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ABSTRACT The wideband spectrum estimation is an essential step in the wireless network. In order to
avoid employing power-hungry high-rate analog-to-digital converters (ADCs), the CS-based sub-Nyquist
sampling approaches are used to estimate the wideband spectrum. In this paper, we propose a sub-Nyquist
sampling system based on the analog to information converter (AIC), and the proposed system is constructed
by multiple parallel channels with a banks of low pass filters. The system model is constructed in the time
domain. To estimate the power spectrum, we define a new power spectrum of samples with a finite length,
called the circular power spectrum (CPS), served as the aimwe strive to estimate. The definedCPS can clearly
reflect the power of the signal varyingwith frequency and is also with the same length as the equivalent digital
samples. The experimental results indicate that the defined CPS can be successfully estimated from samples
captured by the proposed sub-Nyquist sampling system whose overall sampling rate is much lower than the
Nyquist rate.

INDEX TERMS Cognitive radio, power spectrum estimation, circular power spectrum, compressed sensing,
sub-Nyquist sampling, wireless sensor network.

I. INTRODUCTION
In the wireless communication, the baseband signal is mod-
ulated to the high radio frequency (RF) band before being
transmitted. In order to prevent the interference between
transmitters, the government agencies assign the usage right
of each RF band to a specific user (also called as the primary
user: PU). The increasing demand of transmissions results in
the RF spectrum scarcity problem. However, the PUs are not
always active, and there are a large number of authorized sub-
bands being unoccupied. It causes a large waste of spectrum
resources and a very poor efficiency of the communication
system. To solve this problem, a promising scheme called the
cognitive radio (CR) is proposed [1]–[3], which can sense the
RF spectrum and search for the transmission opportunities for
the unlicensed users (also called as the second users: SUs)
in real time. The CR technique significantly improves the
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utilization efficiency of RF spectrum. The spectrum sensing is
the crucial step in CR. Many algorithms about the spectrum
sensing are proposed in CR [4], [5]. However. the most of
the previous works focus on detecting the status of the PUs,
which are based on the obtained samples that are captured at
the Nyquist rate. In practical, in order to detect the unused
spectrum holes, CR has to monitor the RF spectrum at the
Nyquist rate [4]. Generally, the band range of RF signal
is wide, the power-hungry and high-rate analog-to-digital
converters (ADCs) are required. On the other hand, due to
the wideband features of the RF spectrum, the Nyquist rate
of the signal of interest may exceeds the specifications of
the best of the ADCs by orders of magnitude. The single
high speed ADC solution cannot meet requirement of RF
signal acquisition. To address this challenge, many alternative
approaches have been proposed.

The time-interleaved sampling technique (TIS) is a famous
and widely used method that are adopted to acquire high
frequency signal in wireless communication system and radar
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system [6], [7]. The TIS samples the signal of interest using
a banks of low-speed ADCs that are clocked at the rates
with uniform phase delays. Obviously, the hardware imple-
mentation of TIS is complicated, and the input bandwidth
of ADC limits the maximum frequency of the signal of
interest. In comparison to TIS, the random equivalent sam-
pling (RES) technique would be relatively simple [8]. The
RES use only one low speed ADC to acquire high speed
signal. In order to capture enough information, multiple
RES sampling sequences has to be obtained. In the process
of acquisition, the signal should remain unchanged, and a
unique trigger reference should be provide in each acquisi-
tion. Clearly, there are much more limitation of RES appli-
cation. The TIS and RES pay no attention to the inherent
feature of the signal of interest. The Nyquist sampling is
not necessary in many applications, such as sparse signal
acquisition, where the signal information rate is much lower
than its band range. For this kind of signal acquisition, more
intelligent ways can be employed.

Compressed sensing (CS) has been proposed as an intel-
ligent signal processing theory for the inherent sparse sig-
nal [9], [10]. According to the CS theory, sampling at the
Nyquist rate is not necessary if the signal is sparse in a certain
domain. To be specific, we can sample a sparse wideband
signal at a rate much lower than its Nyquist rate and subse-
quently recover the original signal from a small number of
low-rate samples. Since it is proposed, the CS theory has been
widely studied in the fields of imaging signal processing,
wireless communication et. al. In this work, we focus on
the CS application in the spectrum sensing of the wireless
communication system.

TheCS theorymake the promise that the original signal can
be successfully recovered from a small number of samples,
which are captured by the ADCs that are clocked at the
sub-Nyquist rates. Since the wireless sensor network (WSN)
is sensitive to the energy, the feature of CS theory is suitable
for WSN signal processing, and the CS theory has found
many applications in WSN [11]–[13]. In WSN application,
a large number of well-distributed sensors are used tomonitor
the environment, such as signal spectrum [14]. Fortunately,
the signal of interest in WSN has been exploited to be sparse
in some basis. With the help of CS, a relatively small number
of low rate samples are obtained. It’s very meaningful in
WSN, small number of WSN samples means the minimiza-
tion of storage and communication in WSN nodes, and low
rate samples means power-hungry high speed ADCs are not
required. The application of CS in WSN can extend the
lifetime of the sensor nodes. Another application of CS in
WSN is the estimation directions-of-arrival (DOA) in the
spatial domain. In the DOA estimation, high sampling rate
can achieve high resolution, the node with high speed ADC
is adopted in the traditional WSN. To improve the DOA
estimation accuracy, the CS theory has been employed in
WSN [15], [16]. CS extracts the signal information from a
small number of low rate samples and recovery signal with

the high equivalent sampling rate, and it increases the degree
of freedom and improve the estimation accuracy.

In the CS framework, many approaches are also developed
to decrease the sampling rate, and sparse reconstruction algo-
rithms are proposed to recover the original signal [17]–[19].
In these sub-Nyquist sampling approaches, The most popular
ways are analog to information converter (AIC) [20], [21]
and modulated wideband converter (MWC) [22], both of
which are based on the random demodulation (RD) tech-
nique. Since only the base band signal is sampled, the
RD-based approaches not only achieve the sub-Nyquist sam-
pling but also avoid the bandwidth limitation of ADCs,
and they can realize the compression in the sampling
stage. Base on CS theory, some other sub-Nyquist sam-
pling methods are also developed. By incorporating CS to
RES technique. CS-based RES can reduce the requirement
of number of RES acquisitions [23], and the limitation of
input bandwidth of ADCs can be avoided [24]. In [25], the
quadrature AIC (QAIC) employs frequency down-conversion
to decrease the number of sampling channels of MWC.
Some other sub-Nyquist sampling approaches are also pro-
posed [26]–[29], however, they suffer from the bandwidth
limitation of ADCs.

All the above sampling approaches are aimed at recov-
ering the original signal or the signal spectrum. However,
in CR, the SUs make the decision of transmission base on
the absence of PUs, and the signal spectrum recovery is not
required and the signal power spectrum or power spectral
density is enough. In [30], a power spectrum estimation
system based on multicoset sampling is proposed, which
however does not avoid the disadvantages of the inherent
bandwidth limitation of ADCs and the accuracy of time
shift. In [31], the signal power spectrum is estimated based
on the parallel AIC model. However, it employs a bank of
integrators which have to be reset in each sampling period.
The reset process is non-trivial in practice, and it may limit
the application of AIC [32]. In this paper, we employ the low
pass filters instead of integrators to propose an AIC-based
system to estimate wideband power spectrum by low-rate
ADCs. The low pass filter is represented by a toeplitz matrix
and the proposed system is constructed in time domain. In our
proposed model, the low pass filter is assumed to be ideal.
Different from other power spectrum estimation approaches,
we define a circular autocorrelation function (AF) and cir-
cular power spectrum (CPS) of samples with finite length.
The definition can reflect signal’s power with respect to
the frequency and is appropriate to the proposed system.
According to the circular cross-correlation between outputs
of different channels, the CPS can be recovered using least
squares (LS) or traditional CS recovery algorithms. Note that
the assumption on signal sparsity is not necessary in the
proposed system, provided that the number of channels is big
enough to the given compression rate.

The rest of paper is organized as follows. The sub-Nyquist
sampling system is proposed in Section II. The definition
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FIGURE 1. The block diagram of the proposed sampling system with m
channels.

of CPS is given and the relationship between the CPS of
the input and the circular cross-correlation of the outputs
is derived in Section III. The power spectrum estimation
model is proposed in Section IV. The comparison is give
in Section V. And the simulation results are reported in
Section VI, followed by the conclusion in Section VII.

II. THE SUB-NYQUIST SAMPLING MODEL
Our aim is to sense wideband power spectrum of RF signals,
so we assume that the input signal denoted by x(t) is a
stationary wideband but bandlimited real-valued signal with
the Nyquist rate of 1/T .
As shown in Fig. 1, the system is a period-modulation sub-

Nyquist sampling system consisting of multiple channels.
Specifically, in ith channel, x(t) is firstly modulated in the
mixer by a NT-periodic random signal pi(t), which stochasti-
cally alternates at the Nyquist rate of 1/T between the levels
±1 in each period. Then the modulated wideband signal is
filtered by a low-pass filter (LPF)with cutoff 1/(2NT) denoted
by h(t). Finally, the baseband signal is sampled by a low-rate
ADCwith the sampling intervalNT. Note that the modulation
signal pi(t) in each channel is different from each other,
so we can obtain m distinct measurement vectors from m
channels. N is called the sub-Nyquist factor, and m/N is the
compression rate. The overall sampling rate of the system is
m/NT. The sub-Nyquist sampling can be achieved if m < N .
Consider the ith channel, its output can be expressed as

yi[k] =
∫
+∞

−∞

x(τ )pi(τ )h(t − τ )dτ |t=kNT . (1)

According to the sampling model, the relation between the
measurement vector yi of length M of the ith channel and
the input signal that is expressed as its equivalent Nyquist
sampling sequence x of length L(L = NM), which can be
expressed as the vector-matrix form

yi = RHPix, (2)

where R is an M × L downsampling matrix, H is an L × L
toeplitz matrix denoting the operation of the low-pass filter
and Pi is an L × L diagonal period-modulation matrix. More
specifically, the entry of jth row and jNth column ofR is equal

to 1 (1 ≤ j ≤ M ), and other entries are 0. An example with
N = 3 is

R =


0 0 1

0 0 1
. . .

0 0 1

 . (3)

Denote by h the L consecutive impulse response samples
of low-pass filter, and h = [h1, h2, . . . , hL]T . In this paper,
we consider the ideal low-pass filter, and h has the symmetri-
cal structure. The Toeplitz matrix H models the operation of
the low-pass filter. It has the form as

H =



h1 hL hL−1 · · · h2

h2 h1 hL
. . . h3

h3 h2 h1
. . . h4

...
...

...
. . .

...

hL hL−1 hL−2 · · · h1


. (4)

The modulation matrix Pi can be expressed as

Pi = IM ⊗ Di, (5)

where IM is an identity matrix with dimension M equal to
the length of measurement vector of each channel, Di is an
N × N diagonal matrix whose diagonal entries are equal to
+1 or−1 with the same probability 1/2 and ‘‘⊗’’ denotes the
Kronecker product. As an example, the diagonal entries of
the Di denoted by [a1, a2, . . . , aN ] (the value of entry is +1
or −1) is

Pi=diag(a1, a2, . . . , aN , a1, a2,. . ., aN ,. . ., a1, a2, . . . , aN).

(6)

Reverse the diagonal vector of Pi, we obtain a sequence ai
and construct matrix Qi = diag(ai). Since H is the toeplitz
matrix, the (l + 1)th row is the circularly right shifted vector
of the lth row. Denote by ci = hQi a digital filter operation,
we can define an observation zi as

zi[l] = ci[l]~ x[l], (7)

where ‘‘~’’ denotes the circular convolution operator, 1 ≤
l ≤ L. Therefore, the output yi can be viewed as the N -fold
downsampling version of zi, and

yi[k] = zi [kN ] , (8)

where 1 ≤ k ≤ M .

III. CIRCULAR POWER SPECTRUM
The bandlimited signals are infinite in time domain. Although
the processed signals are assumed to be bandlimited,
the observation time must be finite, i.e., the original signal
x[l] we strive to recover and the samples yi[k] we actu-
ally obtained are both finite-length sequences. Nevertheless,
the common definition of AF is given over infinite timescale,
i.e., rx[k] = E{x[l]x[l-k]}, where l, k ∈ Z. If this definition
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FIGURE 2. (a) is a sinusoidal wave of length L. (b) is its linear
autocorrelation as well as the triangular window. (c) is its circular
autocorrelation.

is directly employed in the situation of finite-length signals,
we will obtain a truncated AF, called linear AF. And the linear
AF of the finite-length sequence x[k] of length L is defined
as

r lx[k] =
∑

l
x[l]x[l − k], l, l − k ∈ [1,L]. (9)

Due to the impact of truncation, the length of r lx[k] is changed
to 2L-1 and a triangular window is added to r lx[k]. A prime
example of finite-length sinusoidal signal is shown in Fig. 2.
As we know, the AF of an infinite-length sinusoidal wave
is also an infinite-length sinusoidal wave with the same fre-
quency. However, it is clear in Fig. 2 (b) that the linear AF is
no longer a standard sinusoidal wave. And it is derived from
an infinite-length sinusoidal wave truncated by a triangular
window of length L. This triangular window can be expressed
as

w(t) =

{
LT − t, t ∈ [0,LT ]
LT + t, t ∈ [−LT , 0]

. (10)

The Fourier Transform of w(t) denoted by Wt(ω) can be
calculated as:

Wt(ω) =
∫
+∞

−∞

w(t)e−jωtdt

= LT
∫ LT

−LT
e−jωtdt +

∫ 0

−LT
te−jωtdt −

∫ LT

0
te−jωtdt

= 2L2T 2
·sin c(

ωLT
π

)+
1
−jω

(te−jωt
∣∣∣0
−LT
− te−jωt

∣∣∣LT
0
)

+
1
jω

(
∫ 0

−LT
e−jωtdt −

∫ LT

0
e−jωtdt)

= 2L2T 2
· sinc(

ωLT
π

)− 2L2T 2
· sinc(

ωLT
π

)

+L2T 2
· sinc2(

ωLT
2π

)

= L2T 2
· sinc2(

ωLT
2π

) (11)

where

sin c(x) =

1, x = 0
sin(πx)

x
, others

.

The interval of zero-crossing points of Wt(ω) is 4π /LT.
By contrast, the Fourier Transform of rectangular window is
W (ω) = 2LT ·sinc(ωLT/π ) whose interval of zero-crossing
points is 2π /LT. Assuming L = 10, Wt(ω) and W (ω) are
shown in Fig. 2. Their discrete forms, i.e. discrete Fourier
transform (DFT) of the two windows, must be also consid-
ered. As shown in Fig.2, all the zero-crossing points ofW (ω)
and Wt(ω) are exactly located in integer points as long as
the main frequency of W (ω) is located in an integer point.
However, there always exist non-zero harmonic components
in DFT of the triangular window no matter where its main
frequency is. The sparsity of signal in frequency domain will
be certainly increased by these non-zero harmonic compo-
nents, especially the two significant components at the both
sides of the main frequency. This could have a marked impact
on the signal recovery because most CS algorithm is base
on the sparsity of signals. The other disadvantage of this
triangular window is noticeable. The window length of linear
AF is nearly twice the window length of its original signal,
which enormously increases the difficulty of computation and
storage.

To conquer these two problems, the circular AF of finite-
length sequences is proposed. Similar to the relationship
between the linear convolution and the circular convolu-
tion, the circular AF of the finite-length sequence x[k] of
length L can be defined by its linear AF r lx[k], shown
as

rcx [k] =

{
r lx[k]+ r

l
x[k − L], k ∈ (1,L]

r lx[k], k = 1
. (12)

Still using the example of finite-length sinusoidal wave, its
circular AF is shown in Fig. 2 (c). As we can see, it is exactly
the infinite-length AF truncated by the same rectangular
window as the one added in signal. As shown in Fig. 3 (b),
the DFT of rectangular windows have no non-zero harmonic
components if its main frequency is located in an integer
point. Even if not, i.e., spectrum leakage happens, the rel-
ative amplitudes of its non-zero harmonic components are
still much smaller than the relative amplitudes of harmonic
components of triangular window at the both sides of themain
frequency. So this rectangular window has smaller impact
on sparsity than the triangular window in linear AF. More-
over, circular AF has the same length as the finite-length
signal, which is superior to linear AF in signal storage and
processing.

According to the DFT of rcx [k] , we define the CPS of the
finite-length sequence x[k] of length L as

Pcx[k] = DFT
(
rcx [k]

)
. (13)

The defined Pcx , also a finite-length sequence of the same
length as x[k], is easy for the digital signal processer to
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FIGURE 3. (a) is the frequency spectrum of triangular window as well as
its discrete values in DFT and (b) is the frequency spectrum of rectangular
window as well as its discrete values in DFT. Here we assume L = 10.

deal with. More significantly, signals’ power varying with
frequency can be clearly reflected by the r lx[k], also given by∣∣Pcx[k]∣∣ = |DFT (x[k])|2 /L.
Similar to the definitions of the linear AF and the circular

AF of a finite-length sequence, the linear cross-correlation
function and the circular cross-correlation function between
yi[k] and yj[k] are respectively defined as

r lyi,yj [k] =
∑

l
yi[l]yj[l − k], l, l − k ∈ [1,M ], (14)

and

rcyi,yj [k] =

{
r lyi,yj [k]+ r

l
yi,yj [k −M ], k ∈ (1,M ]

r lyi,yj [k], k = 1
. (15)

IV. POWER SPECTRUM ESTIMATION
In the proposed system with m channels, (m + 1)m/2 dif-
ferent circular cross-correlation functions can be exploited.
In order to recover signal power spectrum, we need to
derive the relation between the circular cross-correlation
function of the outputs and the circular autocorrelation
rcx [k].
According to (7) and (8), the circular cross-correlations of

the zi can be expressed as

rczi,zj [k] = rcci,cj [k]|~ rcx [k], (16)

and

rcyi,yj [k] =
1
N
rczi,zj [kN ]

=
1
N
rcci,cj [kN ]~ rcx [kN ]. (17)

We can re-write (17) in the vector-matrix form as

rcyi,yj =
1
N
D · Ci,j · rcx , (18)

where rcyi,yj = [rcyi,yj [1], r
c
yi,yj [2], · · ·, r

c
yi,yj [M ]]T , rcx =

[rcx [1], r
c
x [2], · · ·, r

c
x [L]]

T , D is an M × L downsampling
matrix similar toR, andCi,j is the L×L Toeplitz matrix with
the expression as

Ci,j=


rcci,cj [1] rcci,cj [L] rcci,cj [L − 1] · · · rcci,cj [2]
rcci,cj [2] rcci,cj [1] rcci,cj [L] · · · rcci,cj [3]
rcci,cj [3] rcci,cj [2] rcci,cj [1] . . . rcci,cj [4]
...

...
...

. . .
...

rcci,cj [L] rcci,cj [L − 1] rcci,cj [L − 2] · · · rcci,cj [1]

 .
(19)

Consider all the m channels in the proposed system to obtain
(m+ 1)m/2 different equations as (18). Combine these equa-
tions in a certain order to obtain

rcy1,y1
rcy1,y2
...

rcy1,ym
rcy2,y2
rcy2,y3
...

rcy2,ym
...

rcym,ym



=
1
N



D · C1,1
D · C1,2

...

D · C1,m
D · C2,2
D · C2,3

...

D · C2,m
...

D · Cm,m



· rcx ,

⇔ rcy,y = 8 · rcx , (20)

where rcy,y is the M (m+ 1)m/2× 1 vector, and 8 is M (m+
1)m/2× L matrix. Combine (13), eqn. (20) can be re-written
as

rcy,y = 8 ·9 · Pcx . (21)

where 9 is the L × L inverse DFT matrix and Pcx is a L × 1
vector denoting the circular power spectrum Pcx[k].
Note from (21), it is a underdetermined problem in the

case M (m + 1)m/2 < L, i.e. when the number of channels
m is small. Because the measurement matrix 8 is a random
matrix constructed by m different periodic random modulat-
ing sequences whose periods are equal to the sub-sample fac-
tor N , and 8 satisfies the restricted isometry property (RIP)
with high possibility as N increases. With the additional
constraint of sparsity on Pcx , problem (21) becomes a stan-
dard mathematic model of CS literature, making the perfect
recovery of Pcx possible in the case of M (m + 1)m/2 < L.
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FIGURE 4. The block diagram of the integrator-based sampling system
with m channels.

Since L = NM , eqn. (23) can be transformed into an overde-
termined problem with a proper sub-sample factor N. There-
fore, Pcx can be estimated using the least square (LS)
algorithm without any constraints on signals.

V. COMPARISON WITH THE RELATED WORK
In [18], a typical sub-Nyquist system can be used to estimate
the linear power spectrum which is defined as the DFT of the
linear AF, i.e.,

Plx[k] = DFT
(
r lx[k]

)
. (22)

As illustrated in Fig. 4, this system employs a bank of integra-
tors which have to be reset in each sampling period. The reset
process is non-trivial in practice, and it may limit the practical
performance of this system. The power spectrum estimation
model of this system can be expressed as [17]

rly,y = 8l
·9 · Plx , (23)

where rly,y denotes a (2M−1)(m+1)m/2×1 vector composed
of the linear correlation functions of sampling sequences in
m channels, Plx denotes a (2L − 1)× 1 vector of linear power
spectrum of input signal x(t), 8l denotes the (2M − 1)(m +
1)m/2 × (2L − 1) measurement matrix composed of linear
correlation functions of random sequence pi(t), and 9 is the
(2L − 1)× (2L − 1) inverse DFT matrix.

Compare (21) and (23), they have the same form. How-
ever, as regards the same input x(t), sampling frequency and
sampling time, rly,y and Plx are nearly twice longer than rcy,y
and rcx respectively, and 8l is nearly 4 times bigger than 8.
This means that the computation amount of solving (23) is
much bigger than the computation amount to solve (21) using
the same algorithm. In addition, CS-based algorithms are not
quite suitable for (23) due to the effect of triangular window
on linear AF.

The differences between the proposed system in this paper
and the integrator-based system are concluded in TABLE 1.

TABLE 1. Comparison between filter-based system (FS) and
integrator-based system (IS).

VI. SIMULATION RESULTS
In this section, the numerical simulations are performed to
evaluate the proposed system with different m/N , L, input
signal-to-noise ratio (SNR) and sparsity K . And it is assumed
that the noise added to the input is always white Gaussian
noise in all the experiments. Served as a metric evaluat-
ing the recovery performance, the normalized mean square
error (NMSE) between the input CPS and the recovered CPS
is defined as

NMSE =

∥∥∥Pc′x − Pcx
∥∥∥∥∥Pcx∥∥ , (24)

where the vector Pcx denotes the CPS of the input signal
without noise, the vector Pc

′

x denotes the recovered CPS
and the || · || denotes the Euclidean norm. In VI-A and
VI-B, a bandpass signal with frequency support between
1.28 GHz and 1.32 GHz is tested. And in VI-C, a multi-
tone signal with all frequency components verifying below
1.8GHz is served as the input signal. To simplify, the discrete-
time signal with the equivalent sampling rate of 3.6 GHz is
generated.

A. CPS RECOVERY
In this subsection, we investigate the feasibility of the
power spectrum estimation based on the defined CPS. L =
1440 equivalent samples are considered in this simula-
tion. Fig.5(a) shows the amplitude-frequency curve (AFC)
based on DFT of signal, Fig.5(b) shows the linear power
spectrum (LPS) defined as (22). Obviously, for a sam-
pling sequence with length of L, its LPS has the length of
2L − 1. So the system needs to store and process large
number of data. By contrast, in the Fig.5(c), the CPS has
the same length as the samples, and its values perfectly
satisfy the relation

∣∣Pcx[k]∣∣ = |DFT (x[k])|2 /L. Fig.5(d)
shows the estimated CPS from the noise-free samples, which
are acquired by the proposed system with m = 6 chan-
nels and the sub-Nyquist factor N = 12. The orthog-
onal matching pursuit (OMP) algorithm is used [6], and
the estimated CPS achieves NMSE of 3.7 × 10−8. Clearly,
the feasibility of the proposed CPS estimation algorithm is
demonstrated.
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FIGURE 5. (a) is the ACF of the input, (b) is the LPS of the input, (c) is CPS
of the input, and (d) is the recovered CPS.

FIGURE 6. The NMSE between the CPS of the input without noise and the
recovered CPS with different m/N and L.

B. CPS ESTIMATION OF BANDPASS SIGNAL
In this subsection, two experiments are carried out. In the first
one, we consider the recovery performance in the noise-free
environment with different sequence length L and compres-
sion rate m/N . To generate different m/N , we fix m = 6
and change N from 12 to 30. So the overall sampling rate
is from 0.72 GHz to 1.8 GHz, which is much lower than
the Nyquist sampling rate of 3.6 GHz. The underdetermined
cases exist in the experiment due to the fact thatm is relatively
small. So the OMP algorithm is adopted to estimate the
CPS. For each specific compression rate, 200 random trials
are performed, and the averaged NMSEs are plotted in the
Fig.6. the NMSE increases with the compression rate m/N
decreasing while it gradually decreases with the sequence
length L increasing. Setm = N = 6, the overall sampling rate
achieves theNyquist sampling rate. The horizontal lines in the

FIGURE 7. The NMSE between the CPS and the recovered CPS with
different m/N and input SNR.

Fig. 6 denote the NMSE of estimation from the ‘‘Nyquist’’
samples. These lines can be regarded as benchmarks reflect-
ing the impact from sub-Nyquist sampling.

In practical application, the signal may be corrupted by
noise. So, in the second experiment of this subsection, more
practical situation is considered that the test signal is cor-
rupted by the white Gaussian noise. In the simulation, m = 6
and L = 3600 are fixed, the compression rates over range
of 0.2 to 0.5 in increment of 0.05 are tested in the noisy
environment with different input SNRs. The OMP algorithm
is used to estimate the CPS, and the averaged NMSEs from
200 random trials are depicted in Fig. 7. We still draw
the benchmarks denoting the Nyquist sampling. In com-
parison to Fig. 6, the differences between the benchmarks
and the NMSEs of estimation from sub-Nyquist samples are
much smaller. This suggests that, for sub-Nyquist sampling,
the impact on the estimation performance in the noise case is
stronger than that of the noise-free case.

C. CPS ESTIMATION OF MULTITONE SIGNAL
As regards multitone signals, two experiments are conducted
in this subsection, to compare the PS estimation performance
and the support recovery performance of FS and IS. Here we
set L = 3600, m = 6 and N = 12. The sparsity K varies
from 2 to 6 and the input SNR varies from -30 dB to 30 dB.
And all the frequency components of the multitone signal are
random uniformly distributed from 0 to 1.8 GHz.

In the first experiment, the LS is chosen as the recovery
algorithm and NMSE is still served as the criterion of their
estimation performance. As illustrated in Fig. 8, the NMSE
of both FS and IS decreases with input SNR increasing or
sparsity K decreasing. The estimation performances of both
FS and IS are acceptable only when input SNR exceeds 0 dB.
When K is small, FS performs better than IS. Although the
NMSE of FS is larger than the NMSE of IS in large-sparsity
case, but it is still tolerable when input SNR exceeds 6 dB.
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FIGURE 8. The NMSE of FS and IS with different sparsity K and input SNR.

FIGURE 9. The support recovery rate of FS and IS with different sparsity K
and input SNR.

Other than the error in the estimated outcome, it is also
noteworthy whether the support of input signals can be found
exactly. So in the second experiment, we use OMP algorithm
to search for the support in the frame of PS estimation.
300 experiments are conducted in order to obtain the success
rate of support recovery. As shown in Fig. 9, FS can reliably
find the support when input SNR exceeds -18 dB which
is a rather strong noise environment. However, due to the
triangular window discussed in III, IS cannot precisely find
the support expect the case of low sparsity level.

VII. CONCLUSION
In the paper, employing the time-domain model of low pass
filters, we propose an AIC-based sub-Nyquist sampling sys-
tem to estimate wideband power spectrum, which is the cru-
cial step in wireless network or CR.We give a novel definition
of power spectrum of finite-length sequences called circular
power spectrum. The defined CPS can clearly reflect the
power of the signal varying with frequency and it is also
with the same length as original sequence making signal pro-
cessing easier. Thanks to no triangular window added in the
circular AF, CPS is superior to LPS in terms of the capability

to remain the sparsity. Through mathematic derivation and
experimental verification, the defined CPS can be exactly
reconstructed even if the overall sampling rate is much lower
than the Nyquist sampling rate. Moreover, compared with IS,
FS has the similar PS estimation performance but in terms of
support recovery, FS is much superior to IS. In order to make
the system more practical, our future work is to study the
ways to replace the ideal low pass filters by actual non-ideal
low pass filters and analyze the impact on the recovery per-
formance.
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