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ABSTRACT In this paper, we are addressing the two-stage transportation problem with fixed charge for
opening the distribution centers, which is an extension of the classical transportation problem. The problem
models a distribution network in a two-stage supply chain which involves: manufacturers, distribution centers
and customers, and its main characteristic is that a fixed charge for opening the distribution centers is
associated, in addition to the variable transportation cost which is proportional to the amount of goods
shipped. We describe a novel solution approach for the minimization of total distribution costs: a fast
and efficient constructive heuristic algorithm that reduces the solution search space to a subspace with a
reasonable size, without losing optimal or sub-optimal solutions by considering a perturbation mechanism
that allows us to reconsider discarded feasible solutions that might lead to such solutions. Computational
results are reported and discussed for the existing benchmark instances and on a set of instances that contains
eight new randomly generated larger instances. The obtained results show that our solution approach is highly
competitive as compared to the existing methods from the literature.

INDEX TERMS Transportation system design two-stage fixed-charge transportation problem constructive
heuristic algorithms.

I. INTRODUCTION
A. DESCRIPTION OF THE PROBLEM
Supply chains (SCs) are defined as worldwide networks
wherein the following actors appear: supplier, manufactur-
ers, distribution centers, retailers and customers. There are
several functions the typical SC performs: the procurement
of raw materials, the transformation of raw materials into
intermediate and end products, as well as the distribution
of these products to customers, its main objective being
the satisfaction of the customer requirements. Supply Chain
Management (SCM) has been widely investigated due to its
challenging aspects and its numerous application domains
in manufacturing, service industries, transportation, etc.,
see for more information Masudin [18], Pal and Kant [20],
Fu and Zhu [8], etc.

In order to achieve an efficient and effective management
of SC systems, increased attention has to be paid to the
transportation system design, as it plays an important and
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central role in this. A typical representation of a SC is as a
form of multi-staged structure, while its optimal design has
been recognized as NP-hard problem [4].

This paper focuses on a particular supply chain network
design problem, namely the two-stage transportation problem
with fixed charge for opening the distribution centers, which
can be seen as an extension of the classical transportation
problem. The problem models a distribution network in a
two-stage supply chain which involves: manufacturers, dis-
tribution centers and customers and its main characteristic
is that a fixed charge is associated for opening the distribu-
tion centers, in addition to the variable transportation cost
which is proportional to the amount of goods shipped. The
objective of the considered transportation problem is to deter-
mine the DCs to be opened and to identify and select the
routes from manufacturers through the selected distribution
centers to the customers satisfying the capacity constraints
of the manufacturers and distribution centers in order to
meet specific demands of the customers under minimal total
distribution costs. In this form, the problemwas introduced by
Gen et al. [9].
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B. LITERATURE REVIEW
Different variants of the two-stage transportation problem
have been considered in the literature, depending on the
characteristics of the transportation systemwhichmodels real
applications of supply chain network design.

Marin and Pelegrin [16] supposed that the manufacturers
and the distribution centers have no capacity restrictions and
there exist fixed costs associated to opening the distribution
centers and the number of opened distribution centers is fixed
and established in advance. In order to solve this version
of the two-stage transportation problem, they proposed an
algorithm based on a Lagrangean decomposition and branch-
and-bound techniques which makes use of the features of
the considered transportation problem. Marin [17] studied an
uncapacitated version of the problem when both manufac-
turers and distribution centers acquire fixed costs when they
are used, and provided a mixed integer programming model
of the problem and lower bounds of the optimal objective
values based on different Lagrangian relaxations. Pirkul and
Jayaraman [24] considered a multi-commodity, multi-plant,
capacitated facility location problem for which they provided
a mixed integer programming formulation and an efficient
heuristic based on a Lagrangian relaxation of the problem.
The same authors in [15] extended their model by also taking
into consideration the acquisition of raw material, and pre-
sented an efficient heuristic solution approach that utilizes the
solution generated from a Lagrangian relaxation of the prob-
lem.Amiri [1] proposed a different variant allowing the use of
several capacity levels of the manufacturers and distribution
centers and described an efficient heuristic approach based
on a Lagrangian relaxation of the problem. Calvete et al. [2]
described a two-levels optimization problem that models the
planning of a distribution network that allows one to take
into consideration the manner in which decisions made at
the distribution stage of the supply chain can affect and be
affected by decisions made at the manufacturing stage. They
proposed a two-levels mixed integer model of the problem
and a metaheuristic solution approach that combines the use
of an evolutionary algorithm to control the supply of distri-
bution centers with optimization techniques to determine the
delivery from distribution centers to customers and the supply
from manufacturers to distribution centers.

Raj and Rajendran [28] considered two scenarios of the
problem: the first scenario (Scenario-1) takes into consid-
eration fixed costs associated to the routes in addition to
unit transportation costs and unlimited capacities of the dis-
tribution centers, while the second one (Scenario 2) which
takes into consideration the opening costs of the distribution
centers in addition to unit transportation costs. They devel-
oped a genetic algorithm (GA) with a specific coding scheme
suitable for two-stage problems and as well they presented
a set of 20 benchmark instances. Their achieved compu-
tational results have been compared to the lower bounds
and approximate solutions obtained from a certain relaxation
of the problem. Raj and Rajendran in [29] also presented
a solution representation that allows a single-stage genetic

algorithm (SSGA) to solve it. The main characteristic of
these methods is a compact representation of a chromosome
based on a permutation. A different genetic algorithm dealing
with the two-stage transportation problem with fixed charge
associated to the routes from manufacturers to customers
was developed by Jawahar and Balaji [14]. Pop et al. [27]
described, in the case of Scenario-1, a hybrid algorithm that
combines a steady-state genetic algorithm with a local search
procedure. Recently, Cosma et al. [6], [7] developed an effi-
cient multi-start Iterated Local Search (ILS) procedure for
the total distribution costs minimization of the TSTP-FC,
which comes up with a primary solution, employs a local
search procedure with the aim of increasing the exploration,
a perturbation mechanism and a neighborhood operator with
the aim of diversifying the search and also presented a soft
computing approach for solving the two-stage transportation
problem with fixed costs associated to the routes that embeds
an optimization problem within the framework of a genetic
algorithm.

In one of these variants, Molla-Alizadeh-Zavardehi
et al. [19] considered only one manufacturer. They described
an integer programming mathematical formulation of the
problem, they proposed a spanning tree-based genetic algo-
rithm with a Prüfer number representation and an artificial
immune algorithm for solving it. Some comments concerning
the mathematical formulation of the problem were provided
by El-Sherbiny [32]. Subsequently, Pintea et al. [21], [23]
described some hybrid classical approaches and [23] devel-
oped an improved hybrid algorithm combining the Nearest
Neighbor search heuristic with a local search procedure for
solving the two-stage transportation problemwith fixed costs.
Recently, Pop et al. [26] described a novel hybrid heuristic
approach obtained by combining a genetic algorithm based
on a hash table coding of the individuals with a power-
ful local search procedure and Cosma et al. [5] proposed
an efficient hybrid Iterated Local Search (HILS) that con-
structs an initial solution while using a local search procedure
whose aim is to increase the exploration and for the pur-
pose of diversifying the search, a neighborhood structure is
used.

Hong et al. [13] considered a variant of the fixed-cost
transportation problem in a two-stage supply chain network,
in which they took into consideration two types of fixed costs:
one for opening the distribution centers and the other asso-
ciated to the routes between manufacturers and distribution
centers (DC’s) and between DC’s and retailers. Some com-
ments concerning the mathematical formulation proposed by
Hong et al. [13] and a valid formulation of the problem were
provided by Sabo et al. [30].

There exists yet another version of the two-stage trans-
portation problem with one manufacturer, and it takes
into account the environmental impact by reducing the
greenhouse gas emissions. This version was introduced by
Santibanez-Gonzalez et al. [31] in order to deal with a prac-
tical application occurring in the public sector. Considering
this version of the problem, Pintea et al. [22] came up with a
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set of classical hybrid heuristic approaches and Pop et al. [25]
suggested an efficient reverse distribution system for solving
the problem.

The variant addressed in this paper considers a two-stage
transportation problem with fixed charge for opening the dis-
tribution centers, as introduced by Gen et al. [9]. The current
literature regarding the investigated two-stage transportation
problem is scarce. This transportation problem has also been
studied by Raj and Rajendran [28], who called it Scenario-
2. In both mentioned papers, the authors proposed genetic
algorithms based on sequentially getting first a transporta-
tion tree for the transportation problem from distribution
centers to customers and second a transportation tree for
the transportation problem from manufacturers to distribu-
tion centers. In both genetic algorithms, the chromosome
contains two parts, each encoding one of the transportation
trees. Recently, Calvete et al. [3] developed a novel hybrid
evolutionary algorithm, whose main feature is the use of a
new chromosome encoding that provides information about
the distribution centers that can be usedwithin the distribution
system.

C. OVERVIEW
The aim of this paper is to describe a novel solution approach
for solving the two-stage transportation problem with fixed
charge for opening the distribution centers. Our construc-
tive heuristic algorithm differs from the existing solution
approaches from the literature, it is called Shrinking Domain
Search. Its main characteristic is the reduction of the solution
search space to a subspace with a reasonable size, without
losing optimal or sub-optimal solutions by considering a
perturbation mechanism that allows us to reconsider dis-
carded feasible solutions that might lead to such solutions.
The results of our computational experiments on the exist-
ing benchmark instances from the literature and on a set of
instances that contains eight new randomly generated larger
instances are presented and analyzed.

Our paper is organized as follows. In Section II, we give
some notations and definitions related to the two-stage trans-
portation problem with fixed charge for opening the dis-
tribution centers that will be used throughout the paper
and present a mathematical model of the problem based
on mixed integer linear programming. The novel solution
approach for solving the investigated problem is described
in Section III. In Section IV we provide implementation
details and the computational experiments and the achieved
results are presented and discussed in Section V. Finally,
we conclude our work and discuss our plans for future work in
Section VI.

II. DEFINITION OF THE TWO-STAGE TRANSPORTATION
PROBLEM WITH FIXED CHARGE FOR OPENING THE
DISTRIBUTION CENTERS
In this section we give a formal definition of the two-stage
transportation problem with fixed charge for opening the

distribution centers. We start by defining the related sets,
decision variables and parameters:

p the number of manufacturers
q the number of distribution centers
r the number of customers
i manufacturer identifier, i ∈ {1, . . . , p}
j distribution center identifier, j ∈ {1, . . . , q}
k customer identifier, k ∈ {1, . . . , r}
w maximum number of distribution centers that

can be opened
Dk the demand of customer k
Si the capacity of manufacturer i
Qj the capacity of distribution center j ∈

{1, . . . , q}
Fj the fixed cost for opening the distribution

center j
c1ij the unit cost of transportation from manufac-

turer i to distribution center j
c2jk the unit cost of transportation from distribu-

tion center j to customer k
x1ij the number of units transported from manu-

facturer i to distribution center j
x2jk the number of units transported from distri-

bution center j to customer k
Zopt the optimal total cost of distribution

Given a set of p manufacturers, a set of q distribution
centers (DC’s) and a set of r customers with the following
properties:
• Each manufacturer i ∈ {1, . . . , p} has Si units of supply,
each distribution center j ∈ {1, . . . , q} has a given
capacity Qj and each customer k ∈ {1, . . . , r} has a
demand Dk .

• Each manufacturer may ship to any of the q distribu-
tion centers at a transportation cost c1ij per unit from
manufacturer i, where i ∈ {1, . . . , p}, to DC j, where
j ∈ {1, . . . , q};

• Each of the distribution center may ship to any of the
r customers at a transportation cost c2jk per unit from
DC j, where j ∈ {1, . . . , q}, to customer k , where k ∈
{1, . . . , r};

• There exist fixed costs for opening the distribution cen-
ters, as well as a limitation on the number of DCs that
are allowed to be opened.

The aim of the two-stage capacitated fixed-cost transportation
problemwith fixed charge for opening the distribution centers
is to determine the distribution centers and the routes to
be opened and corresponding shipment quantities on these
routes, such that the customer demands are fulfilled, all ship-
ment constraints are satisfied, and the total distribution costs
are minimized.

An illustration of the investigated two-stage transportation
problemwith fixed charge for opening the distribution centers
is presented in Fig. 1.

By introducing the linear variables: x1ij representing the
amount of units shipped from manufacturer i to DC j, x2jk
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FIGURE 1. Illustration of the two-stage fixed-charge transportation problem with fixed charge for opening the
distribution centers.

representing the amount of units shipped from DC j to cus-
tomer k and the binary variables: zj is 1 if the distribution
center j is opened and 0 otherwise, then the two-stage trans-
portation problem with fixed-charge for opening the distribu-
tion centers can be modeled as the following mixed integer
linear programming problem described by Calvete et al. [3]:

min
p∑
i=1

q∑
j=1

c1ijx
1
ij +

q∑
j=1

r∑
k=1

c2jkx
2
jk +

q∑
j=1

Fjzj

s.t.
q∑
j=1

x1ij ≤ Si, ∀i ∈ {1, . . . , p} (1)

q∑
j=1

x2jk ≥ Dk , ∀k ∈ {1, . . . , r} (2)

r∑
k=1

x2jk ≤ Qjzj, ∀j ∈ {1, . . . , q} (3)

q∑
j=1

zj ≤ w (4)

p∑
i=1

x1ij =
r∑

k=1

x2jk , ∀j ∈ {1, . . . , q} (5)

x1ij ≥ 0, ∀i ∈ {1, . . . , p}, ∀j ∈ {1, . . . , q} (6)

x2jk ≥ 0, ∀j ∈ {1, . . . , q}, ∀k ∈ {1, . . . , r} (7)

zj ∈ {0, 1}, ∀j ∈ {1, . . . , q} (8)

The objective function minimizes the total distribution
cost: transportation per-unit costs and the fixed charges for
opening the distribution centers. Constraints (1) guarantee
that the quantity shipped out from each manufacturer does
not exceed the available capacity, constraints (2) guarantee
that the total shipment received from DCs by each customer

fulfills its demand, constraints (3) guarantee that the quantity
shipped out from each distribution center does not exceed the
available capacity, constraint (4) limits the number of distri-
bution centers that can be opened and constraints (5) are the
flow conservation conditions and they guarantee that the units
received by a DC from manufacturers are equal to the units
shipped from the distribution centers to the customers. The
last three constraints ensure the integrality and non-negativity
of the decision variables.

The considered two-stage transportation problem with
fixed charge for opening the distribution centers is a NP-hard
optimization problem because it extends the fixed-charge
transportation problem, which has been shown to be NP-hard
by Guisewite and Pardalos [11]. That is why in order to
tackle the two-stage transportation problemwith fixed charge
for opening the distribution centers, we proposed an effi-
cient constructive heuristic approach which is going to be
described in the next section.

III. AN EFFICIENT CONSTRUCTIVE HEURISTIC
ALGORITHM FOR SOLVING THE TWO-STAGE
FIXED-CHARGE TRANSPORTATION PROBLEM
The difficulty of the two-stage fixed-charge transportation
problem lies in the multitude of possible solutions. Analyzing
all the feasible solutions of the problem is not possible for
practical applications, because it would require an expo-
nential computational time. Alternatively, in this paper we
propose an efficient algorithm that reduces the solution search
space to a subspace with a reasonable size, without losing
optimal or suboptimal solutions. This is done by consider-
ing a perturbation mechanism that allows us to reconsider
discarded feasible solutions that might lead to optimal or
sub-optimal solutions.
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FIGURE 2. The operating principle of the proposed SDS algorithm.

Since the opening of each DC involves a fixed cost,
the most important decision the algorithm has to take is to
determine the set of DCs that will be used in the distribution
solution. Thus, the problem can be naturally decomposed into
two subproblems:

• Constructing the optimal distribution solution that uses
only a particular set of DCs;

• Finding the set of DCs, based on which the optimal
distribution solution can be built. This will be called the
optimal set.

Our heuristic algorithm is called Shrinking Domain
Search (SDS) and it is an iterative algorithm that aims to find
the optimal set. Its operating principle is shown in Fig. 2.

The algorithm randomly chooses at each iteration a number
of sets of DCs found in a particular search domain, builds
distribution solutions based on the chosen sets, and then the
search domain is narrowed. Thus, the algorithm ends after a
small number of iterations, when a single set of DCs remains
in the search domain, withwhich the best distribution solution
can be built. Due to the small number of required iterations,
the algorithm can be used successfully for large-scale distri-
bution systems.

For the determination of the search domains, the DCs are
classified as ‘‘promising’’ or ‘‘wrong’’ depending on the cost
of the distribution solutions that were previously built. When
initializing the algorithm, all DCs are considered promising,
but their percentage decreases after each iteration.

The following variables will be used next:

dbest the dimension of the optimal set
qp the number of DCs in the promising group
t the number of basic DC sets produced at an

iteration of the algorithm

The search domain corresponding to an iteration consists
of all the sets of dbest DCs from the promising group. The

search domain contains
(
qp
dbest

)
elements. The dbest value

will be estimated at the initialization step, and the estimate
will be updated during the algorithm.

At each iteration of the algorithm (excepting the last ones),
the same number of basic distribution solution variants are
built (t). Thus, as search domains are reduced, they will be
explored more thoroughly, and in the last iterations, when
their number of elements drops below t , the search domains
will be explored exhaustively. The t constant is an important
parameter that influences the efficiency of the algorithm. The
lower the value, the higher the algorithm efficiency, but the
risk of losing the optimal solution also increases as the search
domains will be explored more superficially.

The search domain reduction mechanism does not guaran-
tee that DCs from the optimum set will not be lost. Such DCs
may be lost, as they may have been placed only in sets along
with disadvantageous DCs, resulting in poor performance
distribution solutions. To correct this issue, a perturbation
insertion mechanism was created, whereby each DC in the
wrong DCs set will be re-analyzed at each iteration by trying
to be placed in a new set along with the DCs in the best
sets. In order to be able to correct the dbest estimate, each
iteration will produce auxiliary sets with dbest+1 and dbest−1
elements.

Fig. 3 shows the relations between the modules and data
structures of the proposed SDS algorithm.

Our proposed algorithm uses the following data structures:

• Promising DCs (L1) – a list of the DCs in the promising
DCs group. At each iteration of the algorithm, the sets
within the search domain will be produced based on this
list;

• Wrong DCs (L3) – a list of DCs in the wrong DCs
group. It is used by the perturbation mechanism, and for
adjusting the dbest evaluation;

• Used sets (L2) - a hash set with all the sets that were
produced and eventually evaluated during the execution
of the algorithm;

• Evaluated Sets (L4) – a list containing the best sets
discovered during the algorithm, and the sets evaluated
at the last iteration. The first t elements of this list form
the Promising sets list, which contains the lowest cost
sets found from the beginning of the algorithm to the
current iteration. The number of elements in this list
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FIGURE 3. The modules and the data structures of the proposed SDS algorithm.

stays constant throughout the algorithm. At the begin-
ning of this list, there are a number of sets composed
by promising DCs only. Those sets will be called the
Best sets.

When initializing the algorithm, we evaluate the optimal
set dimension (dbest ), add all available DCs in theWrong DCs
list (L3), create the Promising DCs list (L1), the Evaluated
sets list (L4) and the Used sets hash set (L2).

At each iteration of the algorithm, the following blocks
are run in sequence: Production (A) and Classification (B).
The Refinement block (C) is run only once, at the end of the
algorithm. The first block generates and evaluates new sets,
the second one processes the results, and the third performs a
finer search around the best solutions discovered during the
algorithm.

TheProduction block (A) contains three types of producers
(M2, M4 and M6) for feeding the Validator and evaluator
module (M5). All the sets generated throughout the algorithm
are kept in a hash set (Used sets L2). So any duplicate can
be efficiently recognized and rejected. This mechanism could
be implemented because the algorithm reaches the solution
in a very small number of iterations, evaluating a relatively
small number of sets. For this reason, it could be tested on
large-scale distribution systems.

The Random / exhaustive producermodule (M2) generates
a fixed number of sets, combining the DCs in the Promising

DCs list (L1). All the sets generated by this module have the
same dimension (dbest ). The dbest estimate will be updated
after each iteration by the Estimator mode (M1). The Per-
turbations and increased sets producer module (M4) creates
new sets by combining DCs from the Wrong DCs list (L3)
with the sets in the Promising sets list (L4). The perturbation
mechanism is crucial in our algorithm because some DCs
may be wrongly classified by the DCs Evaluator module
(M3) because they were placed in sets only together with
disadvantageous DCs. Through this mechanism, all these
DCs are given a chance to return to the Promising DCs list,
at each iteration. The perturbationmechanism tries to produce
a new set for every DC from theWrong DCs list by replacing
an item in a set from the Promising sets list. Each wrong DC
will be inserted into a best-ranked set from this list. Equally
important is the mechanism for adjusting the dbest estimation.
For this purpose, a new set will be created for each wrong DC
by adding it to a top-ranked set that is retrieved from the Best
sets list. Thus, sets with an increasing number of DCs can be
created. The Decreased sets producer module (M6) creates
smaller sets by randomly removing one element of the sets
from the Best sets list.

TheValidator and evaluatormodule (M5) attempts to build
the best distribution solution that uses only the DCs in each
produced set, with a fast heuristic algorithm. Next, we will
refer to the cost of that distribution solution, by the cost of
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the corresponding set. The evaluated set will be discarded if
its cost is greater than the cost of the last set in the Promising
sets list. TheDCs in the considered set that are not usedwithin
the built distribution solution will be removed, thus allowing
the set to become a duplicate. For this reason, the uniqueness
of the sets that undergo changes must be verified after the
distribution solution has been constructed, and only if they
are unique they will be added to the Evaluated sets list (L4).
The Classification block (B) is used at the end of each iter-

ation of the algorithm. The Sorter and trimmer module (M7)
sorts the Evaluated sets list by the costs of the sets, and then
only the best elements are retained. These elements form the
Promising sets list, the size of which remains constant. The
DCs evaluatormodule updates the contents of the Promising
DCs and Wrong DCs based on the Promising sets list. The
first DCs encountered when scrolling through the Promising
sets list will be added to the Promising DCs list and the others
remain in the Wrong DCs list. The percentage of promising
DCs decreases at each iteration, which assures the completion
of the algorithm.

The Estimator module (M1) evaluates the quality of each
set dimension by taking the information from the Best sets
list. The quality of each dimension is estimated according
to the number of occurrences in the Best sets list and the
positions in which they appear.

TheRefinement block (C) is required because theValidator
and evaluator module uses a fast heuristic algorithm to build
distribution solutions. Thus, there is no guarantee that the
obtained solutions are optimal. TheDetailed searchermodule
(M8) performs a fine search around the solutions built for the
first sets from the Best sets list.

IV. IMPLEMENTATION DETAILS
The following additional notations will be used in the imple-
mentation description:

Zbest cost of the best found set;
Zworst cost of the last set in the Promising sets list;
Zs cost of set s;
ds dimension of set s;
nbest number of elements in the Best sets list;
a percent of promising DCs from the total num-

ber of DCs;
b the rate of decreasing the percent of promising

DCs (a).

We start with the description of the initialization step
shown in Algorithm 1. Based on preliminary computational
experiments, the following parameters were used: the initial
number of basic DC sets produced at the first iteration of the
algorithm t initial value = 6×q, the initial percent of promis-
ing DCs from the total number of DCs a initial value = 0.5.
The call on line 9 produces and evaluates a first collection
of sets and the call on line 10 enters the central part of the
algorithm. The dbest is estimated based on the total demand
of the customers and theminimum capacity of the distribution

centers as follows:

dbest =


sumD
minQ

+ 1 if sumD ≤ minQ

sumD
minQ

+ 2 if sumD > minQ

where sumD =
r∑

k=1

Dk and minQ = min
j∈{1,...,q}

Qj.

If the estimated value for dbest exceedsw, then the initial value
of dbest will be w.
The Production procedure shown in Algorithm 2 produces

multiple sets based on the DCs in the DCsList parameter.
The second parameter indicates whether or not perturbations
should be produced and will receive a false value only at
the first call, performed in the initialization procedure. The
actual production is performed by the RandomProducer pro-
cedure shown in Algorithm 3, that generates at most t sets.
If perturbations are required, then the IncreasedSetsProducer
procedure shown in Algorithm 4 is called for every DC in the
WrongDCs list. This procedure generates also increased sets
that are useful for the dbest estimation.
The RandomProducer procedure shown in Algorithm 3

produces sets of dbest elements with DCs taken from
the DCsList parameter. The generated sets are sent to
the ValidateAndEvaluate procedure shown in Algorithm 6.
If there are too few elements in the DCsList to produce t sets
of dbest elements, then all the possible sets will be created
systematically in the for each loop. Otherwise a number of t
random sets will be produced. The procedure uses a working
list of shuffled DCs, and avoids adding the same DC in a set
more than once.

The IncreasedSetsProducer procedure shown in
Algorithm 4 is trying to produce a set outside the search
domain and a set of dbest + 1 elements. Both will contain
the DC specified by the wrongDC parameter. For creating
the set outside the search domain, the Promising sets list is
searched for the best set in which one of the DCs can be
replaced with the wrongDC . The process stops when a new
valid set is created and evaluated, or when the end of the list
is reached. For creating the set with increased dimension the
Best sets list is searched for the best set to which thewrongDC
can be added to form a new valid set.

This procedure is called in a loop in the Production pro-
cedure shown in Algorithm 2, for trying to put each wrong
DC in the best possible set, by replacing an element and by
increasing the set dimension.

The DecreasedSetsProducer procedure shown in
Algorithm 5 creates all the possible sets by eliminating one
DC from the sets in the Best sets list. All the new generated
sets are validated and evaluated.

The ValidateAndEvaluate procedure shown in Algorithm 6
is called after creating each new set. The validation process
has two stages. In the first stage, it is checked that the set
specified by the parameter s has not been used before. The
Used sets hash set is used for this purpose. The second stage is
controlled by the verify parameter. At this stage, it is checked
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Algorithm 1 Initialization
1: procedure Initialization
2: Zbest ← Zworst ←∞
3: t ← t initial value
4: a← a initial value
5: estimate dbest
6: WrongDCs← new list filled with all the DCs in the distribution system
7: EvaluatedSets← new empty list
8: UsedSets← new empty hash set
9: PRODUCTION(WrongDCs, false)
10: SDSEARCH
11: end procedure

Algorithm 2 Production
1: procedure PRODUCTION(DCsList : list , perturbations : boolean)
2: RANDOMPRODUCER(DCsList)
3: if perturbations then
4: while WrongDCs size > 0 do
5: remove one element r from WrongDCs list
6: INCREASEDSETSPRODUCER(r)
7: end while
8: DECREASEDSETSPRODUCER
9: end if
10: sort EvaluatedSets list
11: end procedure

Algorithm 3 RandomProducer
1: procedure RANDOMPRODUCER(DCsList : list)

2: if
(
DCsList size

dbest

)
≤ t then

3: for each distinct combination c of dbest elements in DCsList do
4: s← new set created with c elements
5: VALIDATEANDEVALUATE(s, true)
6: end for
7: else
8: WorkingList ← new empty list
9: i← 0
10: while i < t do
11: shuffle DCsList
12: add DCsList elements to WorkingList
13: while WorkingList contains dbest distinct elements do
14: remove next dbest unique elements from WorkingList
15: create a new set s with the removed elements
16: if VALIDATEANDEVALUATE(s, true) then
17: i← i+ 1
18: end if
19: end while
20: end while
21: end if
22: end procedure

whether the total capacity of the DCs in set s is large enough
to meet all customer demands, according to the next relation:∑

j∈s

Qj ≥
r∑

k=1

Dk

By calling the BuildDistributionSolution procedure, a dis-
tribution solution is built that uses only DCs in the set s. The
DCs that are not used in the distribution solution are removed
from the set, which may result in duplicates. For this reason,
it is necessary to verify the uniqueness of the set also after
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Algorithm 4 IncreasedSetsProducer
1: procedure INCREASEDSETSPRODUCER(WrongDC : int)
2: for each set s in PromisingSets list do
3: if WrongDC ∈ s then
4: continue
5: end if
6: c← clone of s
7: for each DC d in c, in random order do
8: replace d with WrongDC
9: if VALIDATEANDEVALUATE(c, true) then
10: goto increasedSets
11: end if
12: restore c
13: end for
14: end for
15: increasedSets :
16: for each set s in BestSets list do
17: if ds = w then
18: continue
19: end if
20: c← clone of s
21: add WrongDC to c
22: if VALIDATEANDEVALUATE(c, false) then
23: return
24: end if
25: end for
26: end procedure

Algorithm 5 DecreasedSetsProducer
1: procedure DECREASEDSETSPRODUCER
2: for each set s in BestSets list do
3: for each DC d in s do
4: c← clone of s
5: remove d from c
6: VALIDATEANDEVALUATE(c, true)
7: end for
8: end for
9: end procedure

the procedure call. The evaluated valid sets are finally added
to the Evaluated sets list only if they are better than the last
promising set: Zs < Zworst .

The SDSearch procedure shown in Algorithm 7 is the core
of the algorithm. Its main loop reduces the search domain at
each iteration, by reducing the percent of promising DCs (a)
and as a consequence the number of DCs in the promising
group qp. The rate (b) parameter controls the number of
iterations. With a greater rate the algorithm ends faster, but
the danger of losing the optimal solution increases, because
the search domain narrows too much in a single step. The
results published in this paper were obtained with rate b =
1.1. The UpdatePromisingDCs procedure call updates the
two lists (PromisingDCs and WrongDCs), at each iteration.

The for loop evaluates the quality of all the dimensions of
the sets in the Best sets list. The quality estimate takes into
consideration the number of occurrences in the Best sets list,
and the positions of the occurrences. The dbest estimation is
updated on line 16. The estimate will be used by the producers
to generate new sets.

TheUpdatePromisingDCs procedure shown inAlgorithm 8
moves qp DCs from theWrongDCs list to the PromisingDCs
list. The DCs are taken from the first sets in the sorted
PromisingSets list. The nbest variable is also updated.
The BuildDistributionSolution procedure builds a distribu-

tion solution in r steps. Every step is looking for a better
supply for one of the customers, in the conditions created
by the decisions taken in the previous steps, when some of
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Algorithm 6 ValidateAndEvaluate
1: function VALIDATEANDEVALUATE(s : set , verify : boolean) : boolean
2: if s ∈ usedSets then
3: return false
4: end if
5: add s to usedSets
6: if verify and s is invalid then
7: return false
8: end if
9: BUILDDISTRIBUTIONSOLUTION(s)
10: if (s was modified and s ∈ UsedSets) or Zs > Zworst then
11: return false
12: end if
13: add s to the EvaluatedSets list
14: return true
15: end function

Algorithm 7 SDSearch
1: procedure SDSearch
2: while (qp← q× a) > dbest do
3: a← a/b
4: UPDATEPROMISINGDCs
5: SetsDims← new list of structures {dimension, quality}
6: for i← 0 to nbest do
7: s← element i from BestSets
8: score← nbest − i
9: find element e in SetsDims for which de = ds
10: if not found then
11: add a new element {ds, score} to SetsDims
12: else
13: e.quality← e.quality+ score
14: end if
15: end for
16: dbest ← dimension of the highest quality element from SetsDims
17: PRODUCTION(PromisingDCs, true)
18: trim EvaluatedSets list to the first t elements
19: fill WromgDCs list with all the DCs
20: end while
21: end procedure

the capacity of the manufacturers and DCs was consumed.
The demand of each customer is solved in one or more
steps. At each step, the most advantageous supply route is
sought, depending on the unit costs of the transport routes,
and the remaining capacities of the manufacturers and DCs.
If the route found cannot ensure the customer’s entire demand
due to limited capacities at manufacturers and DCs, then
a new search step for the remaining quantity follows. If a
particular customer can not supply all the required quantity
on the cheapest possible route, then a NotBest flag is set
for that solution. This flag indicates that the solution might
be improved. At the end of the procedure, the unused DCs
from the evaluated set are removed and the fixed costs of the

remaining DCs are added to the total cost of the distribution
solution. This fast constructive procedure would find the
optimal solution if the capacities of DCs and manufacturers
were not limited.

The Detailed search module contains a DetailedSearch
procedure that is required because the BuildDistribution
Solution does not guarantee the best solution due to the
limited capacities of the manufacturers and distribution cen-
ters. Before applying this procedure, the Promising sets list is
reduced to the first tfin (t final) elements. TheDetailedSearch
procedure contains a loop that ends after Nit consecutive iter-
ations that do not improve the best known solution. Every iter-
ation of this loop changes the order in which customers will
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Algorithm 8 UpdatePromisingDCs
1: procedure UPDATEPROMISINGDCs
2: PromisingDCs← new empty list
3: nbest ← 0
4: for each set s in PromisingSets list do
5: for each DC d in s do
6: if d /∈ PromisingDCs list then
7: move d from WrongDCs list to PromisingDCs list
8: if PromisingDCs list size = qp then
9: return
10: end if
11: end if
12: end for
13: nbest ← nbest + 1
14: end for
15: end procedure

be served. There follows an inner loop that repeats for each
Promising Sets item that has the NotBest flag set. This loop
builds an initial solution using the BuildDistributionSolution
procedure. Next an iterative process attempts to replace some
of the solution routes with better variants. This process ends
when the last iteration no longer improves the solution.
At each iteration two lists are created: MList and DList .
In MList all the routes between manufacturers and distri-
bution centers for which x1ij > 0 are added, and in DList
all the routes between distribution centers and customers
for which x2jk > 0 are added. Next, all the sets consisting
of two elements taken from the DList (l1 and l2) and an
element taken from the MList (l3) are tested. All pairs of
manufacturer-distribution center-customer routes of which l1
and l2 are part are generated, then they are sent one at a time
along with l3 to a procedure named ModifyPlan, to look for
a better alternative.

The ModifyPlan procedure searches a replacement for the
routes it gets through the parameters. The three routes are
canceled, after which a more advantageous supply option is
sought, under the new conditions created. The first two routes
specify complete manufacturer-distribution center-customer
routes, and the third only specifies a link between a man-
ufacturer and a distribution center. For replacing the two
complete routes, a method similar to the one described in
the BuildDistributionSolution procedure is used. To replace
the incomplete route, the distribution center’s links with all
manufacturers are evaluated and the most advantageous one
is chosen. The need can be ensured in several steps, from
different manufacturers. If a better solution is not attained,
then the initial solution is restored.

In Fig. 4 and 5 we present the manner in which a solution
can be modified by the DetailedSearch procedure. Fig. 4a
shows an initial solution and three links that can be chosen
(l1, l2 and l3). Fig. 4b shows three routes (r1, r2 and r3)
that can be created and transmitted to the ModifyPlan pro-
cedure. Fig. 5a shows the new routes that can be discovered

FIGURE 4. Illustration of an initial solution (a) and three routes that can
be created and transmitted to the ModifyPlan procedure (b).

FIGURE 5. Illustration of the new routes (a) and the new solution of the
problem (b).

by this procedure, and Fig. 5b presents the new solution.
Through such transformations, the solution provided by the
BuildSolution procedure can be improved which can lead
even to the optimal solution if a large enough number of
iterations are performed.

The performance of our proposed SDS algorithm depends
on the following parameters:
• t which determines how detailed each search domain is
explored. The lower the value, the higher the efficiency
of the algorithm, but it increases the risk of missing the
optimum solution;
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• a initial value, which determines how steep the first
narrowing of the search domain is. The smaller the value,
the faster the algorithm reaches the solution, and the
fewer search domains are explored;

• b which determines the speed of convergence (the speed
at which the search domain narrows from one iter-
ation to another). Higher rates can cause important
DCs to be lost, and low ones lead to an unwarranted
increase in execution time. By adjusting this parame-
ter, there is actually a compromise between safety and
efficiency.

V. COMPUTATIONAL RESULTS
In this section we present our achieved computational results
in order to assess the effectiveness of our proposed solution
approach for solving the two-stage transportation problem
with fixed charge for opening the distribution centers.

We conducted our computational experiments for solving
the two-stage transportation problem with fixed charge for
opening the distribution centers on two sets of benchmark
instances used in the literature and on a set of instances that
contains eight new randomly generated larger instances:
• The first set of instances contains 7 instances and it
was used by Gen et al. [9] and Raj and Rajendran [28].
In these instances, the number of manufacturers ranges
from 3 to 40, the number of DCs ranges from 4 to
70, the number of customers ranges from 5 to 100 and
are characterized by the fact that the total supply of
the manufacturers, the total capacity of the distribu-
tion centers and the total demand of the customers
are equal. The instances are available at the address
https://sites.google.com/site/fctpdataset/.

• The second set of instances contains 16 instances and it
has been randomly generated by Calvete et al. [3] and in
which the total supply of manufacturers, the total capac-
ity of the DCs and the total demand of the customers
are not equal. The manufacturers, distribution centers
and customers were randomly generated in the square
[−400, 400]× [−400, 400] according to a discrete uni-
form distribution. The transportation costs are given by
the euclidean distance and the fixed costs for opening a
distribution center are given by the following formula:
Fj = 50×Qj, where j ∈ {1, . . . , q}. Customer demands
Dk are randomly chosen as integers in the interval
[10, 30]. Concerning the capacities of the manufacturers
and distribution centers, there are two different classes of
instances. In the first class of instances, the capacities of
the manufacturers and distribution centers are given by:
30× r , meaning that each manufacturer and distribution
center can supply all the customers. In the second class
of instances, there is a reduced number of large man-
ufacturers and distribution centers that may supply all
given customers and the remaining ones have smaller
capacities. In this case 20% of the manufacturers and
distribution centers have a capacity equal to 30× r and
the remaining ones have a capacity equal to 6× r .

• The third set of problems contains 8 new randomly
generated instances of larger sizes. The files con-
taining the instances are available at the address:
https://sites.google.com/view/tstp-instances/ and have
been generated in the same way Calvete et al. [3] did.
The characteristics of these new instances are displayed
in Table 4.

Our solution approach for solving the two-stage transporta-
tion problem with fixed charge for opening the distribution
centers has been implemented in Java 8 and we performed
5 independent runs for each instance as it was done by
Calvete et al. [3], on a PC with Intel Core i5-4590 3.3GHz,
4GB RAM, Windows 10 Education 64 bit operating system.
Based on preliminary computational experiments the

parameters involved within our Shrinking Domain Search
algorithm have been set as follows: the number of basic DC
sets produced at each iteration of the algorithm t = 6 × q,
the initial percent of promising DCs from the total number
of DCs a = 0.5, the rate of decreasing the promising DCs
procent b = 1.1, the final number parameter tfin = 30
and the maximum number of iterations of theDetailedSearch
procedure Nit = 50.
In order to study the performance of our proposed solution

approach, we compared it with the existing results from
the literature for the considered test instances: the hybrid
evolutionary algorithm developed by Calvete et al. [3] and
the genetic algorithms described by Gen et al. [9] and Raj
and Rajendran [28]. The obtained computational results are
presented in Tables 1-4.
The first results that we report have been obtained in the

case of seven instances, denoted by P1, . . . ,P7, introduced
by Gen et al. [9] and used by Raj and Rajendran [28]. The
first column of the table displays the name of the instance,
the next three columns contain the characteristics of the
problem: the number of manufacturers (p), the number of
distribution centers (q) and the number of customers (r).
Next column provides the optimal solution of the problem
and the last four columns provide the best solutions achieved
by the genetic algorithms developed by Gen et al. [9] and
Raj and Rajendran [28], the hybrid evolutionary algorithm
described by Calvete et al. [3] and by our novel solution
approach.

Analyzing the displayed results from Table 1, we can
observe that our proposed solution approach has a better
computational performance than the genetic algorithms con-
sidered by Gen et al. [9] and by Raj and Rajendran [28] and
provides the same solution in all five runs of the computa-
tional experiments for all seven instances, as the one provided
by Calvete et al. [3], and which coincides with the optimal
solution.

Tables 2 and 3 provide the results of the computational
experiments in the case of the two classes of instances intro-
duced by Calvete et al. [3]. Both tables have the same struc-
ture: the first column of the tables give the name of the test
instance, the next two columns provide the optimal solution
of the problem Zopt provided by the professional optimization
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TABLE 1. Performance evaluation of our solution approach and the existing methods on the set of instances introduced by Gen et al. [9].

TABLE 2. Computational results for the first class of instances introduced by Calvete et al. [3].

TABLE 3. Computational results for the second class of instances introduced by Calvete et al. [3].

software LINGO together with the corresponding execution
time, next three columns display the best solution obtained
in all five runs of the computational experiments performed
by Calvete et al. [3] together with the corresponding average
computational time required to reach the best solution and the
average in the five runs of the iteration at which the best solu-
tion appeared. Finally the last five columns contain informa-
tion concerning our novel solution approach: the best solution
obtained in all five runs of the computational experiments,
the corresponding best computational time for achieving the
solution, the average computational time for achieving the
best solution, the iteration at which the best solution appears
and the average in the five runs of the iteration at which the
best solution appears. The computational times are reported
in secondswith the exception of problemsP6,1,P7,1,P8,1 and
P8,2 when the execution time for LINGO is more than two
hours.

Analyzing the displayed results from Tables 2 and 3,
we can observe that our proposed solution approach provides
the same solution in all five runs of the computational exper-
iments, as the one provided by Calvete et al. [3], and which
coincides with the optimal solution obtained using LINGO.
Regarding the computational times, our algorithm is faster in
comparison to the hybrid evolutionary algorithm described by

Calvete et al. [3] and the explanation is based on the manner
in which the combinations of distribution centers that are
going to be opened are searched: while Calvete et al. [3]
is using a genetic algorithm that uses simplex for fitness
evaluation for this operation, we are using an efficient and
fast heuristic procedure.

In Table 4, we present the characteristics of the new ran-
domly generated instances of larger sizes and the computa-
tional results achieved by our proposed SDS algorithm. The
first column contains the name of the instances, the next
four columns display the characteristics of the instances:
the number of manufacturers, distribution centers, customers
and the maximum number of distribution centers that can be
opened, and the last six columns contain the following results
achieved by our SDS heuristic algorithm: the best solution,
the average solution, the corresponding best computational
time for achieving the solution, the average computational
times for achieving the solution in all the five runs of the
computational experiments, the iteration at which the best
solution appears and the average in the five runs of the iter-
ation at which the best solution appears. The computational
times are reported in seconds.

We can observe that in all the new generated test instances
our algorithm provides the same solution in all the five runs
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TABLE 4. Computational results for the new test instances.

of the computational experiments, confirming the quality and
robustness of our proposed solution approach. These solu-
tions have been achieved within reasonable computational
times and within a small number of iterations.

VI. CONCLUSION
This paper proposes an efficient and fast constructive heuris-
tic algorithm for solving the two-stage fixed-charge trans-
portation problem which models an important transportation
systems design from manufacturers to customers through
distribution centers. Our Shrinking Domain Search algorithm
is based on the reduction of the solution search space to
a subspace with reasonable size, without losing optimal or
sub-optimal solutions, by considering a perturbation mecha-
nism that allows us to reconsider discarded feasible solutions
that might lead to such solutions.

Some important features of our proposed method are:
• it is based on the reduction of the solution search space
to a subspace with a reasonable size, without losing opti-
mal or sub-optimal solutions by considering a perturba-
tion mechanism that allows us to reconsider discarded
feasible solutions;

• it is highly efficient providing the best existing solutions
for all the test instances and in all five runs of the
computational experiments within short computational
times and number of iterations;

• it can be easily adapted to different distribution sys-
tems, such as the two-stage transportation problem with
fixed costs associated to the routes, etc., confirming its
flexibility.

The computational results on the existing benchmark
instances from the literature and on a set of instances that con-
tains eight new randomly generated larger instances show that
our proposed novel solution approach is highly competitive as
compared to the existing methods and outperforms the other
approaches for solving the two-stage transportation problem
with fixed charge for opening the distribution centers in terms
of necessary execution times to find the solutions.

In the future, we plan to use our code as the basis for a
parallel implementation and to test our heuristic algorithm on
even larger instances.
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