensors. The value of j is 11×n, which rep-
resents the concentration sampling point and n is the number
of sampling point at the same concentration. T is the training
output sample of the ELM regression model, which denotes
the different concentrations.

C. FAULT DETECTION, RECONVERY AND DIAGNOSIS OF
HYDROGEN SENSOR
The traditional hydrogen sensor can only output themeasured
hydrogen concentrations. After the sensor works for a long
time, it is hard to judge whether the sensor’s performance
changes, whether the sensor output is correct and whether the
sensor malfunctions. The ELM based online fault detection
and recovery method proposed in this paper has the property
of real-time fault detection. Not only can it correctly detect
whether the sensor is faulty but also can recover the fault
data in real time. To remain the normal running of the sensor
system, the recovered sensor output is used to substitute the
actual faulty signal over a period of timewhile the fault sensor
is unable to be replaced in time. Hence, the reliability of the
sensor system is improved.

1) FAULT MODE ANALYSIS OF HYDROGEN SESNOR
In the paper, 5 main faults are analyzed based on the long-
term observation and the structure characteristic of the 3 kinds
of hydrogen sensors. The detailed fault mode analysis is as
follows:

(a) Impact Fault. Since the internal resistance of the
hydrogen-sensitive sensor is high, the sensor output is suscep-
tible to be disturbed by the external disturbance. Particularly,
such interference is often of a short duration, and the sensor
output shows a spike that lasts for only a short time as the
impact fault.

(b) Broken-Circuit Fault. The broken-circuit fault is often
caused by the broken signal electrode, the damaged measur-
ing circuit, and the crack soldering. The sensor output will
decrease rapidly to zero whereas it should have made some
responses with the changes of hydrogen concentrations.

(c) Overloading Fault. The power voltage of the sen-
sor system may have a bias which could result in the

overloading fault. Sometimes, the pollutants or interfering
odors may also affect the sensor output. The output will
become a large constant whereas it should have undertaken
some changes with the changes of hydrogen concentrations.

(d) Invalidation Fault. In actual application, the hydrogen
sensor may remain running in the long-term poor film may
also lead to the fault. The output will maintain nearby con-
stant whereas it should have changed a lot with the changes
of the hydrogen concentrations.

(e) Abnormal Variance Fault. The sensor system is always
exposed to the poor measured environment which will
strongly affect the performance of the measuring circuit.
For example, the damaged internal amplifier or the faulty
signal conditioning circuit may also cause the abnormal vari-
ance fault. The output will become an abnormal fluctuation
whereas it should have been very steady all the time.

Above 5 faults are simulated by adding the impact voltage,
power bias and by removing the power supply to the normal
signals, respectively [12], [29]. The normal signals (i.e. the
fault-free signal) are the real-world measured output of the
hydrogen sensor. Without loss of generality, take semicon-
ductor hydrogen sensor MQ8-1 (S1) for an example, 5 kinds
of simulated fault signals are shown in Table 4 at the hydrogen
concentration of 2000 ppm.

2) REAL-TIME FAULT DETECTION USING MWPCA
The primary n-dimensional sensor data space is replaced by
k-dimensional subspace

_

S and the (n− k)-dimensional resid-
ual components subspace S̃. The SPE statistic in subspace Ŝ
is defined as:

SPE =
∥∥∥C̃ x̄∥∥∥2 ≤ δ2SPE (19)

where δSPE is the SPE threshold, which is decided by the
sampling distribution of SPE. If the value of SPE is larger
than δSPE , there will be a fault in the sensor array. The
contribution determines the position of the fault sensor. The
SPE contribution rate of the jth sensor at the ith time point is
written as:

SPEij = e2ij = (Xij − X̂ij)2 (20)

The correlation coefficient matrix R is written as

R = UDλUT (21)

where Dδ = diag (λi, i = 1, 2, · · · , n) is the eigenvalue
matrix and U is the eigenvector matrix.
Comparing with the contribution of each sensor, the reason

that SPE is larger than the threshold will be found. In this way,
the position of the fault sensor will be confirmed. The detailed
algorithm of real-time fault detection is shown in Table 5.

3) ONLINE FAULT RECOVERY USING ELM PREDICTOR
To achieve the online fault recovery of hydrogen sensor,
the ELM predictor is proposed in this paper. The outputs
of fault-free sensors are used as inputs of the predictor to
estimate the output of the fault sensor. As shown in Figure 6,
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TABLE 4. Fault mode analysis.

FIGURE 6. Fault sensor data recovery by using fault-free sensors and ELM.

TABLE 5. Real-time fault detection of hydrogen sensor using MWPCA.

the incorrect output signal will be replaced by the estimated
signal. Once the fault is eliminated, the ELM regression
method which is built in section III. It will be employed again
for the hydrogen concentration measurement by using the
fault-free data and the recovered data.

Based on the long-term observation and gas-sensitive prop-
erty analysis of the normal experimental data, the 9 hydrogen
sensor outputs appear to be significant regulation with the
changes of hydrogen concentrations, as is shown in Figure 3.
Fault data can be recovered on the basis of the relevance of
the above sensor data in the different concentration regions.
According to the output voltage of all the sensors in the
training samples, the relevance between any two sensors can

be represented by Pearson correlation coefficient r(xj, xk ) as:

r(xj, xk ) =
Cov(xj, xk )√

Var(xj) · Var(xk )
(22)

where xj and xk are the output signals of 9 hydrogen sensors,
respectively. Table 6 shows the correlation coefficient of 9
different sensors while hydrogen concentration is 5000 ppm
in the experiment. The relevance of 9 hydrogen sensors
is apparent, which provides the possibility of fault data
recovery.

If the multiple faults occur in the sensor array, the func-
tion of single-fault detection will be affected and even break
down. Therefore, it is an important part to achieve the
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TABLE 6. Correlation coefficient of 9 hydrogen sensors.

FIGURE 7. Sensor fault diagnosis based on MWPCA and ELM multi-classifier.

multi-fault recovery. The proposed method can utilize SPE
to detect multiple-fault and use the data of fault-free sensors
to recover the fault data.

P =


V11 V12 · · · V1m
V21 V22 · · · V2m
...

...
. . .

...

V(9−n)1 V(9−n)2 · · · V(9−n)m


T

(23)

T =


V11 V12 · · · V1m
V21 V22 · · · V2m
...

...
. . .

...

Vn1 Vn2 · · · Vnm


T

(24)

where n is the number of faulty sensors in the array, m is the
number of concentration samples, P is a (9 − n) × m matrix
which denotes the training input samples of the predictor, T
is an n×mmatrix which denotes the training output samples
of the predictor, V(9−n)×m and Vn×m represent the output
voltage of different kinds of sensors in different concentra-
tions, respectively. While the multiple sensors occur fault,
the above ELM predictor is capable of recovering the fault
data.

TABLE 7. Feature extraction using MWPCA.

4) FAULT DIAGNOSIS USING WMPCA FEATURE EXTRACTION
AND ELM MULTI-CLASSIFIER
Fault diagnosis as an important function is the capable of
determining the sensor fault type and providing the fault
resolution. The abnormal state of the hydrogen sensor out-
put signal presents the transient change that embodies some
important fault information. In this paper, MWPCA is
employed to realize the feature extraction of the faulty signal.
The detailed steps of MWPCA feature extraction are given
in Table 7 and the principle of fault diagnosis using ELM
multi-classifier is shown in Figure 7.
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FIGURE 8. Structure design of ELM multi-classifier.

TABLE 8. ELM multi-classifier.

To identify the fault types of hydrogen sensors, this paper
devised an ELM multi-classifier which was composed of
a multi-classifier. As discussed above, the extracted feature
vectors of faulty signals are used as input of the ELM multi-
classifier. Given the 5 fault states such as invalidation, over-
loading, abnormal variance, impact and broken-circuit state,
an ELM multi-classifier is built.

As shown in Figure 8, 5 kinds of fault types are recog-
nized by ELM multi-classifier. If there are any new fault
modes, the classifier needs to be trained again. Since the
multi-classifier does not have the unrecognized domain, it has
higher classification accuracy in practical application. Here,
the multi-classifier is trained according to the training sam-
ples of the simulated 5 faults. The detailed process is shown
in Table 8.

IV. EXPERIMENT AND RESULTS
To demonstrate the feasibility and effectiveness of the pro-
posed strategy, an experimental system of hydrogen detection
having hydrogen sensor fault detection, diagnosis and recov-
ery functions was designed. The experiment of hydrogen
detection was conducted under the hydrogen concentration
(0 ∼ 4% vol) and hydrogen sensor faults were simulated
under the 5 common fault modes. To further verify the per-
formance of the proposed strategy, the contrast experimental
results of different methods using the same training and test
samples were also given.

A. EXPERIMENTAL SETUP
The experimental system was mainly composed of hydrogen
sensor array, gas source, gas chamber, intake device, power
supply, data acquisition device and laptop PC as shown in
Figure 9 and the physical picture of sensor system is shown
in Figure 10. The hydrogen sensor array that consisted of 3
different types of hydrogen sensors, namely semiconductor,

catalytic combustion and thermal conductivity, was fixed in
the gas chamber. The gas chamber temperature was main-
tained at 26.3◦C.

The hydrogen was prepared according to the calibration
samples in Table 2. Particularly, the different concentrations
were confected by adjusting the mass flow controller (MFC).
The electrical source supplied power for hydrogen sensor
and circuits. Data acquisition device utilized a USB card
(USB-2089, Art Co. Ltd.) with 16 analog inputs at up to
400 kHz and a 14-bit A/D conversion accuracy. The emu-
late faults were implemented by using MATLAB. Both this
method and the contrast algorithm are tested by MI Air 13,
whose CPU is Core i5-7200U, RAM is 8 GB. The soft-
ware developed on the NI LabVIEW platform was used in
gas-sensitive property analysis and calibration experiment of
hydrogen sensor, and also provided a test platform for algo-
rithm validation. The software system adopted the modular
design which was composed of the following several mod-
ules, i.e. gas-sensitive property test, real-time monitoring of
hydrogen concentration, fault detection, fault data recovery,
fault diagnosis, measurement results display and saving. All
the algorithms were independently prepackaged and inte-
grated in the experimental system,which constituted a laptop-
based hydrogen analyzer.

B. HYDROGEN CONCENTRATION MEASUREMENT
The first step of hydrogen detection is to build the training
samples and the testing samples. In this experiment, the train-
ing samples contain 11 concentration points which are shown
in Table 2. Each concentration point contains 10 samples.
The testing samples contain 40 concentration points which
range from 0.1% vol to 4% vol and the interval is 0.1%
vol. As discussed in Section III, ELM regression model is
used to measure the hydrogen concentration. The inputs of
ELM regression model are 9-value outputs of the hydrogen
sensor array, and the output is the hydrogen concentration.
In this paper, the number of hidden layer neuron is selected
as 20. Figure 11 shows the experimental results of hydrogen
concentration measurement.

1) PERFORMANCE COMPARISON OF DIFFERENT METHODS
To further verify the concentration prediction performance
of ELM, the comparison results using relevance vector
machine (RVM) [11] and least square support vector machine
(LSSVM) [29] and radial basis function neural networks
(RBFNN) [35] for the same training and test samples are
given in Table 9. Here, the parameter of the kernel function in
RVM is 2.3. The parameter of the kernel function in LSSVM
is 491 and the penalty factor is 24. The parameter of spread
is 32. The number of input data is 9 and the number of output
is 1.

Obviously, compared with RVM, LSSVM and RBFNN,
this proposedmethod has highest average relative error (ARE)
of concentration measurement. The reason is that the small
training samples are insufficient for neural networks to
perform a precise concentration estimator. From the view
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FIGURE 9. Experimental setup of hydrogen measurement system.

FIGURE 10. Experimental setup.

FIGURE 11. Hydrogen concentration measurement using the proposed
ELM regression model and comparison results with several methods.

of statistical, ELM has better generalization ability in the
case of small samples than RVM and LSSVM. Additionally,
the training time of ELM is faster than the three compared
methods because SLFN is applied in ELM.

TABLE 9. Performance comparison of different regression methods for
hydrogen concentration measurement.

2) IMPACT OF SENSOR NUMBER
Furthermore, the influence about the number of gas sensors
in the sensor array is analyzed by employing 3, 6 and 9 gas
sensors (the number of each type sensor is 1, 2, 3, respec-
tively). The above 4 regression methods are used to measure
the hydrogen concentration, and the measured results are
shown in Figure 12. It is obvious that ARE is the lowest
when 9 sensors are used while ARE is the largest when 3 sen-
sors are employed. Thus, the gas sensors redundant method
can further improve the accuracy of hydrogen concentration
measurement.

C. REAL-TIME FAULT DETECTION
1) SINGLE FAULT DETECTION
The MWPCA method based on SPE statistic is studied to
detect the 5 faults (i.e. invalidation, overloading, abnormal
variance, impact and broken-circuit) of hydrogen sensors.
In general, thermal conductivity hydrogen sensor MD61-1
(S7) in the array is taken as an example. 5 typical faults
are injected to simulate the fault experiment. The results
of fault injection and MWPCA based SPE detection are
shown in Figure 13. The blue line denotes the value of SPE.
The red line is the corresponding threshold whose value is
SPEα = 7.07.

Taken broken-circuit fault shown in Figure 13 (c) as an
example, the sensor encounters broken-circuit fault at 10 s.
The value of SPE increases sharply at this moment and
exceeds the threshold, which proves that there will be a fault
or more faults in the sensor array. The position of fault sensor
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FIGURE 12. Average relative error of different methods under different
numbers of hydrogen sensors.

can be determined according to their contributions for SPE
value at the fault time. As shown in Figure 13 (c), the contri-
bution of 7th sensor is the largest among all the sensors and
it demonstrates that MD61-1 (S7) is fault.

2) COMPARASON OF WMPCA AND PCA
Firstly, MWPCA accumulates the bias information in the
moving window by utilizing moving window to ensure that
more information is included in fault detection. Secondly,
the contribution rate of the fault sensor is relatively larger and
the accuracy of fault isolation is better. Therefore, the appli-
cation of WMPCA will have better result. in fault detection
than PCA.

Invalidating fault is taken as an example to verify the
fault detection and isolation ability of WMPCA and PCA.
As shown in Figure 14, the amplitude of the fault signal is
small and the SPE statistics just exceed the threshold. The
SPE contribution of S7 at the fault time (6 s) (Figure 14(a))

of the fault sensor is larger than the other sensors by using
WMPCA, which proved that S7 is faulty. Therefore, the fault
achieved. However, SPE contribution of S7 at the fault time
(Figure 14(b)) is not the largest yet, whichmeans that the fault
isolation is not achieved by using PCA. Therefore, although
the effects of the fault detection based WMPCA and PCA are
similar, the effect of the fault isolation based on WMPCA is
better than PCA.

3) ANALYSIS OF CONCENTRATION CHANGE IMPACT
Figure 15 shows the response curve and the SPE statistic of
the 9 hydrogen sensors when the hydrogen concentrations
vary. It is obvious that the SPE value changes less and keeps
lower than the threshold whereas the concentration changes
greatly. Therefore, fault detection does not work when the
hydrogen concentrations vary in the environment.

4) MULTIPLE SIMULTANEOUS FAULTS DETECTION
The conventional fault detection methods have difficulty in
multi-fault isolation when multiple faults occur in the sensor
array simultaneously [32]. The proposed WMPCAmethod is
capable of detecting multiple faults in real time.

a: MULTIPLE FAULT OCCURRING AT DIFFERENT TIMES
According to Figure 16. The SPE of 2 s has a sudden
change, which represent the actual impact fault of MD61-2
(S8), whose SPE contribution rate is the highest. Starting
from 6 s, the SPEs suddenly increase, and larger than the
threshold SPEα , which means some sensor is out of order.

FIGURE 13. Hydrogen concentration measurement using the proposed ELM regression model and comparison results with several methods.
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FIGURE 14. Comparison of WMPCA and PCA to fault detection (a) the
result using WMPCA and (b) the result using PCA.

Another jump is started from 10 s, and the SPE is larger than
SPEα too, which means another sensor is faulty at 10 s. The
contribution rate is used to achieve fault isolation of the sensor
array. The contribution rate of S7 at 6 s is the largest, which
proves S7 is faulty. The contribution rates of S4 and S7 are the
largest at 10 s, which proves that S4 and S7 are all fault at this
moment. Therefore, multiple fault occurred at different times
can be effectively detected.

b: MULTIPLE FAULT OCCURRING AT THE SAME TIMES
Without losing generality, the case that broken-circuit fault
simultaneous occurring at 10 s at MD61-1 (S7) and MD61-2
(S8) is taken as an example and shown in Figure 17 (a). The
case that overloading fault simultaneous happening at 6 s
at MC109-1 (S4) and MD61-1 (S7) is taken as an example
and shown in Figure 17(b). The sensor array will be faulty
if the SPE statistic exceeds the threshold SPEα . According
to the contributions of each sensor’s SPE statistic at the
fault time, the fault sensors can be determined and isolated.
As can be seen in Figure 17(a), the contributions of S7
and S8 are larger than other sensors, it proves that these
two sensors are faulty. S4 and S8 in Figure 17(b) are con-
firmed as the faulty sensors at the same way. Thus, this pro-
posed method achieves real-time detection of multiple faults
simultaneously.

FIGURE 15. Response curve and SPE statistic of 9 hydrogen sensors when
hydrogen concentrations change (a) from 1% vol to 3.5% vol and (b) from
3.5% vol to 1% vol.

D. ONLINE FAULT RECOVERY
1) SINGLE FAULT RECOVERY
As mentioned in Section III, the 8 fault-free sensors will be
employed to recover the fault sensor output by using ELM
predictor when the fault sensor is detected. Then, the faulty
signal will be replaced by the predicted signal during the
period of fault. To verify the performance of the proposed
method, the fault recovery experiments under 5 fault types by
utilizing ELMmethod is conducted. The predictor is updated
online and the fault-free data are used to recovery the fault
one. The kernel function of ELM predictor is sine, and the
number of hidden layer node is 18. The training samples are
the same as shown in Table 2. The faulty catalytic combustion
hydrogen sensor MC109-1 (S4) in the sensor array is taken
as an example. The experimental results of real-time fault
recovery are shown in Figure 18.

In order to check the performance of ELM recovery
method, the RVM predictor mentioned in reference [36] is
treated as the comparative experiment. It can be seen from
Figure 16 that the performance of RVM and ELM are almost
the same. The two methods are able to accomplish fault
recovery for all the fault types and ARE is within 0.6%.
The training time of ELM is 0.04 s and that of RVM is 0.16 s.
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FIGURE 16. Multiple faults detection occurred at different time (a) the
fault signals of sensor array, (b) the SPE statistic of fault detection, and
(c) SPE contribution rates at different times.

TABLE 10. Error comparison of different fault recovery predictors.

Obviously, the training time of ELM is shorter than that of
RVM. The reason has been discussed in section V.B.1.

However, when the sensor fault before concentration of
the hydrogen changed, the RVM predictor in [11] will lose

FIGURE 17. Multiple simultaneous faults detection (a) broken-circuit
faults simultaneous occur in sensor S7 and S8 at 4 s and (b) overloading
faults occur in S4 and S7 at 6 s.

its effectiveness, as well the ELM predictor can recovery
the data at a high accuracy. Take MC109-1 as an example,
the recovered curves are shown in Figure 19. The black curve
is simulated as sensitive element MC109-1 overloading at
100 s while the concentration is changed at 150 s. The red
curve which represented as the predicted result of ELM pre-
dictor is closed to the green curve, which represents the true
data of MC109-1. The blue curve which means the result of
RVM is closed to the initial data and do not changed with the
changing of the concentration. Themethod in [11] is based on
time series. The estimated value is based on historical data,
which cannot give the subsequent information. In contrast,
the relevance which includes the concentration information is
used to build the recovery model in this paper. The changing
of concentration can be calculated in real time.

2) IMPACT OF SENSOR NUMBER
The number of fault-free sensors that are employed to recover
the faulty sensor output influences the recovery accuracy of
the faulty data. Figure 20 shows the fault recovery results
under different numbers of sensors.

Three different methods are considered. The application
of 2 sensors in the experiment refers to using the same type
sensors to the faulty sensor for the fault recovery. Utilizing
6 sensors means using the other different types of sensors for
the fault recovery. Using 8 sensors means using all the fault-
free sensors to recover the faulty one.
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FIGURE 18. Sensor fault recovery using RVM and ELM (a) impact fault, (b) broken-circuit fault, (c) overloading fault, (d) invalidation fault, and
(e) abnormal variance fault.

FIGURE 19. The comparison of ELM and RVM predictors for fault recovery
when the concentration of hydrogen changed.

TABLE 11. Comparison results of sensor fault recovery by using different
fault-free sensors.

In Figure 20 (a), over-loading fault happened in the cat-
alytic combustion sensor MC109-1 (S4). The method using
2 sensors is utilizing the same type sensor (MC109-2 (S5) and
MC109-3 (S6)) to recovery the faulty sensor. The relevance of
those two sensors is the largest to the faulty one. Therefore,
the recover accuracy is higher. On the contrary, the method

using 6 sensors is utilizing different types sensors (MQ8-1
(MQ8-1 (S1), MQ8-2 (S2), MQ8-3 (S3), MD61-1 (S7),
MD61-2 (S8) and MD61-3 (S9)) to the faulty one. The that of
MC109-2 and MC109-3 to MC109-1. Compared with using
2 sensors, utilizing the other 6 sensors contains less relevant
information. Therefore, the recover accuracy is lower. The
method using 8 sensors contains all the relevance in the
sensor array. Therefore, the accuracy is higher than the other
2 methods.

3) MULTI-FAULT RECOVERY
When multiple faults occur in the sensor array, fault recovery
function is still effective by the correlation of fault sen-
sors with the other fault-free sensors. Figure 21(a) shows
the experimental results when broken-circuit faults simul-
taneous occur in sensor MD61-1 (S7) and MD61-2 (S8) at
10 s. The AREs of fault recovery using ELM are 0.95%
and 0.92% overloading faults simultaneous occur in MC109-
1 (S4) and MD61-1 (S7) at 6 s. recovery using ELM are
0.34% and 0.68% separately. Compared with single fault
recovery, the precision of multiple fault recovery is almost
same. Therefore, when multiple faults exist in the sensor
array, the hydrogen concentration can still be measured by
using the proposed fault recovery and regression strategy.

E. ABNORMAL FAULT DIAGNOSIS
1) FEATURE EXTRACTION USING MWPCA
The experiment of abnormal fault diagnosis of hydrogen
sensor is conducted by using MWPCA feature extraction
and ELMmulti-classifier. Still taken the catalytic combustion
hydrogen sensor MC109-1 (S4) for example, the 5 faulty
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FIGURE 20. Sensor fault recovery using ELM under different numbers of fault-free sensors (a) over-loading fault recovery using 2 sensors,
(b) broken-circuit fault recovery using 6 sensors, and (c) broken-circuit fault recovery using 8 sensors.

FIGURE 21. Multiple faults recovery using ELM.

TABLE 12. Comparison results of fault diagnosis using RBFNN, SVM and RVM multi-classifier.

signals are measured at the hydrogen concentration
of 5000 ppm and the extracted data length is 4 s. When the
fault occurs, 4 second data around the fault occurrence time
t0 are acquired and sampling rate is 10 point/s. 20 samples of
each fault are employed for feature extraction. As mentioned
in Section IV.D, the extracted faulty features are injected
into the RVM multi-classifier to execute fault diagnosis.
Figure 22 shows the scatter plots of PC1 vs PC2 extracted
by MWPCA. The contribution rate of PC1 is 72.9% and the
contribution rate of PC2 is 18.8%, respectively.

2) ELM CLASSIFIER
The ELM multi-classifier is used to diagnose the sensor fault
after feature extraction. Here, Sine kernel is selected as the

kernel function of ELM classifier and the kernel parameter
is 10. Still taken the catalytic combustion hydrogen sensor
MC109-1 (S4) as an example, two groups of principle com-
ponents (PCs) under each fault status are extracted in the
experiment. 50 groups of fault samples are selected randomly
to train the proposed ELMmulti-classifier, and the remaining
250 groups are employed as the test samples.

Table 12 shows the fault diagnosis results under 5 different
faults. It proves that ELM has a good prediction and gen-
eralization ability under small samples (The fault diagnosis
rate is 100%). Obviously, RBFNN has the worst diagnosis
rate due to the small training samples, while the proposed
ELMmulti-classifier has best accuracy and the training time.
Particularly, this method is capable of achieving multi-fault
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FIGURE 22. Scatter plots of PC1 vs PC2 extracted by MWPCA.

diagnosis when there are a variety of faults in the sensor
array.

To sum up, the above experimental results indicate that
this proposed methodology effectively achieves online con-
centration measurement, sensor fault detection, recovery and
diagnosis, therefore improves the training time, accuracy and
reliability of hydrogen sensor.

V. CONCLUSION
A novel fault diagnosis and reconfiguration strategy for
self-validating hydrogen sensor is proposed in this paper.
Hydrogen concentration estimation model under small
sample calibration data is established based on ELM regres-
sion, which realizes rapid and precise quantitative measure-
ment of hydrogen concentration, whose average relative error
declined from 1.18% to 0.82% and the training time is shorten
by an order of magnitude. Furthermore, online fault detection
and fault recovery method on the basis of MWPCA and
ELM is proposed, which solves the problem that the existing
hydrogen detection system cannot simultaneously detect and
recovery the multiple faults and improves the performance of
fault isolation. Compared with the former time series method,
the accuracy of fault recovery by utilizing this method is basi-
cally the same. this method solves the problem that the sensor
cannot be effectively recovered when the concentration is
changed. Additionally, fault diagnosis with the accuracy rate
is 100% based on the proposed MWPCA feature extraction
and ELM multi-classifier. Reducing or eliminating the influ-
ence of abnormal odor on fault detection will be researched
in the future.
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