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ABSTRACT A day-ahead economic scheduling method based on chance-constrained programming and
probabilistic sequence operation is proposed in this paper for an electric vehicle (EV) battery swapping
station (BSS), considering the dual uncertainties of swapping demand and photovoltaic (PV) generation.
First of all, a BSS day-ahead scheduling model that can deal with the uncertainties is established by using the
chance-constrained programming. The optimization objective is to minimize the cost of electricity purchased
from the utility grid with the chance constraints of swapping demand satisfaction and the confidence level
of the minimum cost. Then, the deterministic transformation of chance constraints is implemented based
on probabilistic sequences of stochastic variables. Thereafter, the feasible solution space of the proposed
model is determined based on the battery controllable load margin, and then the fast optimization method
for the BSS day-ahead scheduling model is developed by combining the feasible solution space and genetic
algorithm (GA). In order to evaluate the solution quality, a risk assessment method based on the probabilistic
sequence for day-ahead scheduling solutions is proposed. Finally, the efficiency and applicability of the
proposed method is verified through the comparative analysis on a PV-based BSS system. Results illustrate
that the model can provides a more reasonable charging strategy for the BSS operators with different risk
appetite.

INDEX TERMS PV-based battery swapping station, day-ahead scheduling, chance-constrained program-
ming, uncertainties, probabilistic sequence.

NOMENCLATURE
2 Subtraction-type convolution operation
⊕ Addition-type convolution operation
◦© Sequence multiplication operation
p Unit price of purchase electricity from the

utility grid
Pb, PPV Batteries charging load and PV power
Pr {·} The probability that the event is true
Nneed The number of swapping demand
Ns The number of available batteries
f̄ The minimum value taken by the electricity

cost function when the confidence level is not
lower than β

f (Pb,PPV ) Electricity cost function

The associate editor coordinating the review of this article and approving
it for publication was Fabio Massaro.

PPVr ,PPVf Actual/predicted value of PV output
e (t) Prediction error of PV output at time t
σPV ,t The standard deviation of e (t)
PPV ,t (iPVt) Probabilistic sequence of PV output
fPV ,t (x) Probability distribution function of PPV
1P,1p The discretization step size of PV output/ the

TOU price
NPV ,t The length of the sequence PPV ,t (iPVt)
Pb,t (ibt) Probabilistic sequence of Pb
Ct (iCt) Probabilistic sequence of electricity cost in

time t
pt
(
ipt
)

Probabilistic sequence of p at time t
F (iF ) Probabilistic sequence of daily electricity cost
DNSt (iDt) Probabilistic sequence of the unmet swapping

demand at time t
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Nneed,t (iNt) Probabilistic sequence of Nneed (t)
NSt (ist) ,N ′St

(
i′st
)

Probabilistic sequence of
planed/updated Ns at time t

1N ′t (it) Probabilistic sequence of the number
of remaining available batteries

funder The undervalued part of electricity
cost

λdns,λunder The unit penalty for not meeting the
swapping demand / the underestima-
tion of electricity cost

I. INTRODUCTION
As an important solution to urban environmental problems,
electric vehicles (EVs) have attracted extensive attention
from governments, academia and industry worldwide in
recent years [1], and been vigorously promoted. In order to
promote the implementation of the Paris Agreement, France,
Germany, Norway, Netherland and other European countries
agreed, during the 2017 G20 meeting in Hamburg, to ban
the automobile running on fuels between 2025 and 2040.
The announcement largely accelerates the development of
battery in EV with its application. For buses and Taxi which
have longer operation time than parking time and unified
battery models, the battery swapping should enable the rapid
battery energy replenishment. Besides, by managing the bat-
tery charging strategy, battery swapping could be consid-
ered as the most efficient alternative mode: 1) eliminate the
peak-to-valley load difference 2) adjust the grid frequency
3) reduce the energy cost 4) increase the asset utilization effi-
ciency [2]–[7]. The facilities to realize the battery swapping
mode usually occupy a large area. If large-scale PV power
generation can be arranged according to local conditions, the
proportion of clean energy in the primary energy of EVs can
be more effectively increased, and the power supply burden
of the utility grid can be reasonably reduced [8]. Obviously,
the economic scheduling of an PV-based BSS plays a very
important role in supporting the realization of the above
effects.

The day-ahead economic scheduling of an PV-based BSS
needs to take into account uncertain factors during the actual
operation process. At present, scholars have carried out some
initial relevant research work, including short-term forecast-
ing, Monte Carlo simulation and multi-scene technology
to deal with the uncertainties of swapping demand or PV
output [8]–[11]. Most studies have used the typical cases
of uncertain factors to represent uncertainties. One major
drawback of these methods is that the timing combination
of the actual values of uncertain factors inevitably deviates
from the above typical cases, thus affecting the economy
and applicability of day-ahead scheduling results in actual
operation. So far, there is no day-ahead dispatching research
of BSSs that can solve this problem.

For themathematical model of the BSS day-ahead schedul-
ing with uncertain factors, authors in [13] considered the
uncertainty of swapping demand, and used the robust

optimization method to design the BSS day-ahead schedul-
ing. In fact, different operators have different risk appetite.
However, the robust optimization results are relatively con-
servative and cannotmeet the high-yield expectations of some
operators. Thus, this paper adopts the chance-constrained
programming with flexible choice of confidence level to
establish the economic operation model of the BSS. The
operation plan formulated according to the operator’s risk
appetite can realize the economic operation of the BSS at the
given confidence level.

For the problem of solving the BSS scheduling model,
the algorithm used to solve this problem is compared in [14],
and the results show the superiority of GA in solving this
type of problem. Therefore, GA is chosen to solve the model
in this paper. In [15], GA is used to solve the economic
operationmodel of the BSS, and removed the new individuals
which did not meet the conditions generated by the genetic
operation. But this operation is detrimental to the diversity
of the population. Due to the complexity and timing cor-
relation of the BSS scheduling model, how to ensure the
feasibility of the solution and remain the efficiency of the
algorithm are the key issues needed to be paid attention to in
the research. In [16], for the dynamic classification of EVs,
the energy limitation calculation model is proposed to deter-
mine the upper and lower limits of the controllable energy.
The results were used to design the charging power allocation
algorithm. The controllable load margin of the batteries in
the BSS proposed in [18] has great guiding significance for
the BSS operator to formulate the corresponding charging
plan according to the grid operation requirements. According
to the above literature review, the feasible solution space
to the day-ahead scheduling can be constructed by using
the battery load margin, and combined with GA to achieve
optimal operation and high efficiency.

The main contributions of the paper are:
(1) In this paper, the probabilistic sequence is used to

describe the dual uncertainties of swapping demand and
PV output, which can cover the timing combination of any
possible value of uncertain factors in actual operation. The
obtained scheduling scheme has stronger applicability to the
changes of uncertain factors.

(2) The chance-constrained programming is adopted to
establish the economic operation model of the BSS. Com-
pared with the relatively conservative robust optimization,
the proposed model can formulate the operation plan accord-
ing to the operator’s risk appetite, so as to meet the needs of
different operators. In order to evaluate the solution quality
and analyze the relationship between economy and risk, a risk
assessment method based on the probabilistic sequence for
day-ahead scheduling solutions is proposed.

(3) By using the controllable load margin of batteries in the
BSS proposed in [17] to determine the feasible solution space,
a fast optimization method for the BSS day-ahead scheduling
model is proposed.

The rest of the paper is organized as follows: Section II
describes the model of day-ahead scheduling for the BSS

115626 VOLUME 7, 2019



H. Liu et al.: Day-Ahead Scheduling for an EV PV-Based BSS Considering the Dual Uncertainties

based on chance-constrained programming. In Section III,
uncertain factors are described by using probabilistic
sequences, and a chance constraints processing method based
on probabilistic sequence is proposed to achieve deterministic
transformation of chance constraints. Then the fast optimiza-
tion method based on determining feasible solution space
is proposed in Section IV. In Section V, risks in day-ahead
scheduling for the BSS are described, and a risk assessment
method for day-ahead scheduling solutions is proposed to
evaluate the solution quality. In Section VI, case studies
are described and the assigned values for related parameters
are given. In addition, case comparisons are conducted and
results are analyzed. Conclusions of the paper are made in
Section VII followed by references.

II. DAY-AHEAD SCHEDULING OF THE BSS BASED ON
CHANCE-CONSTRAINED PROGRAMMING
Since the day-ahead scheduling makes decisions before
observing uncertain factors, it is difficult to coordinate uncer-
tain factors with traditional deterministic planning methods.
The chance-constrained programming could well describe
the uncertainty of stochastic variables so that the decision can
realize the economic operation of the BSS at the given confi-
dence level. Therefore, the chance-constrained programming
is used to construct the day-ahead scheduling model of the
BSS.

A. CHANCE-CONSTRAINED PROGRAMMING
Chance-constrained programming allows the decision to
fail to satisfy the constraints under a certain probabil-
ity, but the decision should make the probability that the
constraints be satisfied is not lower than the confidence
level. Chance-constrained programming can be expressed as
follows:

min f̄
s.t.Hj (x) ≤ 0, j = 1, 2, · · ·m
Pr {Gk (x, ξ) ≤ 0} ≥ α, k = 1, 2, · · · p
Pr
{
f (x, ξ) ≤ f̄

}
≥ β

(1)

where x indicates the decision vector, ξ indicates the stochas-
tic parameter vector, Hj (x) is the traditional deterministic
constraint, Gk (x, ξ) is the chance constraint, f (x, ξ) indi-
cates the objective function, Pr {·} indicates the probability
of the event being established, α and β are confidence levels
preset by the decision maker, f̄ is the minimum value taken
by the objective function f (x, ξ) when the confidence level
is not lower than β.

B. OBJECTIVE FUNCTION
In order to minimize the cost of electricity purchased from
the utility grid, the uncertainties of swapping demand and PV
power generation during the operation of the BSS are consid-
ered when the initial charging time of batteries is optimally
arranged to achieve the most economic operation of the BSS.

The objective function is shown in equation below:

minF =
24∑
t=1

PEL (t) p (t) (2)

where,

PEL (t) =

{
Pb (t)− PPV (t) Pb (t) ≥ PPV (t)
0 Pb (t) < PPV (t)

(3)

where PEL (t) indicates equivalent charging load. Pb (t) indi-
cates the charging load of batteries in the BSS during the
t-th period, that is, the decision variable of the day-ahead
scheduling of the BSS. PPV (t) indicates the PV output power
in the t-th period, which is a stochastic variable; p (t) indicates
the grid time-of-use (TOU) price.

C. CONSTRAINTS
1) CHANCE CONSTRAINT OF SWAPPING DEMAND
SATISFACTION
During the actual operation of the BSS, the swapping demand
varies due to the error from day-ahead PV generation fore-
cast. In order to ensure that the probability of the actual
swapping demand satisfaction is not lower than the given
confidence level α, the following chance constraint is set.

Pr {Nneed (t) ≤ Ns (t)} ≥ α (4)

where Nneed (t) is a stochastic variable, representing the
actual swapping demand for the t-th period. Ns (t) is the
number of batteries that the BSS plan to provide for t-th
period.

2) CHANCE CONSTRAINT OF ELECTRICITY COST
Affected by the forecasting error of PV output, the cost
generated in the actual operation of the day-ahead scheduling
scheme is volatile. The probability that the electricity cost of
the day-ahead scheduling plan for the actual operation does
not exceed the objective value should not be lower than the
given confidence level β.

Pr
{
f (Pb,PPV ) ≤ f̄

}
≥ β (5)

where f (Pb,PPV ) indicates electricity cost function. Pb is
the decision vector, that is, the load of charging batteries
in each period set by the day-ahead scheduling. PPV is a
stochastic vector. f̄ is the minimum value taken by electricity
cost function when the confidence level is not lower than β.

3) BATTERIES CHARGING LOAD DETERMINISTIC
CONSTRAINT
In this paper, the deterministic constraint on the batteries
charging load is shown in equation below:

Pmin (t) ≤ Pb (t) ≤ Pmax (t) (6)

where Pmin (t) and Pmax (t) are the upper and lower limits
of the charging load margin of the batteries proposed in [17]
after considering the swapping demand.
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III. CHANCE CONSTRAINTS PROCESSING METHOD
BASED ON PROBABILISTIC SEQUENCES
Traditional chance-constrained programming is mostly
solved by stochastic simulation methods, but the result of
each simulation is different. It is difficult to obtain the inverse
function of the cumulative distribution function (CDF) of
stochastic variables when the chance constraint is trans-
formed into a deterministic equivalent form. In order to solve
the above problems, the probabilistic sequence is used to
describe uncertainties of both the swapping demand and the
PV output, then sequence operation is performed on the
objective function containing stochastic variables to obtain
the calculation result. This is also the result of the discretiza-
tion of the probability distribution of the daily electricity
cost. This allows chance constraints to be transformed into
a deterministic constraint by using the discretized probability
distribution.

A. PROBABILISTIC SEQUENCE AND ITS OPERATION
THEORY
The existence of uncertainty makes the real problem more
complicated and difficult. The academic community has pro-
posed a variety of analytical methods to solve the uncertainty
problem. In [18], probabilistic sequences are defined on the
basis of the general sequence operation, and the probabilistic
sequence is used to represent the probability distribution of
stochastic variables, which is used to deal with complex
uncertainties in reality problem [19]. The nature of its opera-
tion is discussed in detail in [20].

In [20], the probabilistic sequence is defined as: a dis-
crete sequence a (i) with known length Na, if it satisfies:

0 ≤ a (i) ≤ 1 and
Na∑
i=0

a (i) = 1, the sequence is called a

probabilistic sequence.
Two discrete sequences a (ia) with known length Na

and b (ib) with known length Nb are used as the original
sequences, and the following operations are defined.

1) ADDITION-TYPE CONVOLUTION OPERATION

x (i) =
∑

ia+ib=i

a (ia) b (ib) i = 0, 1, · · · ,Nx (7)

where Nx = Na + Nb. The operation defined by ‘‘(7)’’ is the
addition-type convolution operation. The sequence x (i) of
length Nx is the addition-type convolution sequence of a (ia)
and b (ib), which can be denoted as

x (i) = a (ia)⊕ b (ib) (8)

2) SUBTRACTION-TYPE CONVOLUTION OPERATION

y (i) =


∑

ia−ib=i

a (ia) b (ib) 1 ≤ i ≤ Ny∑
ia≤ib

a (ia) b (ib) i = 0
(9)

where Ny = Na. The operation defined by ‘‘(9)’’ is the
subtraction-type convolution operation. The sequence y (i)

of length Ny is the subtraction-type convolution operation
sequence of a (ia) and b (ib), which can be denoted as

x (i) = a (ia)2b (ib) (10)

3) SEQUENCE MULTIPLICATION OPERATION

y (i) =


∑

ia−ib=i

a (ia) b (ib) 1 ≤ i ≤ Ny∑
ia≤ib

a (ia) b (ib) i = 0
(11)

where Ns = NaNb. The operation defined by ‘‘(11)’’ is
the sequence multiplication operation. The sequence s (i) of
length Ns is the sequence multiplication operation result of
a (ia) and b (ib), which can be denoted as

s (i) = a (ia) ◦©b (ib) (12)

B. PROBABILISTIC SERIALIZATION MODEL FOR
STOCHASTIC VARIABLES
In this section, probabilistic serialization models for stochas-
tic variables are constructed according to the probability den-
sity function (PDF) of stochastic variables. This method is
suitable for various types of stochastic variables. In this paper,
the stochastic variables are assumed to follow the normal
distribution.

1) PROBABILITY SERIALIZATION MODEL FOR PV
GENERATION
The PV generation value can be expressed by the sum of the
short-term predicted value and predicted error as is shown
below,

PPVr (t) = PPVf (t)+ e (t) (13)

The predicted error e (t) is assumed to follow a normal
distribution N

(
0, σ 2

PV ,t

)
, where the standard deviation σPV ,t

is 10% of the predicted value PPVf (t). The predicted value
is used as the mean value to construct the probability density
function of PV output. And the corresponding PDF at time t
is shown as equation below:

fPV ,t (x) =
1

√
2πσPV ,t

exp

(
−

(
x − PPVf (t)

)2
2σ 2

PV ,t

)
(14)

The time-series multi-state probability sequence of PV
output PPV ,t (iPVt) is constructed by using the PDF of PV
output. The length NPV ,t of the sequence PPV ,t (iPVt) is

NPV ,t =
[
PPV ,t max/1P

]
(15)

where
[
PPV ,t max/1P

]
is the largest integer below

PPV ,t max/1P. PPV ,t max is the maximum possible value of
PV output in t-th period. 1P is the discretization step size.
The probability serializationmodel for PV generation is given
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by

PPV ,t (iPVt) =


∫ 1P

2
0 fPV ,t (x) dx iPVt = 0∫ iPVt1P+1P2
iPVt1P−1P2

fPV ,t (x) dx 0 < iPVt < NPV ,t∫ iPVt1P
iPVt1P−1P2

fPV ,t (x) dx iPVt = NPV ,t

(16)

where PPV ,t (iPVt) represents the probability of different PV
output states at time t.

2) PROBABILITY SERIALIZATION MODEL FOR SWAPPING
DEMAND
There is great uncertainty in the travel of EV users, which
leads to the fluctuation of swapping demand. In [17], accord-
ing to the distribution function of the total mileage of EVs
and the proportion of mileage in each period, the Monte
Carlo method is used to simulate the probability that each
EV needs to be charged at each period, so as to simu-
late the number of swapping demand in each period. Con-
sidering the randomness of Monte Carlo simulation and
the uncertainty of actual swapping demand, the simulation
error is added to the swapping demand model in this paper.
Similarly, the simulation error is assumed to follow a nor-
mal distribution N

(
0, σ 2

need,t

)
, where the standard devia-

tion σneed,t is 10% of the simulation value. The results
obtained by Monte Carlo simulation in [17] are used as
the mean value to construct the PDF for swapping demand.
And the corresponding PDF at time t is shown as equation
below:

fneed,t (x) =
1

√
2πσneed,t

exp

(
−

(
x − Nneed,t

)2
2σ 2

need,t

)
(17)

In the same way, the probability serialization model for swap-
ping demand is given by

Nneed,t (iNt) =


∫ 1

2
0 fneed,t (x) dx iNt = 0∫ iNt+ 1

2

iNt− 1
2
fneed,t (x) dx 0 < iNt < NNneed,t∫ iNt

iNt− 1
2
fneed,t (x) dx iNt = NNneed,t

(18)

where Nneed,t (iNt) represents the probability of different
swapping demand value at time t. The discretization step size
of fneed,t (x) is 1. The length of the sequence Nneed,t (iNt) is
NNneed,t , and NNneed,t is the maximum value of the swapping
demand at time t.

C. SEQUENCE OPERATION RESULTS OF THE OBJECTIVE
FUNCTION
According to the above equations, the time series probabilis-
tic sequence PPV ,t (iPVt) of PV output in the t-th period is
obtained, and the sequence length is NPV ,t . Pb,t (ibt) is the
unit sequence of the charging load of batteries in the t-th
period. The sequence length is Nb,t .

PEL,t (iELt) indicates that the probabilistic sequence
of the equivalent charging load in the BSS during the
t-th period. The sequence length is NEL,t , then PEL,t (iELt)
is the subtraction-type convolution operation sequence of
PPV ,t (iPVt) and Pb,t (ibt), where NEL,t = NPV ,t . According
to the definition of sequence operation:

PEL,t (iELt)

=


∑

ibt−iPVt=iELt

Pb,t (ibt)PPV ,t (iPVt) 1 ≤ iELt ≤ NEL,t∑
ibt≤iPVt

Pb,t (ibt)PPV ,t (iPVt) iELt = 0
(19)

Ct (iCt) is the probabilistic sequence of the electricity pur-
chase cost of the BSS, and the sequence length is NCt .pt

(
ipt
)

is the unit sequence of the TOU price, which has the sequence
length of Npt , where Npt = [p (t) /1p]. 1p indicates the
discretization step size of the TOU price. Then Ct (iCt) is the
sequence multiplication operation result of PEL,t (iELt) and
pt
(
ipt
)
. According to the definition of sequence operation:

Ct (iCt) =


∑

iCt=iELt ·ipt

PEL,t (iELt) pt
(
ipt
)

iCt = iELt ipt

0 iCt 6= iELt ipt

(20)

where iCt = 0, 1, · · · ,NCt , NCt = NEL,t · Npt◦
Equation (21) indicates the probabilistic sequence of elec-

tricity cost of the BSS for a full-day. The sequence length is
NF , which is calculated from the Ct (iCt) volumes of 24 time
periods:

F (iF ) =
∑

iC1+iC2+···+iC24=iF

(
24∏
t=1

Ct (iCt)

)
(21)

where, iF = 0, 1, · · · ,NF , NF =
24∑
t=1

NCt .

Since the probability serialization of the probability dis-
tribution of stochastic variables is carried out in this paper,
the final optimization result is affected by the value of the dis-
cretization step size. Smaller discretization steps can achieve
higher computational accuracy, but may cause problem that
the probabilistic sequence is too long.

Considering that the charging load of the BSS is a multiple
of the average charging power of the battery, and it needs
to perform the subtraction-type convolution operation with
the probability sequence of the PV output, the discretization
step size of the two probability sequences is taken as the
average charging power of the battery. At the same time,
since the value of the swapping demand is a non-negative
integer, the discretization step size is set as 1. For the above
probabilistic sequence, the currently selected discretization
step size is the physical minimum value, so there is no need
to continue to reduce the discretization step size.

In addition, as the discretization step size decreases, the
probabilistic sequence length of stochastic variables increases
sharply, resulting in a sharp increase in computation time.
Therefore, it is of little significance to continue to reduce the
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step size to improve the accuracy. Therefore, for the TOU
price as a unit sequence, the discretization step size is set
to 0.1.

D. DETERMINISTIC TRANSFORMATION OF CHANCE
CONSTRAINTS
The timing multi-state probability sequence Nneed,t (iNt) for
swapping demand has been constructed above. The possible
swapping demand at time t is divided into NNneed,t +1 states,
and the probability corresponding to each state is

P
{
Nneed,t = iNt

}
= Nneed,t (iNt) (22)

where, iN t = 0, 1, · · · ,NNneed,t .
Then, the cumulative distribution function (CDF) of swap-

ping demand at time t is

FNneed,t (x) = P
{
Nneed,t ≤ x

}
=

x∑
iNt=0

Nneed,t (iNt) (23)

where, x = 0, 1, · · · ,NNneed,t .
In order to satisfy the chance constraint in ‘‘(4),’’ it is

assumed that the number of available batteries at time t in
the BSS is Ns (t). Then Ns (t) should satisfy:

Ns (t) ≥ min
{
x|FNneed,t (x) ≥ α

}
(24)

Equation (24) indicates that the probability that the number
of available batteries in the BSS can meet the swapping
demand is not lower than α at time t. Therefore, it is equiva-
lent to ‘‘(4)’’.

Similarly, the CDF of the electricity cost can be obtained,
which is represented by Ff (x). The deterministic equivalent
form of ‘‘(5)’’ can be expressed as follows:

f̄ ≥ min
{
x|Ff (x) ≥ β

}
(25)

IV. FAST OPTIMAIZATION METHOD BASED ON
DETERMINING FEASIBLE SOLUTION SPACE
In this paper, since the equivalent forms of chance constraints
are nonlinear, the optimization problem of the BSS day-ahead
scheduling model is nonlinear optimization problem (NLP).
GA was inspired by the process of natural selection such
as mutation and crossover, so that it is commonly applied
on solving the optimization and search problems. Therefore,
GA is chosen to solve the model in this paper.

In the BSS day-ahead scheduling model, charging plan is
the decision variable. If the total capacity of chargers in the
BSS is the solution space, the problems of large solution
space and slow convergence speed might appear. In [17],
considering the swapping demand and the operation state of
the BSS, the recursive concept is used to obtain the con-
trollable load margin band of batteries. The load margin of
batteries in the BSS is used as the optimization space for day-
ahead scheduling. The method can avoid infeasible solutions,
reduce optimization space, and improve the optimization effi-
ciency of GA.

A. DETERMINATION OF LOAD MARGIN OF BATTERIES
IN BSS
In [17], according to the state parameters of the batteries in
the BSS, the state of the battery is represented by a three-
dimensional row vector. The state matrix of the battery pack
is established,

Status = (n, SocN ,Ts) (26)

where n is the identifier of the current state of charge:

n =

{
1 charging state
0 waiting state

(27)

SocN is the current state of battery. SOCmax is the amount
of charge when the battery is fully charged. The state of
charge at the end of charging is SOCmax . TS indicates the
moment when the battery is replaced, i.e, the starting time
when battery can be charged.

According to the above battery state matrix, the controlled
state of the backup battery in the BSS can be divided into four
types: a) The batteries being charged (the number is N1), b)
The batteries that must be stopped charging (the number is
N2), c) Fully charged batteries (the number is N3), d) The
batteries to be charged (the number is N4). The first three
types of batteries are in an uncontrollable state. In order to
meet the swapping demand at the subsequent time, a portion
of the battery pack to be chargedmust be charged at each time.
TheN4−1 amount of batteries is in an uncontrollable state and
the remaining N4−2 amount of batteries will be charged are
in a controllable state.

According to the definition of various states of the bat-
teries, the state vectors corresponding to the various state
batteries can be expressed as:

Status1 = (1, SocN ,Ts) st: 0<SocN < SOCmax

Status2 = (1, SocN ,Ts) st:SocN = SOCmax

Status3 = (0, SocN ,Ts) st:SocN = SOCmax

Status4 = (0, SocN ,Ts) st: 0<SocN < SOCmax

(28)

The probability distribution of the initial charge amount
SocN of the batteries swapped in each period is referred
to [17]. The battery load margin of the t+1 period is affected
by the charging load of the batteries during the t period and
the swapping demand during the t+1 period. Therefore, it can
be estimated by the battery state information of the t period
and the t+1 period [17].

Pmin(t + 1) ≤ Pb(t + 1) ≤ Pmax(t + 1)
Pmin(t + 1) = Prated ∗ [N1(t)− N2(t + 1)+ N4−1(t + 1)]

= Pb(t)+ Prated ∗ [N4−1(t + 1)− N2(t + 1)]
Pmax(t + 1) = Prated ∗ [N1(t)− N2(t + 1)

+N4−1(t + 1)+ N4−2(t + 1)]
= Pb(t)+ Prated ∗ [N4(t + 1)− N2(t + 1)]
= Pb(t)+ Prated ∗ [Nleft (t)+ Nneed (t + 1)
−N2(t + 1)]

(29)
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where Nleft (t) indicates the number of batteries to be charged
in the t period. Nneed (t+1) is the swapping demand obtained
by Monte Carlo simulation in [17].

In this paper, given the uncertainty of swapping demand,
in order to make the probability that the actual swapping
demand is met not lower than the given confidence level,
Nneed (t + 1) in ‘‘(29)’’ is replaced by the number of batteries
NS (t + 1) that the BSS planned to provide for swapping.

B. THE SOLVING PROCESS BASED ON GA
In this paper, the real-coded GA is combined with the
sequence operation to optimize the charging plan of the bat-
teries to obtain the minimum electricity cost that meets the
chance constraints considering the uncertainty.

1) THE SELECTION OF DECISION VARIABLE IN THE GA
Refer to ‘‘(29),’’ the upper and lower limits of the batteries
load margin in the BSS are affected by the charging load
Pb(t) from the previous time. The Pb(t) throughout the day
is the decision variable in the economic operation model.
The feasible solution space for the batteries charging plan
is a variable and it is not convenient to solve. Therefore,
the decision variable in the GA is set to 24 stochastic numbers
x (t) between [0, 1], which represents the position of the
charging load in the feasible solution space.

Pb(t) = Pmin(t)+ x (t) (Pmax(t)− Pmin(t)) (30)

2) THE SOLVING PROCESS
The specific process of using GA to solve the economic
operation model of the BSS can be divided into the following
three steps, as shown in Fig. 1.

Step 1: Input TOU electricity price and construct prob-
abilistic sequences of variables. In addition, initialize GA
parameters and population.

Step 2: The fitness value in each iteration is calculated. Cal-
culate the probabilistic sequence of electricity cost through-
out the day. Find the minimum value f̄ taken by the objective
function when the confidence levels are satisfied. The fitness
function is 1/f̄ .

Step 3: If the termination condition are satisfied, output
the charging plan and the minimum value of electricity cost
for the BSS; otherwise, perform genetic operation and go to
step2. According to the varied population genetic algorithm
proposed in [14], the population size at different stages was
adjusted in genetic operation to improve algorithm perfor-
mance.

V. RISK ANALYSIS AND QUALITY EVALUATION OF
DAY-AHEAD SCHEDULING SOLUTIONS
Since the chance constraints in the model are satisfied at
certain probability, there must be a case that the chance
constraints are not satisfied, which could cause the underesti-
mation of the electricity cost or unsatisfied swapping demand.
In order to justify the feasibility of the day-ahead scheduling
solutions and evaluate its quality, the economics and risks of

FIGURE 1. GA solution flow chart.

the day-ahead scheduling solutions are thoroughly demon-
strated in this section. A risk assessment method based on the
probabilistic sequence for day-ahead scheduling solutions is
proposed, and the penalty cost corresponding to the risk is
calculated to evaluate the solution quality.

A. RISK OF UNMET SWAPPING DEMAND
The swapping demand constraint in ‘‘(4)’’ would not satisfied
when the swapping demand is greater than the number of
batteries that the BSS can provide for swapping, and the
swapping demand of some users cannot be satisfied. This
situation reduces the user satisfaction, which is not desirable
for the BSS operator. Therefore, this paper quantifies the
risk when the swapping demand is not met, and calculates
the corresponding penalty cost when the situation occurs.
At the same time, the swapping demand may also be lower
than the number of batteries that the BSS plans to provide
for swapping. Therefore, under the premise of taking user’s
satisfaction into account, the following rules for the actual
operation of the BSS are formulated: 1) The number of batter-
ies available in the BSS is updated every time period. 2) If the
current swapping demand is lower than the number of avail-
able batteries, the number of available batteries in the next
period increases the number of currently remaining available
batteries. 3) If the current swapping demand is higher than
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the number of available batteries, the extra swapping demand
will not be met.
N ′s (t) represents the number of available batteries in the

BSS after the update,

N ′s (t + 1)

=

{
Ns (t + 1)+

[
N ′s (t)− Nneed (t)

]
, Nneed (t) ≤ N ′s (t)

Ns (t + 1) , Nneed (t) > N ′s (t)

(31)

Equation (32) is the number of EVs that fail to swap during
the t-th period:

DNS (t) =

{
Nneed (t)− N ′s (t) Nneed (t) > N ′s (t)
0 Nneed (t) ≤ N ′s (t)

(32)

In this paper, the expected value is used to represent the
unmet swapping demand during the t-th period. Penalty cost
corresponding to the risk is shown in equation below:

CDNS =
24∑
t=1

E (DNS (t)) λdns (33)

where λdns indicates the unit penalty of the BSS for not
meeting the swapping demand

According to the actual operation rules of the BSS, the cor-
responding probabilistic sequence of the number of available
batteries in the BSS at the updated time t-th period is denoted
as N ′St

(
i′st
)
, and its sequence length is N ′Nst . The probabilistic

sequence corresponding to the number of remaining full-
charged batteries in the t-th period is denoted as1N ′t (it), and
the sequence length is N1Nt .

1N ′t (it) = N ′St
(
i′st
)
2Nneed,t (iNt) (34)

where it = 0, 1, · · · ,N1Nt , N1Nt = N ′Nst .
The probabilistic sequence corresponding to the num-

ber of batteries that the BSS originally planned to pro-
vide for the t+1 time period is denoted as NS(t+1)

(
is(t+1)

)
,

and the sequence length is NNs(t+1). Probabilistic sequence
corresponding to the number of available batteries after
the t+1 period update is sequence N ′S(t+1)

(
i′s(t+1)

)
, and its

sequence length is N ′Ns(t+1).

N ′S(t+1)
(
i′s(t+1)

)
= NS(t+1)

(
is(t+1)

)
⊕1Nt (it) (35)

where i′s(t+1) = 0, 1, · · · ,N ′Ns(t+1),N
′

Ns(t+1) = NNs(t+1) +
N1Nt .

The probabilistic sequence of the unmet swapping demand
in the t-th period is denoted as DNSt (iDt), and its sequence
length is NDt ,

DNSt (iDt) = Nneed,t (iNt)2N ′St
(
i′st
)

(36)

where iDt = 0, 1, · · · ,NDt ,NDt = NNneed,t .
The expected value of the unmet swapping demand during

the t-th period:

E (DNS (t)) =
NDt∑
iDt=0

iDtDNSt (iDt) (37)

By substituting in ‘‘(33)’’ the penalty cost of the unmet
swapping demand can be obtained.

B. RISK OF UNDERESTIMATION OF COSTS
Affected by the forecasting error of PV output, it is inevitable
that ‘‘(5)’’ is not satisfied so that there is a risk of underesti-
mation of the electricity cost.

Cunder = E (funder ) λunder (38)

where E (funder ) is the expected value of the under-estimated
part. λunder is the unit penalty for the underestimation of
electricity cost in day-ahead scheduling.

Record the undervalued part of electricity cost as
funder (iF ),

funder (iF ) =

{
0 iF1P1p ≤ min f̄
iF1P1p−min f̄ iF1P1p > min f̄

(39)

where1P is the discretization step size of the PV output,1p
is the discretization step size of the TOU price.

E (funder ) =
NF∑
iF

funder (iF )F (iF ) (40)

By substituting ‘‘(40)’’ into ‘‘(38)’’, the penalty cost corre-
sponding to the underestimation can be obtained.

C. THE PENALTY COST CORRESPONDING TO THE RISK OF
DAY-AHEAD SCHEDULING
The risk of making decisions for the day-ahead scheduling
is determined by the stochastic variables and the confidence
levels chosen by the BSS operator. The penalty cost corre-
sponding to this risk consists of the above two penalty costs,

Crisk = CDNS + Cunder (41)

VI. CASE STUDY
A. ASSUMPTIONS AND SIMULATION DATA SETTING
A PV-based battery swapping station in the city is selected
as the research object. It is assumed that there are 1,000 EVs
in the service area of the BSS. The number of batteries in
the BSS is 600. The number of chargers is 350. The average
charging power of a battery is 5kW with 50kWh battery
capacity. The minimum and maximum charge capacities of
the battery are 20%, and 90% respectively. The TOU price
of purchase electricity from the utility grid refer to the data
in [16].

The PV installation capacity of the BSS is 240 kW. The
typical PV output data is selected as the PV output prediction
parameter. The discretization step size is 2.5 kW. The multi-
state probability sequence of the constructed PV output tim-
ing is shown in Fig. 2, which represents the probability of
different values in each period.

According to the swapping demand in [17], the timing
multi-state probabilistic sequence of swapping demand is
constructed as the mean value, as shown in Fig. 3. The graph
represents the probability corresponding to different value of
swapping demand in each period.
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FIGURE 2. Time-series multi-state probabilistic sequence of PV output.

FIGURE 3. Time- series multi-state probabilistic sequence of swapping
demand.

B. EVALUATION OF DAY-AHEAD SCHEDULING SOLUTIONS
In this section, the economics and risk of the solutions
obtained under different satisfactions are analyzed to evaluate
the solution quality, and the impact of different confidence
levels on the solutions is analyzed. The risk penalty cost of
day-ahead solutions in actual operation is obtained according
to the risk assessment method in section V.

1) ECONOMIC AND RISK ANALYSIS
The confidence level in the economic operation model of
the BSS proposed in this paper is set by the BSS operator
according to their own risk appetite. The electricity cost and
the risk penalty cost corresponding to day-ahead scheduling
solutions are affected by the choice of the confidence level.
The study on different confidence levels α and β is set below
and the results are compared in Fig. 4.

A comparison of the penalty cost for the unmet swapping
demand corresponding to the solutions developed under dif-
ferent confidence levels α and the penalty cost corresponding
to the cost underestimation risk for different β when the
α equals to 0.8 are shown in Fig. 5.
It can be seen from Fig. 4 and Fig. 5 that the higher the con-

fidence level, the more electricity cost for the corresponding
solution. However, after the risk assessment of the solution,

FIGURE 4. The cost of electricity purchased from the utility grid at
different confidence levels.

FIGURE 5. Penalty cost at different confidence levels.

it can be seen that the risk penalty cost is lower with the higher
confidence level, indicating that the user satisfaction and the
feasibility of the solution are higher. The solution with a
lower confidence level, which has lower estimated electricity
costs. However, the risk assessment results show that the risk
penalty cost is higher, indicating that the solution has lower
user satisfaction and lower feasibility.

Reasons for the above results are as follows: In case
of complying with the actual operating rules of the BSS,
the penalty cost for not meeting the swapping demand is
related to the confidence level α. The larger α, the greater
the probability that the swapping demand will be satisfied.
With higher confidence level β, the risk of cost under-
estimation is lower, and the impact of PV output uncer-
tainty on the actual operation of day-ahead scheduling
solutions is smaller. The higher confidence level means that
the solution takes into account more comprehensive uncer-
tainty, and it will also cause a certain degree of economic
loss while improving the applicability of the solution to
uncertainty.

By analyzing the economy and risk of the day-ahead
scheduling solutions, we can evaluate the solution quality,
so as to provide guidance for operators with different risk
appetite.

2) THE IMPACT OF CONFIDENCE LEVEL β ON DAY-AHEAD
SCHEDULING SOLUTIONS
Considering user satisfaction, the BSS operator can set differ-
ent confidence levels (β) according to their own risk appetite
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FIGURE 6. Charging plan at different confidence levels.

based on the uncertainty of PV output, as a result, correspond-
ing charging plan can be formulated.

The swapping demand model obtained by Monte Carlo
simulation is used as the predicted value to construct the
swapping demand uncertainty model. When α = 0.8,
the charging plan formulated with different β is shown
in Fig. 6. With respect to Fig. 6, when the confidence level
of the swapping demand is determined, battery charging load
in the daytime declines if the charging peak on 7am is shifted
to an earlier period and charging peak on 6pm is shifted to
a later period, comparing the charging plan with larger β
with that with smaller β. And then the impact of uncertainty
of PV output on day-ahead scheduling is weakened and the
confidence level of day-ahead scheduling is improved.

Charging plans at different confidence levels can make a
sensitive response to the change of TOU price. During the
time period before the electricity price rises at 7am. and
6pm, each charging plan will charge the battery in advance to
different degrees, and reduce the number of charging batteries
in the period after the electricity price rises. In addition,
although the economic charging plan reserves the battery
power in advance during the period when the electricity price
is low, the high-price period around 12am and 6pm. will
inevitably have different degrees of charging load peak due
to the peak demand for charging. Since the charging plan of
low electricity price before 12am reserve the battery power
in advance, the charging peak at 12am is lower than that at
about 6pm.

C. COMPARISON OF PROCESSING METHODS FOR
UNCERTAIN FACTORS
This comparison shows whether the results will be improved
if the probabilistic sequence is used, as shown in Table. 1. The
probabilistic sequence and multi-scenario method are respec-
tively adopted to deal with uncertain factors and formulate
charging schemes.

Multi-scenario method is a method of representing uncer-
tainties with a certain number of typical scenarios [21]–[23].
Typical scenarios are established with the corresponding
probabilities by K-mean clustering algorithm based on the

TABLE 1. Costs of different cases.

forecasted data of PV output and swapping demand [21]. The
expected value of the objective function can be calculated by
the probability-weighted average of typical scenarios.

By using probabilistic sequences, the charging plan for-
mulated at β = 0.95 in Fig. 6. There is little difference in
electricity cost between the two cases, which proves the effec-
tiveness of the proposed method in this paper. In addition,
the results of the risk assessment for day-ahead scheduling
solutions show that the penalty cost of the proposed method
is much lower than that of multi-scenario method.

This is because the scenario reduction of multi-scenario
method sacrifices the comprehensiveness of considering the
uncertainty, which makes it more likely to underestimate the
electricity cost or fail tomeet the swapping demand compared
with the method proposed in this paper. This illustrates that
the solutions obtained by using the probabilistic sequence
method has a greater applicability and a higher tolerance to
the change of the uncertain factors.

D. ANALYSIS OF ELECTRICITY COST PROBABILISTIC
SEQUENCE
In order to analyze the influence of the uncertainty of PV
output on the electricity cost, the charging plan formulated at
β = 0.95 in Fig. 6 is selected. By applying the probabilistic
sequence operation method introduced above, the probability
sequence of electricity cost in each period involving PV
output during the day is obtained. The probability density
map of the probability sequence of electricity cost in each
period is plotted, as shown in Fig. 7.

It can be seen from Fig. 7 that the uncertainty of PV output
is large in the 11am-3pm with a large average PV output. The
wider the range of possible charging costs, the greater the
uncertainty is. At 2pm, due to the lower charging load of
the BSS, the PV output can fully bear the battery charging
load in a certain probability, and the BSS does not need to
purchase electricity from the grid. As a result, the charging
cost is 0 during this period. On the contrary, during the time
when the average PV output is small, the cost floatation is
smaller when the range of possible charging becomes narrow.

E. COMPARISON OF OPTIMIZATION METHODS
In order to illustrate the superiority of the proposed fast
determining the feasible solution space based optimization
method, the undefined feasible solution space method and the
proposed method are used to calculate the above case, respec-
tively. The GA parameters of the two methods are consistent,
and the corresponding iterative curve is shown in Fig. 8.
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FIGURE 7. Probabilistic sequence of electricity purchase costs per hour.

FIGURE 8. Evolutionary curves of different solution methods.

It can be seen from Fig. 8 that the proposed optimal value
based on the determination of the feasible solution space has
stabilized at 400 generations, and the optimal average value
is approached. The convergence speed of the unconstrained
feasible solution space is different from that of the pro-
posed method, and the method falls into local optimummany
times. Compared with the method that does not define the
feasible solution space, the proposed method has improved
the optimization ability, which indicates that the proposed
method has advantages. From this research, the comparative
method still does not converge at 500 generations, and there
is still a certain gap in the optimal value between the two
methods. This is because that the introduction of the feasible
solution space makes the individuals generated by the genetic
operation feasible, and avoids the damage to the population
diversity due to the elimination of the infeasible individuals.
In the case of the same population size, the proposed method
improves the global diversity of the algorithm and achieves
the goal of searching the optimization solution efficiently.

VII. CONCLUSION
Due to the influence from the uncertainty of swapping
demand and PV output on the day-ahead dispatching of the
BSS, the probabilistic sequence is adopted to describe the

stochastic variables. The advanced chance-constrained pro-
gramming is introduced into the economic operationmodel of
the BSS. Compared with the conventional method, the advan-
tages of using chance-constrained programming are ana-
lyzed, and the feasibility and effectiveness of this proposed
method are validated. Besides, the risk brought by the con-
fidence level selection in the actual operation in the BSS
is studied which enables the BSS operators choosing the
confidence level according to their own risk appetite. As a
result, this paper provides guidance for the operators for a
future reference.
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