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ABSTRACT This paper presents an object detection method that can simultaneously estimate the positions
and depth of the objects from multiplexed images. Multiplexed image is produced by a new type of imaging
device that collects the light from different fields of view using a single image sensor, which is originally
designed for stereo, 3D reconstruction and broad view generation using computational imaging. Intuitively,
multiplexed image is a blended result of the images of multiple views and both of the appearance and
disparities of objects are encoded in a single image implicitly, which provides the possibility for reliable
object detection and depth/disparity estimation. Motivated by the recent success of CNN based detector,
a multi-anchor detector method is proposed, which detects all the views of the same object as a clique and
uses the disparity of different views to estimate the depth of the object. The proposed method is interesting in
the following aspects: firstly, both locations and depth of the objects can be simultaneously estimated from a
single multiplexed image; secondly, there is almost no computation load increase comparing with the popular
object detectors; thirdly, even in the blended multiplexed images, the detection and depth estimation results
are very competitive. There is no public multiplexed image dataset yet, therefore the evaluation is based on
the simulated multiplexed image using the stereo images from KITTI, and very encouraging results have
been obtained.

INDEX TERMS Object detection, depth estimation, multiplexed image.

I. INTRODUCTION
Benefiting from the development of deep convolution neural
networks (CNN) [2]–[4], object detection [5]–[7] has made
great progress in recent years. Given an image, the purpose
of object detection is to obtain the location and category
information of each object instance in it. As an impor-
tant part of computer vision, object detection has a broad
range of applications in many areas such as autonomous
driving [8], [9], robot vision [10], [11], and surveillance sys-
tem [12]. However, some applications (e.g. autonomous driv-
ing) not only need the positions of objects in the image but
also require these detected objects’ actual depth.

The task can be completed by 3D object detection that pre-
dicts the 3D location, dimensions (height, width, and length)
and orientation of objects. Benefiting from the accurate depth
measurement, methods [13]–[15] based on LiDAR (Light
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Detection And Ranging) data achieve state-of-the-art perfor-
mance in 3D object detection. But, LiDAR has the disad-
vantage of high cost, relatively short perception range and
sparse information. On the other hand, methods [16]–[18]
whose input is a monocular image cannot predict the accu-
rate depth of objects, especially for unseen scenes. Stereo
R-CNN [19] is a 3D object detection method that utilizes the
sparse and dense, semantic and geometry information in the
stereo images. But, its inference speed (0.28s per image) is far
from the real-time demanded for autonomous driving because
of extracting features from two images (a stereo image) and
post-processing.

To this end, we propose a simple and fast detector capable
of depth estimation based on the multiplexed image. Opti-
cally multiplexed imaging is a developing field in the area of
computational imaging. Shepard and Rachlin [1] proposed a
new imaging device that collects multiple channels of light
simultaneously by a single sensor, as illustrated in Fig. 1.
They also proposed methods to disambiguate a captured
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FIGURE 1. The architecture of the device for multiplexed imaging [1].

FIGURE 2. A stereo image (the image Il from the left camera and the
image Ir from the right camera) and the multiplexed image. In this paper,
we use overlapped image I = (Il + Ir )/2 to simulate the multiplexed
image.

multiplexed image to create images for each of the plurality of
image channels that can produce stereo images. Comparing
with multiplexed imaging, the method that uses two or more
cameras to create a stereo image suffers from the added cost,
power, volume and complexity of using multiple cameras.
What’s more, our method directly uses multiplexed images
as input instead of stereo images recovered from them. This
makes our method as fast as a common detector.

Notice that the purpose of our work is to estimate depth
information of detected objects. The multiplexed imaging in
this paper has two horizontal camera lens like stereo imaging
but only uses a single imaging sensor. This makes the multi-
plexed image equivalent to the overlapping of a stereo image
pair, as shown in Fig. 2.
Our work is based on the observation that both the appear-

ance and the disparity of every object are encoded implic-
itly in the multiplexed image. Our method, named Disparity
Detector, firstly detects all the views of the same object as a
clique by the strategy we proposed, then uses the disparity of
different views to estimate the depth of each object. There is
no public multiplexed image dataset yet; therefore, the exper-
iments are conducted on the simulated multiplexed image
using the stereo images from KITTI [20]. The proposed
method is developed based on the VGG16 [2] backbone and
SSD detector framework [5], but it can be easily incorporated
with other anchor-based CNN detectors (e.g. DSSD [21])
and backbones (e.g. ResNet [3]) for better performance. The
whole pipeline of our work is shown in Fig. 3.

The works in this paper are interesting in the following
aspects: 1) The proposed method can simultaneously esti-
mate the 2D positions and the actual depth of objects in
the multiplexed image; 2) Comparing with popular object
detectors, the proposed method has almost no extra compu-
tation load or latency time; 3) Even in blended multiplexed
images, the proposed method achieves competitive detection
and depth estimation results.

II. RELATED WORK
In this section, we are going to briefly review the advances of
the related works from three aspects: multiplexed imaging,
object detection, and disparity estimation framework.

A. MULTIPLEXED IMAGING
Optically multiplexed image acquisition techniques [1], [22]
have become increasingly popular for encoding different
exposures, color channels, light fields, and other properties
of light onto image sensors. Wetzstein et al. [23] presented a
joint optical light modulation and computational reconstruc-
tion approach to boost the dynamic range of multiplexed pho-
tographs. Shepard and Rachlin [1] proposed new multiplexed
imaging devices and methods that disambiguate a captured
multiplexed image to create image channels. Uttam et al. [24]
proposed a class of task-specific multiplexed imagers to
collect encoded data in a lower-dimensional measurement
space named superposition space and developed a decoding
algorithm that tracks targets directly in this superposition
space.

B. OBJECT DETECTION
The goal of object detection is to obtain the location and
category information of each object instance in a given
image. Classic detectors extract features of each sliding
window by hand-engineered descriptors (e.g. HOG [25],
SIFT [26] and Edge Box [27]) and then apply classifiers
to find objects. In the recent years, deep convolution neural
networks (CNNs) are widely used for vision tasks. Different
from classic detectors, CNN-based object detectors use image
features extracted by a base network (e.g. VGG16 [2]) to find
objects. Due to the outstanding performance, CNN-based
object detectors become the main force in the detection field.
Usually, CNN-based detectors can be roughly divided into
two categories, i.e., the two-stage approach and the one-stage
approach. The two-stage approach (e.g. R-CNN [28], Fast
R-CNN [29], and Faster R-CNN [30]) has two steps, where
the first one produces a fixed number of potential object pro-
posals, and the second one predicts the offsets of the spatial
location and category labels. The two-stage methods have
been achieving top results on several benchmarks, including
PASCAL VOC [31] and MS COCO [32]. Recently plenty
of novel techniques are used for better performance, such as
iterative bounding box [7] regression, training strategy [33]
and new loss [34] for bounding box regression.

The two-stage approach could be computationally expen-
sive for real applications, which have limited storage and
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FIGURE 3. The whole pipeline of our Disparity Detector framework. Disparity Detector takes the multiplexed image as input and consists of three flexible
modules (the backbone, the anchor-based detector, and the strategy to associate boxes of the same object). Disparity Detector estimates the depth of the
detected objects by their disparities of left and right views.

computational capability. The one-stage approach directly
predicts class probabilities and bounding box offsets with
a single forward convolutional neural network. Therefore,
the one-stage approach has a better trade-off between speed
and accuracy. SSD [5] andYOLO [35]–[37] are the represen-
tative object detectors of the one-stage approach. YOLO [35]
directly predicted the object category and the offsets of spatial
location with a single convolution network with fast inference
speed. Based on YOLO, YOLO9000 [36] used batch nor-
malization after each convolution layers for better results and
used convolution layers in place of fully connected layers for
classification and regression of location offsets. Liu et al. [5]
proposed a single shot object detector, named SSD, which
predicts objects using feature maps with different receptive
fields. DSSD [21] applied deconvolution operation to SSD
for additional context and used a more complex prediction
module for better accuracy. RetinaNet [38] investigated the
extreme class imbalance problem in the current one-stage
approach and solved it by re-designing the loss function.
Although the one-stage methods achieved faster speed than
that of the two-stage, their performance is still inferior to the
two-stage approach.

C. DISPARITY ESTIMATION
The goal of the depth estimation task is to predict the disparity
of every pixel in the input image. Several depth estimation
methods have made great progress benefiting from the rapid
development of neural networks. Zbontar and LeCun [39]
calculated patch similarities of a stereo image pair with a
Siamese convolutional network. Their method inspired sev-
eral studies on depth estimation using convolution networks.
DispNet [40] formulated the depth estimation as a supervised
learning problem and predicted disparities directly with a
convolutional network. PSMNet [41] used spatial pyramid
pooling to take advantage of the capacity of global con-
text information and achieved state-of-the-art performance.
Methods mentioned above can generate an accurate disparity
map but they are slow and require extensive computation.
To achieve a better trade-off between accuracy and speed,
AnyNet [42] estimated the depth in several stages, dur-
ing which the model can be queried at any time to output
its current best estimation. Monodepth [43] proposed the

unsupervised method that attempted to generate a dense dis-
parity map by training the network with an image reconstruc-
tion loss. It only required the stereo image pair for training
and enabled the network to learn to perform single image
depth estimation at a faster speed.

III. DISPARITY DETECTOR FRAMEWORK
In this section, we propose a strategy that can be cooperated
with any anchor-based object detector to form our Dispar-
ity Detector. Disparity Detector can simultaneously detect
objects and estimate the depth of the detected objects in the
multiplexed image. Firstly, we analyze the characteristic of
the multiplexed image and explain the reason why current
detectors are not suitable for the multiplexed images. Then,
we introduce the Disparity Detector which composes of a
backbone network, an anchor-based object detector, and our
proposed strategy.

A. THE CHARACTERISTIC OF MULTIPLEXED IMAGE
Since the multiplexed image used in this paper is a mixture of
images from two horizontal views, each object in it has two
parts that can be located with a pair of horizontal bounding
boxes (dashed boxes in Fig. 5). The disparity of an object
can be estimated by the horizontal pixel distance between
the centers of its two boxes. In stereo vision, the formula of
disparity and depth is:

depth =
b× f

disparity
(1)

where b is the stereo baseline distance and f is the focal
length of the camera. Benefiting from this characteristic,
the multiplexed image provides the possibility of joint object
detection and depth estimation.

However, the current CNN-based object detectors have
limitations when directly used to detect objects in the mul-
tiplexed images: The pair information of each object’s two
boxes can’t be fed into the network for training; Left or right
box of the same object may be filtered during non-maximum
suppression (NMS) due to their large overlapping area; From
the output of a detector, a set of predicted bounding boxes,
the disparity of each object is unavailable because the detector
cannot associate left and right boxes of the same object.
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FIGURE 4. The detailed network architecture of the proposed Disparity Detector.

FIGURE 5. The strategy to associate boxes of the same object. Left: Our
proposed strategy anchor pair ; Right: The strategy proposed by [19].

B. DISPARITY DETECTOR
Considering the speed-vs-accuracy trade-off, our Disparity
Detector is based on SSD [5], which is a representative one-
stage detector. SSD is built on top of a backbone network
(VGG16 [2]) that ends (or is truncated to end) with some con-
volutional layers. To detect objects with multiple sizes, SSD
utilizes feature maps with different receptive fields to predict
scores and offsets for the predefined anchors. These predic-
tions are performed by 3×3×#channels dimensional filters,
one filter for classification score and one for location offsets
of the anchors. Finally, non-maximum suppression (NMS) is
used to reduce redundancy and obtain the detection results.
More details can be found in [5].

To enable the detector to detect and associate the left and
right boxes from the same object in the multiplexed image,
we propose a strategy, named anchor pair, and cooperate it
with VGG16 [2] backbone and SSD [5] detector to form
our Disparity Detector. The detailed network architecture is
shown in Fig. 4.

1) ANCHOR PAIR
Inspired by each object having a pair of horizontal left and
right GT boxes, we propose anchor pair which is an exten-
sion of the anchor. Each anchor pair consists of a pair of
horizontal left and right anchors, as shown in Fig. 5. For
each anchor pair, we calculate its left anchor’s IoU (IoUl)
with the left GT box and its right anchor’s IoU (IoUr ) with
the corresponding right GT box. If its IoUl and IoUr are
both above 0.5, a positive label is assigned to the anchor
pair. A negative label is assigned if IoUl and IoUr are both
below 0.5. Each anchor pair predicts a classification score

so that its left and right anchors share the classification
score. We let the positive anchor pair predict location offsets
[1cxl, 1cxr , 1cy, 1wl, 1wr , 1h] respecting to the left and
right GT boxes, where we use cx, cy to denote the horizontal
and vertical coordinates of the box center in image space, w,
h for width and height of the box, and the superscript (·)l ,
(·)r for corresponding terms in the left and right box. Note
that we use the same cy, h offsets 1cy, 1h for the left and
right boxes because we use rectified stereo images to simulate
multiplexed images. Therefore, we have six offsets for each
anchor pair instead of four in the original SSD. Since each
predicted object’s left and right boxes are generated by the
same anchor pair and shared the classification score, they are
associated as a clique naturally. We use NMS on predicted
objects’ left and right boxes separately to reduce redundancy
and get final detection results. A predicted object will be kept
if its left and right box are both kept after NMS.

2) THE DIFFERENCE WITH THE CURRENT STRATEGY
Stereo R-CNN [19] proposed a simple but rough strategy
(referred to as strategy stereo) to associate boxes of the same
object. As shown in Fig. 5, strategy stereo assigned the union
of left and right ground-truth boxes (referred to as union GT
box) as the target for object classification. And an anchor is
assigned a positive label if its IoU with one of the union GT
boxes is above a threshold TH , or a negative label if the IoU
is below TL . Each positive anchor predicts offsets respecting
to the left and right GT boxes contained in the target union
GT box. However, the positive anchor having an IoU above
TH with the union box cannot guarantee that it also has a
high IoU for each box inside the union box. In other words,
the anchor with the positive label may have an IoU below TH
(even below TL) with left or right box.

IV. IMPLEMENTATION DETAILS
A. ANCHOR SHAPE
Different from the implementation in [5], the shape of the
anchor is determined by the k-means algorithm proposed
by YOLO9000 [36]. We first run Cluster IoU [36] on the
training set to automatically choose n1 (n1 = 6 in this paper)
of different anchor shapes (w, h). And these n1 anchor shapes
are used by strategy stereo. Cluster IoU is a k-mean algorithm
with the distance metric:

d(anchor, centroid) = 1− IoU (anchor, centroid) (2)
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TABLE 1. Average precision (in %) of detection, evaluated on the KITTI evaluation set.

FIGURE 6. Examples of the detection results on KITTI evaluation set using the proposed method. Left: Detection results on the multiplexed images;
Middle: Mapping the detection results to left images Il ; Right: Mapping the detection results to right images Ir .

Then, in each of the n1 cluster, we use the standard k-means
with Euclidean distance to get n2 (n2 = 4 in this paper) of
different distances d . Therefore, there are n1 × n2 shapes of
the anchor pair for the proposed strategy anchor pair.

B. NETWORK
We have made minor changes when re-implementing
SSD [5]: (1) The size of network input is 576 × 320. (2)
We remove the layers after Conv_8 in the original SSD
implementation and use three layers feature map (Con4_3,
Conv7, and Conv8_2) for prediction. Other settings, such as
data augmentation and hard example mining, are the same
as the original SSD. We train the network using SGD with a
weight decay of 0.0001. We train 100K iterations (the batch
size is 16) in total on an RTX2080 Ti GPU. The learning rate
is initially set to 0.001 and reduced by a factor of 0.1 at the
60K and 80K iterations.

V. EXPERIMENTS
In this section, we evaluate the proposed Disparity Detector
on the KITTI detection dataset [20]. Firstly, we introduce
the preparation of the dataset. Then, we compare our pro-
posed strategy with the strategy from Stereo R-CNN [19]
on the performance of object detection and depth estimation,
respectively.

A. DATASET PREPARATION
The KITTI detection dataset [20] provides 7481 training
stereo image pairs and 3D bounding box label (The 2D box
label of the left or right image can be calculated by project-
ing the 3D box to the corresponding image). We simulate

the multiplexed images using the stereo image pairs by
I = (Il + Ir )/2. Following Stereo R-CNN [19], this paper
only uses car category labels for training and evaluation, and
uses 50% of the images for training (training set), the rest
images are used for evaluation (evaluation set). The evalu-
ation has three difficulty levels: easy, moderate, and hard,
which are defined in terms of the occlusion, size and trunca-
tion levels of objects. Checking [20] for a detailed definition
of the difficulty levels.

We also use KITTI stereo 2015 [45] to train the depth
estimation methods [39], [41], [43]. It contains 200 train-
ing stereo image pairs with sparse ground-truth disparities
obtained using LiDAR.

B. PERFORMANCE OF OBJECT DETECTION
In this section, we evaluate the proposed Disparity Detector’s
performance of object detection. We train the Disparity
Detector with two strategies on the multiplexed image train-
ing set and evaluate them on the multiplexed image eval-
uation set. We also train the base detector, SSD and other
common detectors (Faster R-CNN [30], MFFD [44], and
YOLOv3 [37]) on the left image training set and evaluate it
on the left image evaluation set. For Faster R-CNN, the origi-
nal image is resized to 600 pixels in the shorter side. For SSD,
MFFD, and YOLOv3, the input image is resized to 576×320.
All detectors share the same anchor shape that introduced in
Section. IV.
Our Disparity Detector aims to simultaneously detect

and associate boxes of the same object in the multi-
plexed image. Besides evaluating the Average Precision (AP)
on the left image (mapping the detection results to the
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FIGURE 7. Imbalanced visual information of object in different views. Left: The objects in the multiplexed image; Middle: The objects in the left image;
Right: The objects in the right image.

TABLE 2. The proposed Disparity Detector’s performance of object-level depth estimation.

FIGURE 8. Combining object detection and depth estimation methods to
predict object-level depth. The bounding box (red) of the object is
predicted by SSD [5], and the depth estimation methods output the
dense disparity map. Left: Using the average disparity of central pixels as
the object’s disparity. Right: Using the median disparity of pixels inside
the box as the object’s disparity.

left image), we also use the stereo APmetric which defined in
Stereo R-CNN [19] to evaluate the association performance.
In stereo AP, a left-right box pair is considered as the True
Positive (TP) if the following conditions are met:

1. The maximum IoU between the left box and left GT
boxes is above the threshold;

2. The maximum IoU between the right box and right GT
boxes is above the threshold;

3. The selected left and right GT boxes belong to the same
object.

We mark the best method in bold-red. As reported
in Table 1, the proposed anchor pair outperforms strategy
stereo [19] by large margins. Specifically, the proposed
anchor pair outperforms strategy stereo over 2.69% and
1.99% for APleft (Hard level) and APstereo (Hard level),
respectively.We attribute it to our strategy’s accuratematch of

anchor and GT boxes. Some detection examples of Disparity
Detector are shown in Fig. 6.
We also observe that our Disparity Detector whose input

is the multiplexed image can get comparable performance
on the APleft compared with the common detectors that take
the left image as input. Our task (detecting objects from
two views) is more challenging and difficult than detecting
objects on the left image using the common detector. The
visual information of an object in the left and right views is
imbalanced. To be specific, some objects that are visible in
the left view could be occluded completely (even invisible)
in the right view, as shown in Fig. 7. Due to the lack of visual
information in the right view, our method cannot detect these
objects. This visual information imbalance problem will be
the main focus of our future work.

In this section, we evaluate the proposed Disparity
Detector’s performance of object-level depth estimation.
We report the results of Disparity Detector with two strategies
on the evaluation set. For evaluation, we use the end-point-
error (EPE), which is calculated as the average Euclidean dis-
tance between the estimated disparity and the ground-truth.
We also use the percentage of disparities with EPE larger than
t pixels (>tpx). Here an object is considered as correct if its
disparity EPE is less than t pixels. And the disparity of an
object is estimated by the horizontal pixel distance between
its centers of the left box and the right boxes.

Table 2 shows the comparison results of objects with dif-
ferent occlusion levels. We mark the best method in bold-red.
In the KITTI label, the objects with occlusion = 0 are fully
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FIGURE 9. Examples of object-level depth estimation results on KITTI evaluation set using Disparity Detector (with anchor pair ). The number in bold-red
is the ground-truth depth, and the number in bold-yellow is the predicted depth from our method.

TABLE 3. The performance of object-level depth estimation by combining object detection and depth estimation.

visible, occlusion = 1 means the objects are partly occluded,
and the objects with occlusion = 2 are largely occluded.
Our anchor pair outperforms strategy stereo in all object
occlusion levels except >5px when occlusion = 2. This
demonstrates that the detector with our proposed strategy
has a better ability to locate objects. We show some depth
estimation results of Disparity Detector with anchor pair
in Fig. 9.

C. PERFORMANCE OF DEPTH ESTIMATION
We also conduct an interesting experiment that combines
SSD with depth estimation methods [39], [41], [43] to pre-
dict object-level depth. These depth estimation methods are
trained with the KITTI stereo dataset. We utilize the bound-
ing boxes from SSD to locate objects and get the disparity
of each object from the disparity map predicted by depth
estimation methods. As shown in Fig. 8, the disparity of an
object can be estimated by the average disparity of its central
pixels or the median disparity of pixels inside its bounding
box:

dispobjectmean =
1

0.4w× 0.4h
×

cx+0.2w∑
cx−0.2w

cy+0.2h∑
cy−0.2h

disp(i, j) (3)

and

dispobjectmedian = median{disp(i, j)|(i, j) ∈ BB} (4)

where w, h, (cx, cy) are the width, height and center of an
object’s bounding box (BB), respectively. disp(i, j) is the
disparity map predicted by a depth estimation method such
as MC-CNN [39], PSMNet [41] and Monodepth [43].

Table 3 shows the evaluation results on the KITTI detec-
tion evaluation set. We mark the best method in bold-
red. It can be observed that this combination scheme (with
the state-of-the-art depth estimation method PSMNet [41])
achieves a comparable performance when the objects are
not occluded (occlusion = 0). However, their performance
drops severely when the object is occluded (occlusion = 1
and occlusion = 2) because most pixels inside the bounding
box do not belong to the object. By contrast, our proposed
Disparity Detector performs well and steadily in all occlusion
levels. What’s more, our method consumes much less time
(3× to 20× faster).

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented a new method for simul-
taneous object detection and depth estimation from a single
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multiplexed image. The multiplexed image can encode the
appearance and the disparity of every object by blending mul-
tiple views. The object detection task is formulated as a clique
detection task that can detect and associate all the views of
the same object in the image. Then, the actual position on
any single view and the disparity/depth of the object can be
recovered. The evaluation results showed that the proposed
method can yield very competitive results compared with the
state-of-the-art. And we find that the visual information of an
object in different views could be imbalanced, this problem
will be the main focus of our future work.
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