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ABSTRACT This study proposes a new real-time diagnosis method for an in-wheel motor (IWM) of an
electric vehicle (EV) based on dynamic Bayesian networks (DBNs). Since the electrical signal of the vehicle
power supply is unstable because of the interference resulting from the EV’s frequent acceleration and
deceleration, the IWM’s vibration signal is focused. Symptom parameters (SPs) in the time and frequency
domains are used to represent different features of the vibration signals in the actual operating conditions
of the EV. To select highly sensitive SPs, stable average discrimination rate (SADR) is proposed, which
consists of the average discrimination rate (ADR) and the stability coefficient of the group (SCG). Moreover,
DBNs are employed to establish amodel for the real-time diagnosis of the IWM’smechanical faults, in which
the parameter of road-speed-time slice (RSTS) is used to solve the problem that the state transition probability
distribution between two continuous time slices cannot be obtained. Finally, the effectiveness of the proposed
methods is verified by experiments using the IWM test bench.

INDEX TERMS Dynamic Bayesian networks, electric vehicle, in-wheel motor, real-time diagnosis, road-
speed-time slice.

I. INTRODUCTION
Because of environmental pollution caused by conventional
fuel vehicles, the development of efficient and environmen-
tally -friendly alternative energy vehicles has been upgraded
to the national strategic level [1]–[4]. Due to outstanding
advantages such as simple and compact structure and high
transmission efficiency, electric vehicles (EVs) powered by
multiple in-wheel motors (IWMs) have become a research
focus in the field of alternative energy vehicles [5]. IWM
technology is one of the core technologies of EVs. However,
an IWM is installed in a small hub space, resulting in sig-
nificant impacts on its performance, such as magnetic field
saturation, torque ripple, and load mutation [6], [7]. Further-
more, variable vehicle driving conditions and complex road
conditions can lead tomechanical faults in IWMs, resulting in
vibration intensification, efficiency reduction, and tempera-
ture increase. If an IWMoperates long term undermechanical
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faults, damage such as performance degradation of the insula-
tion material and friction between stator and rotor may occur
and cause secondary faults such as wire winding damage,
inter-turn circuit, and interphase short circuit faults, which
affect driving safety. Therefore, it is necessary to conduct
real-time monitoring of the IWM’s operating condition and
fault diagnosis to improve the accuracy and timeliness of
identifying the IWM’s faults.

In conventional motors, electrical signals have been used to
monitor the motor’s operating condition and diagnose some
faults. However, the electrical signal of the vehicle power
supply is unstable because of the interference resulting from
the EV’s frequent acceleration and deceleration; therefore,
the IWM’s vibration signal is focused. Moreover, vibration
signals contain abundant state information of the equip-
ment and have the advantages of strong anti-interference
ability, as well as the ability to provide information on
slight faults [8]–[10]. Methods for monitoring and diag-
nosing the operating conditions of mechanical equipment
based on vibration signals have developed rapidly in recent
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years [11]–[15]. In 2014, an intelligent diagnostic method
based on the characteristic signals of the best fault fre-
quency region extracted from vibration signals using sta-
tistical filtering, support vector machine, possibility theory,
and Dempster–Shafer (D-S) evidence theory was proposed to
conduct a fault diagnosis of a centrifugal pump system [16].
In 2017, a novel machine learning method called artificial
hydrocarbon network was used to extract fault features from
vibration signals for the fault diagnosis of sealed deep groove
ball bearings [17]. Besides, another intelligent diagnostic
system based on the optimal set of feature parameters with
a support vector machine was developed to identify different
faults in the same year [18]. In 2018, a step-by-step fuzzy
diagnostic method based on the symptom parameters (SPs) in
the frequency domainwas proposed for the diagnosis of struc-
tural faults of a rotating machine using trivalent logic fuzzy
diagnosis (TLFD) [19]. Moreover, a signal feature extraction
and fault diagnosis method based on a statistic filter (SF),
the moving-peak-hold method (M-PH), wavelet package
transform (WPT), and decision tree was proposed for the
fault diagnosis of low-speed rotation machinery [20]–[25].
To some extent, these methods promoted the development
of on-line monitoring methods to determine the status of
rotating machinery. However, the recognition rate for the
operating conditions of IWMs is lower than expected because
of the complex running environment of IWMs and the large
fluctuation in the vehicle power supply used in EV; therefore,
existing methods do not meet the requirements for the safe
operation of the vehicle.

Dynamic Bayesian networks (DBNs) combine multiple
features related to target types at different moments and
represent a tool for the modeling and inferring of dynamic
uncertain events; this method thus overcomes the limitations
of relying on a single feature [26]–[28], [29]. DBNs have
been applied in the area of fault diagnosis in recent years.
For example, an innovative approach based on the DBN
framework was introduced for the fault detection, identifica-
tion, and recovery (FDIR) of autonomous spacecraft and the
approach was implemented using onboard software architec-
ture in 2014 [30]. In 2016, an electronic equipment health
diagnosis system was established based on a three-stage
amplifier circuit Bayesian evaluation model of three health
states [31]. Also, a fault diagnosis approach using DBNs was
proposed to identify the component faults and distinguish the
fault types of an electronic system in 2017 [32]. Additionally,
a DBN model was developed to obtain the temporal and
spatial correlations of intelligent connected vehicles (ICVs)
for accurate real-time or historic fault detection and repair in
2018 [33]. In this paper, a new real-time diagnosis method
based on DBNs is proposed to determine the mechanical
faults of an IWM and the stable average discrimination rate
(SADR) is presented to select multiple highly sensitive SPs
that are regarded as the IWM’s running states as an input
to the diagnosis model. In Section II, the IWM test bench
is introduced; it simulates the actual operating condition of
the IWM in the EV and includes the IWM’s installation

position, vehicle power supply, road shock, and vertical loads.
In Section III, the SADR is defined and the performance of
four highly sensitive SPs in the time and frequency domains is
described. In Section IV, a Gaussian mixture model (GMM)
and different transition probability distributions of two road-
speed-time slices (RSTSs) are used to develop a real-
time diagnosis model; the model performance is verified
using practical experiments under different speed and road
conditions.

II. IWM TEST BENCH FOR FAULT DIAGNOSIS
A test bench based on the actual operating conditions of
the IWM in an EV was designed, as shown in Fig. 1.
The main structure consists of an electric wheel clamp,
a shock absorber, an electric wheel (IWM mounted in a
housing), a drum roller support, an INSTRON single channel
electro-hydraulic servo test system, a pressure sensor, and
an acceleration sensor. The acceleration sensor is used to
acquire vibration signals of IWM and the placement is shown
in Fig. 1. The test data were collected using an LMS multi-
function data acquisition instrument with sampling frequency
of 12.8 kHz and sampling time of 45 s. In the experiment,
the hydraulic vibration platform is raised to contact the roller
support frame. When the double rollers on the support frame
are in contact with the electric tire surface and the pressure
reaches a predetermined value for simulating the vertical
load of the vehicle on the electric wheel, the electric wheel
starts working. After the speed of the electric wheel reaches
a certain value, different levels of the road load spectrum are
input to the INSTRON single-channel electro-hydraulic servo
test system for simulating the operation of the electric wheel
on the road surface. Then three road levels of A, B and C are
set for the IWM test. To ensure that the bench test closely
approximates a real vehicle test, the power supply system
provided by the EV is used to supply electricity and control.

In practical application, there are many mechanical faults
of the IWM [34]. In this paper, bearing outer race fault of the
IWM is selected as a typical fault, and the fault was artificially
made by awire-cuttingmachine. The degree of bearing defect
was the width of 0.5 mm and the depth of 0.5 mm, as shown
in Fig. 2.

In real operation, the vibrations of IWM contain the
noises from changing environment such as the disturbance of
dynamic load over suspension of the vehicle. Then, an inter-
ference source with a frequency of 250 Hz is attached close
to the IWMbearing to cause interference vibration signals for
simulating the noises.

In the study, the RIICH M1-EV weighing 1060 kg is used
as the research prototype. The operation of the test bench is
simulated by assuming that the EV is operated by a driver
weighing 60 kg on different road levels including levels A,
B, and C. The predetermined value of the pressure sensor is
280 kg, which is one-quarter of the total weight of the vehicle
and the driver. Moreover, the power supply and inverter of
the EV are used to obtain different speeds of the IWM.
In the experiment, the normal and abnormal states of the
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FIGURE 1. IWM test bench.

FIGURE 2. Bearing outer race fault.

IWM at speeds of 10 km/h, 20 km/h, 30 km/h, and 40 km/h
were set based on the rotating speed of the IWM. Certainly,
the relationship between the vehicle speed and the rotating
speed of the IWM is as follows:

v =
πd × 3.6n

60
(1)

where v is the vehicle speed. d = 0.565m, which is the
diameter of the tyre, n is the rotating speed of the IWM,which
is inputted artificially. Concretely, the corresponding values
of the vehicle speed and the rotating speed of the IWM are
shown in Table 1.

TABLE 1. The corresponding values of the vehicle speed and the rotating
speed of the IWM.

III. SELECTION OF HIGHLY SENSITIVE SPs FOR
FAULT DIAGNOSIS
The vibration information obtained during the operating
period of the IWM represents its operating conditions.
Therefore, it is vital to select and extract highly sensitive SPs
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from the vibration signals for fault diagnosis and fault-type
recognition [35]. However, the mechanical fault features of
the IWM are often concealed by the effect of different speeds
and different road levels; therefore, it is necessary to conduct
a comprehensive analysis of the normal and abnormal states
in order to obtain highly sensitive SPs. In this study, the
vibration signals are preprocessed using a bandpass filter with
100-2000 Hz to calculate 10 SPs in the time and frequency
domains. The SADR method is proposed for the selection of
sequentially highly sensitive SPs.

A. SYMPTOM PARAMETERS OF VIBRATION SIGNAL
The time-domain signal is the original basis for fault diag-
nosis. SPs in the time domain are used to identify differ-
ent types of faults because there are many parameters for
the operating information and they are intuitive and easy to
understand. The frequency-domain signal, which is a type
of time-domain signal, reflects the changes in the frequency
of the mechanical equipment’s operating status caused by
mechanical faults. Small mechanical faults can be quickly
identified by analyzing the composition and amplitude of the
frequency components. Therefore, it is necessary to analyze
the vibration signals simultaneously in the time and frequency
domain [36]–[38]. In this study, 10 SPs are pre-selected in the
time and frequency domain, respectively. P1-P5 are defined
in the time domain and P6-P10 are defined in the frequency
domain, as follows.

P1 =
1
σ 4

N∑
i=1

(xi − x̄)4 (2)

P2 =
1

Npσ

Np∑
j=1

∣∣xpj∣∣ (3)

P3 =

√√√√ 1
N

N∑
i=1

x2i (4)

P4 =
1
Np

Np∑
j=1

∣∣xpj∣∣ (5)

P5 =

∣∣∣∣∣∣ 1σ 3
p

Np∑
j=1

(xpj − xp)3

∣∣∣∣∣∣ (6)

where {xi} (i = 1 − N ) is the digital data of the vibration
signal. N is the number of xi. x is the mean value of {xi},

x =
N∑
i=1

xi

/
N . σ is the standard deviation of {xi}, σ =√

N∑
i=1

(xi − x)2
/

(N − 1). {xpj}(j = 1 − Np) is the peak

value of {xi}. Np is the number of xpj. xp is the mean value

of {xpj}, xp =
Np∑
j=1

xpj

/
Np. σp is the standard deviation

of {xpj}, σp =

√√√√ Np∑
j=1

(xpj − xp)

/
(Np − 1).

P6 =
1

σ 3
f I

I∑
i=1

(fi − f̄ )3 · F(fi) (7)

P7 =
1

σ 4
f I

I∑
i=1

(fi − f̄ )4 · F(fi) (8)

P8 =

√√√√ I∑
i=1

f 4i · F(fi)

/
I∑
i=1

f 2i · F(fi) (9)

P9 =
I∑
i=1

F(fi) (10)

P10 =

√√√√ I∑
i=1

F2(fi) (11)

where {fi} (i = 1 − I ) is the frequency sequence. I is
the number of half of the sampling frequency. F(fi) is
the spectrum value of fi. f is the average frequency,

f̄ = (
I∑
i=1

fi · F(fi))
/

I∑
i=1

F(fi) . σf is the standard variance,

σf =

√
1
I

I∑
i=1

(fi − f̄ )2 · F(fi).

B. SELECTION OF HIGHLY SENSITIVE SPs
The sensitivity of the SPs reflects the ability of the SPs to
distinguish among different operating states of the equip-
ment. The sensitivities of different SPs are different even
if the mechanical equipment is in the same operating state.
In addition, the sensitivity of the same SP is different when the
mechanical equipment operates in different states. However,
the more sensitive the SPs are, the easier it is to distinguish
between normal and fault states. Otherwise, it is difficult to
distinguish between different states if the sensitivity of the
SPs is low. In order to select highly sensitive SPs, manymeth-
ods have been proposed such as the Principal Component
Analysis (PCA) and the distinguish index (DI) [39], [40].
The idea of PCA is to map n-dimensional features to
k-dimensional (k < n), which is a completely new orthog-
onal feature. This k-dimensional feature is called principal
component. Considering this, PCA is a good way to select
SPs. However, due to the complex driving conditions of
vehicles, the model that reduce from n-dimensional space to
k-dimensional space cannot be determined only. So the time-
liness of the PCA method is poor, which cannot meet the
requirement of the real-time diagnosis. Besides, the DI-based
method has been widely applied. The DI is defined by the
following equation:

DI =
|µ2 − µ1|√
σ 2
1 + σ

2
2

(12)
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whereµ1,µ2 represent the average value of state 1 and state 2
of an SP and σ1, σ2 represent the corresponding standard
deviations, respectively. The discrimination rate (DR), which
is the ability of an SP to distinguish between two states,
is defined by (12) and is based on the DI value. The relation-
ship among the DI value, the DR value and the sensitivity of
a SP is shown in Table 2 [41]. It is apparent that the larger the
value of the DI, the larger the value of the DR is, therefore,
the more sensitive the SP is.

DR = 1−
1
√
2π

∫
−DI

−∞

e−
x2
2 dx (13)

TABLE 2. The relationship among DI, DR and sensitivity of a SP.

When using the DI-based method, it is very effective
and quick to select only one SP for distinguishing between
two states. However, the operating conditions of mechanical
equipment are complex and changeable and many faults with
different degrees can occur under any condition; therefore,
a single SP cannot provide sufficient information on the
vibration signal. Misdiagnosis may occur if one relies on only
one parameter. Therefore, multiple highly sensitive SPs need
to be selected concurrently for a more accurate diagnosis but
the performance of the DI-based method is unsatisfactory for
this purpose. In order to select multiple highly sensitive SPs at
the same time, a new method is proposed in this study; it uses
a parameter called the SADR, which consists of the average
discrimination rate (ADR) and the stability coefficient of the

group (SCG) based on the DR. Multiple highly sensitive SPs
can be selected in the following two steps using this method.

Step 1: Preliminary selection based on the ADR. The ADR
is defined as follows:

ADR =
1

R · V · G

R∑
r=1

V∑
v=1

G∑
g=1

DRrvg (14)

where R is the number of different road levels. V is the
number of different speeds. G is the number of fault types.
In this study, three road levels, four speeds, and a typical
fault are considered so that R, V , and G are 3, 4, and 1,
respectively. For the description, specific symbol with the
information of road type and speed level is used to express
each IWM operating state, as shown in Table 3. DR of each
IWM operating state is shown in Fig. 3. The ADR values of
the 10 SPs are shown in Table 4.

TABLE 3. Corresponding relation of specific symbol and each IWM
operating state.

If the DR of an SP is 95%, the SP is highly sensitive to the
two operating states, as shown in Table 2. The same applies
to the ADR. That is to say, if the ADR of an SP is 95%, the SP
is highly sensitive to multiple operating states. Therefore, the
SPs in the preliminary selection are P3, P4, P6, P7, P8, P9,
and P10. However, it is crucial to maintain a balance between
the time domain and frequency domain when selecting the
SPs for better results. In this study, four highly sensitive SPs

FIGURE 3. DR of each IWM operating state.

VOLUME 7, 2019 114689



H. Xue et al.: Real-Time Diagnosis of an In-Wheel Motor of an Electric Vehicle Based on DBNs

TABLE 4. ADR values of the 10 SPs.

are required, which means that two SPs are selected in the
time domain and two are selected in the frequency domain.
It is evident that the highly sensitive SPs in the time domain
are P3 and P4 in the preliminary selection. The problem is
the selection of highly sensitive SPs in the frequency domain;
therefore, a secondary selection is performed in step 2.

Step 2: Secondary selection based on the SCG
The stability of the SP to identify faults in different oper-

ating states can be assessed through the standard deviation
of the DR of the SP. The smaller the value of the standard
deviation, the more stable the SP is. Therefore, the SCG is
proposed to assess the stability of the whole group; it consists
of the standard deviations of the selected SPs. The SCG is
defined as follows:

SCG =
Q∑
q=1

√√√√ 1
H − 1

H∑
h=1

(DRhq − ADRq)2 (15)

where Q is the number of the required highly sensitive SPs.
H is the number of the operating states and equals R · V · G
in step 1. Therefore, Q and H are 2 and 12 respectively in the
subsequent selection of highly sensitive SPs in the frequency
domain. The SCG values of the different groups with the two
SPs are shown in Table 5.

TABLE 5. SCG values of different groups with two SPs.

The value of the SCG of the 5th group is the minimum
value and the selected highly sensitive SPs are P7 and P8
in the frequency domain. Therefore, P3, P4, P7, and P8 are
confirmed as the diagnostic SPs.

IV. REAL-TIME DIAGNOSIS OF THE MECHANICAL
FAULTS OF THE IWM BASED ON DBNS
The diagnosis of the mechanical faults of the IWM is a
dynamic process in an actual operation. Since the oper-
ating conditions vary continuously and there are many
interference factors, it is important to use a parameter to

determine whether the IWM’s operating condition is nor-
mal or not. DBNs are used to obtain dynamic probability
inference [42], [43]. This is achieved by the DBNs’ initial
network and transfer network. Since the SPs are continuous
and follow a Gaussian distribution, a GMM is used to develop
the real-time diagnostic model of the mechanical faults of
the IWM.

A. DYNAMIC BAYESIAN NETWORKS BASED ON A
MIXTURE OF GAUSSIAN OUTPUTS
DBNs usually consist of a limited number of time
slices (TSs), each of which consists of a directed acyclic
graph (DAG) and conditional probability tables (CPT) [44].
The transition probability distribution P(C t

|C t−1) between
two TSs and the probability distribution of the observ-
able variables P(X t |C t ) [45] are required when DBNs are
used to for the identification and diagnosis of operating
states. Gaussian mixture output dynamic Bayesian networks
(GMODBNs) can be developed based on a GMM, which
is a special type of DBN, in which the probability distribu-
tion of the observable variables is represented by a Gaus-
sian mixture [46]. The GMODBNs in two TSs are shown
in Fig. 4.

FIGURE 4. GMODBNs in two time slices.

In the t th TS, the parent nodeC t contains the information of
N operating states of the system, C t

1, C
t
2, . . . , C

t
N . The mixed

weight node Mt contains the information of K mixed com-
ponents of the mixed model. The mixed weights mt1, m

t
2, . . . ,

mtK are reflected by the CPTs of nodeM t . The child node X t
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is a multivariate Gaussian node containing the observable
information of W features, X t1, X

t
2, . . . , X

t
W .

In the t-1th TS, the system status node is represented as
C t−1
i (1 ≤ i ≤ N ) while in the TS t , the system status node

is represented as C t
j (1 ≤ j ≤ N ) and the observable feature

node is represented asX t including all the featuresX t1,X
t
2, . . . ,

X tW . Then, the probability distribution of observable variables
can be obtained with the following equation:

P(X t |C t
j ) =

K∑
k=1

P(X t |M t
k ,C

t
j )P(M

t
k |C

t
j ) (16)

The posterior probability of the system status node in the
TS t can be calculated by the following equation based on the
Bayesian formula [47].

P(C t
j |X

t ,C t−1
i ) =

P(X t |C t
j )P(C

t
j |C

t−1
i )

N∑
n=1

P(X t |C t
n)P(C t

n|C
t−1
i )

(17)

The conditional probability distribution P(M t
k |C

t
j ) of the

mixed components, the Gaussian mixture conditional proba-
bility distributionP(X t |M t

k ,C
t
j ), and the transition probability

distribution P(Ct |Ct−1) can be obtained by Bayesian param-
eter learning methods based on the sample data or expert
knowledge [48].

B. THE DIAGNOSITIC MODEL OF THE IWM AND THE
REAL- TIME DIAGNOSTIC METHOD
Traditional DBNs are unrolled in limited TSs and the transi-
tion probability distribution is the link between two adjacent
TSs [49], [50]. However, there is no iron link between the
operating state of the IWM in the previous TS and the
operating state in the current TS because of variable speed
and uncertain road levels, i.e., the transition probability
distribution between the two adjacent TSs is impossible to
obtain.When the EV driven by the IWMoperates on the road,
a sudden speed increase and higher road level will increase
the vehicle turbulence, thereby increasing the change in the
dynamic load and impact on the IWM bearing so that local
deformation of the IWM bearing can easily occur and lead
to mechanical faults [51]. If the vehicle operates on a lower
road level at lower speed, there is still a certain probability
of failure in spite of the reduced impact on the IWM bearing.
Therefore, the changes in the IWM operating state can be
described as a series of snapshots that change with the vehicle
speed and road levels. Each snapshot obtains the information
of the IWM’s operating state at a specific speed on a specific
road level in a specific TS. This snapshot is referred to as
the RSTS.

Fig. 5 is the transformation process from TS to RSTS.
Here, a cuboid is used to express the multi-dimensional
spaces of the vibration-based SPs at some road level
and speed level. For detailedly introducing the transfor-
mation from TS to RSTS, the state vectors of speed si,
load condition r i and vibration vi in the ith snapshot are

FIGURE 5. Transformation process from TS to RSTS.

given as

si =
[
s(i−1)1t+1, s(i−1)t+2, · · · si·1t

]
(18)

r i =
[
r(i−1)1t+1, r(i−1)t+2, · · · ri·1t

]
(19)

vi =
[
v(i−1)1t+1, v(i−1)t+2, · · · vi·1t

]
(20)

where si, ri and vi are the ith sampling point in time-series
signals of speed s(t), load condition r(t) and vibration v(t),
respectively. 1t is time interval of each snapshot. Then the
information set of the ith TS can be expressed as

TSi =
{
si, r i, vi

}
(21)

Since si, r i and vi flow through time, and the actual operat-
ing state of IWM is fickle, TSi is a transient vector. In order
to weaken the timeliness of TSi, si, r i and vi are analyzed to
extract the features. The average values s̄i and r̄ i are used to
express the features of si and r i, respectively. Some highly
sensitive SPsPij (j = 1, 2 . . . J0) selected by SADR are used to
represent the vibration vi, and J0 is the number of the selected
SPs. Then TSi can be abstracted as

TSi =
{
s̄i, r̄ i, Pi1,P

i
2, · · · ,P

i
J0

}
(22)

However, the IWM’s speed and load condition vary con-
stantly, s̄i and r̄ i are still continuous variables. The class-
dependent discretization [52] and the road model parameters
of road level evaluation are borrowed to disperse s̄ and r̄ for
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multiple discrete intervals, as follows

ŝ = {m |s̄ ∈ [10 · m− 5, 10 · m+ 5) } (23)

r̂ = {n |ρr̄ ∈ [37.5 · (n− 1), 37.5 · n) } (24)

where ρr̄ is the standard deviation of vertical vibrational
acceleration. ŝ is speed level. If the speed fluctuates in the
range of 5 km/h above and below the fixed value, the fixed
value shall be regarded as the speed level. Especially, when
the vehicle speed is lower than 5 km/h, whichmeans the IWM
runs in a low speed state, the speed level is considered as
0 since the characteristic signal is not obvious. In general,
the maximum value of m is 12. r̂ is road level that is divided
into A, B, C and D. Here, the numbers 1, 2, 3 and 4 are used
to denote road level, and the smaller the value, the higher the
load level. Then TSi with discretization and digitization is
shown as

TSi =
{
mi, ni, Pi1,P

i
2, · · · ,P

i
J0

}
(25)

In order to weaken the timeliness of TS, speed level m and
load level n are regarded as independent variables, and some
SPs of vibration information are considered as dependent
variables, then three-dimensional RSTS is reconstructed as

RSTSi =
{
(P1,P2, · · · ,PJ0 )

i
k1,k2 |k1 ∈ M , k2 ∈ N

}
(26)

whereM and N are the sets of independent variablesm and n,
respectively. (P1,P2, · · · ,PJ0 ) is the array of all selected SPs.
For three-dimensional RSTS, the variables of speed level

and load level are given priority. The first consideration of
two adjacent RSTSs is whether they are in the condition
with the same speed level and load level. If so, the transition
probability distribution is obtained by expert knowledge [53]
on the basis of the experimental data from the IWM test.
If not, expert knowledge is only considered to construct the
DBNs in the process of determining the transition probability
distribution. In the study, the IWM test with 4 speed levels
and 3 load levels has been performed, and P3, P4, P7, and P8
are confirmed as the diagnostic SPs. Moreover, the length of
a TS is 3 s. The signal of vehicle speed is obtained from the
controller area network (CAN) of the vehicle communication
system, and the road level is identified based on the vertical
vibrational acceleration from the acceleration sensor by the
method proposed in reference [54]. Then the IWM mechani-
cal fault diagnosis model has been created based on the DBNs
in the same condition. Fig. 6 shows the unrolled mechanical
fault diagnostic model of the IWM in two RSTSs.

FIGURE 6. Unrolled mechanical fault diagnosis model of the IWM in
two RSTSs.

In the ith RSTSi, S i represents the IWM’s operating state
node. S i1 represents the normal operating state and S i2 rep-
resents the fault operating state. Z i is the node containing
the information of 24 types of vibration signals. The corre-
sponding road level, speed level, and operating state (nor-
mal or fault) of Z i1-Z

i
24 are shown in Table 6.MT

i is the mixed
weight node in the time domain and each vibration signal
to be diagnosed is considered to be composed of 24 mixed
components in the time domain. MFi is the mixed weight
node in the frequency domain and each vibration signal to
be diagnosed is considered to be composed of 24 mixed
components in the frequency domain. PTi is the multivariate
Gaussian node of the highly sensitive SPs includingPi3 andP

i
4

in the time domain. PFi is the multivariate Gaussian node of
the highly sensitive SPs including Pi7 and P

i
8 in the frequency

domain. PTi and PFi are the observed nodes of the model.
The CPT of each node is obtained by parameter learning

and the transition probability distributions between the two
adjacent RSTSs are obtained by expert knowledge; the results
are shown in Table 7. Subsequently, the group of mechanical
fault diagnosis models of the IWM in the two RSTSs is
developed based on the conditional probability distribution of

TABLE 6. The corresponding road level, speed level, and operating state of Zi
1-Zi

24.
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TABLE 7. State transition probability distribution between two continuous RSTS in the IWM’s diagnostic model.

the nodes in a single RSTS and different transition probability
distributions. The Bayesian network of a single RSTS is the
same and the only difference between the diagnostic models
is the transition probability distribution.

With the establishment of IWM’s fault diagnosis models in
any two RSTSs, real-time diagnosis system is built to achieve
real-time diagnosis and monitoring of the IWM’s operating
states, as shown in Fig. 7.

FIGURE 7. Real-time diagnosis system for IWM.

Firstly, TSi in current state is transformed to RSTSi accord-
ing to the previous method, and the speed levels and load
levels between RSTSi−1 and RSTSi are examined to select
the corresponding diagnosis model i. Secondly, the array of
the selected SPs in RSTSi and the result of RSTSi−1 are
input into the diagnosis model i for diagnosing the current
state. Finally, the diagnosis result of RSTSi is output as the
diagnosis result of TSi, and is input into the diagnosis model
i + 1 as the previous diagnosis result, and so on, the IWM’s
operating states is monitored real-timely. Certainly, in real-
time diagnostic system, the first RSTS’s result is obtained
on basis of the Bayesian network of the single RSTS. The
operating state of the second RSTS is obtained by combin-
ing the result of the first RSTS and the diagnostic model

selected from the diagnostic system. For the other continuous
RSTSs, the previous RSTS’s result is the state input of the
latter RSTS. Each RSTS corresponds to only one TS so that
the result of each RSTS can be matched to the related TS.
Eventually, the IWM’s operating state in each TS is judged in
the real-time diagnostic system.

For ensuring the robustness of the real-time diagnostic sys-
tem, a rule has been set that the final diagnostic result of the
IWM’s operating state is determined only when considering
the results in three consecutive TSs synthetically.

C. DIAGNOSIS AND VERIFICATION
To verify the proposed methods, each type of experiment has
been repeated 15 times in the same state such as the same
control speed and load level, and the length of each TS is
set as 3 s. Then each set of experiment data has 15 TSs.
Moreover, according to the classification standards of speed
level and road level, the normal and abnormal states of
the IWM are combined to obtain 24 types of experimental
data. Firstly, the experimental data have been divided into
15 portions, and each portion is a TS. Secondly, vibration,
road and speed signals of each TS in each state have been
processed into highly sensitive SPs of P3, P4, P7, and P8,
road level, speed level, and to transform into RSTS. Finally,
the first 13 samples of each type of experiment have been
selected to build the training data, and the remaining 2 sam-
ples have been used to compose the test data. Fig. 8 is
the schematic diagram of experimental signals, training data
and test data. Fig. 9 shows the spatial distributions of P3,
P4, P7, P8 between normal state and fault state from the
first training data. Here, rhombus and roundness are used
to express normal state and fault state, respectively. Each
state has 15 RSTSs. P3, P4, and P7 correspond, respectively,
to three directions in a three-dimensional diagram. The values
of P8 are expressed by the color depth.
For establishing a uniform standard of diagnosis system,

the normal and fault states of the IWM are labeled with
1 and 2, respectively. When the training data with the cor-
responding labels are input into IWM’s diagnosis system
altogether, the information of road level and speed level is
invoked firstly, the training data with the same conditions are
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FIGURE 8. The schematic diagram of experimental signals, training data, and test data.

TABLE 8. Test samples with different time slices, speeds levels, road levels, and operating conditions of the IWM.

grouped together to train the corresponding diagnostic model.
When 24 diagnostic models have been trained successively,
the diagnosis system has been established.

Then 24 types of the test data is processed into RSTSs,
then these RSTSs are input the diagnosis system one by
one for simulating the process of real-time diagnosis. For
introducing the performance of the diagnosis system, 4 TSs
of 12 types of test samples are shown in Table 8. Certainly,
speed levels and road levels in Table 8 are the results

processed by Formula (23) and (24), and even if speed levels
and road levels are same, there are large differences in the
actual operating conditions. Then the corresponding vibration
information such as P3, P4, P7, and P8 has large differences,
as shown in Fig. 10. Obviously, the features of 4 TSs are
that speed level escalates and road level gradually worsen.
Certainly, other 12 types of test samples are not shown, but
the features are opposite that speed level degrades and road
level gradually ameliorate.

114694 VOLUME 7, 2019



H. Xue et al.: Real-Time Diagnosis of an In-Wheel Motor of an Electric Vehicle Based on DBNs

FIGURE 9. The spatial distributions of P3, P4, P7, P8 between normal state and fault state from the first training data.

TABLE 9. Recognition rate of the mechanical fault diagnosis of the IWM.

When the 1st RSTS of each test sample is input, single
RSTS is used to recognize the probability of each state. Here,
S1 and S2 represent the normal and fault states of the IWM,

respectively, and the labels are saved in the diagnosis system.
If the probability of S1 is bigger, the corresponding state
of TS is normal; otherwise, the state is abnormal. Then the
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FIGURE 10. 12 types of test samples and the corresponding diagnosis results.

corresponding states of the 3rd, 6th, 9th, and 12th test samples
are judged to be abnormal, and other states are normal. These
diagnosis results and the initial states are in good agreement.

When the 2nd RSTS of each test sample is input, the cor-
responding RSTS and the 1st diagnosis result are considered
together to decide the probability. And so on, the information

114696 VOLUME 7, 2019



H. Xue et al.: Real-Time Diagnosis of an In-Wheel Motor of an Electric Vehicle Based on DBNs

TABLE 10. List of all abbreviations in the paper.

of RSTSi and the i-1th (i > 1) diagnosis result are used to con-
firm the probability of the ith state. The diagnostic results with
the corresponding test samples as shown in Table 8 are shown
in Fig. 10, the diagnostic probabilities are listed in Table 9.
Comparing the original state of each test RSTS, two of the
diagnosis results are inconsistent, as shown in Fig. 10 with
red box.

In order to analyze the recognition rate of test TSs, the diag-
nosis results of other 672 TSs are checked one by one,
the states of 28 TSs are only misjudged. Therefore, for single
TS, the recognition rate is 95.8%. Moreover, all erroneous
judgement TSs with the front and back TSs are synthetically
analyzed to find that most of these TSs are in the early stage
of IWM fault, and the cases of multiple consecutive TSs
misjudged are fewer. There are 7 cases that two consecutive
TSs are misjudged, and there are 2 cases that three consec-
utive TSs are misjudged, while other cases are single TS is
misjudged. According to the rule for ensuring the robustness
of the real-time diagnostic system, there are 2 times that the
system results are incorrect, and the accuracy of the real-time
diagnostic system is 99.7%.

V. CONCLUSION
Highly sensitive SPs were selected intelligently by using the
SADR to represent the features of the vibration signal in
the IWM for different road levels and vehicle speeds. The
signal features were extracted under the condition of multi-
ple interference factors. The proposed method is especially
applicable to the field of intelligent diagnosis and real-time
monitoring.

TSs of DBNs were applied flexibly to determine the
RSTSs, which contain additional information on the road
level and speed, to develop the RSTS-based diagnosticmodel.
The method effectively deals with the problem that the transi-
tion probability distribution between two adjacent TSs cannot
be obtained and promotes the development and application
of diagnostic techniques in a complex and variable operating
environment.

A real-time diagnostic method was proposed by targeting
the IWM’s mechanical faults. The practical experiments per-
formed using the IWM test bench verified the effectiveness
of the proposed method. The diagnostic results showed that
the recognition rate of the mechanical faults of the IWM
was 95.8% for single TS, and was 99.7% for the real-time
diagnostic system. Because of the complexity and variability
of vehicle driving conditions, the current research focuses on
whether the fault state can be identified. In the future, the
early fault of IWMs will be deeply studied. Moreover, the
distributed drive system of an EV will be focalized, which
usually includes even a number of IWMs, to investigate the
effective monitoring of the real operating conditions and
diagnose system faults.

APPENDIX
See Table 10.
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