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ABSTRACT In order to achieve the rejection of the ocean current disturbances and fast convergence in
the depth positioning process of the deep-sea self-holding intelligent buoy (DSIB), a finite-time bound-
edness (FTB) depth control strategy based on over shoot estimation in pole placements (OEIPP) method
has been proposed in which variable gains are adjusted for the DSIB closed-loop system. In this paper,
the system parameters have been investigated including depth error, transient time, control gains and current
disturbances. The mathematical model for the DSIB dynamic motion is established by combining the
pressure hull deformation and the current disturbances model. At the same time, as the DSIB closed-loop
system need be established by the finite-time transformation matrix, the establishment process on the FTB
depth control strategy with a OEIPP method has been proofed. Finally, to observe the transient state of the
DSIB closed-loop control system in finite time, an adjustment rule of the control gains under different current
disturbances based on the FTB depth control method is analyzed. The performance of the control strategy is
validated through simulations and at-sea experiments, and its feasibility established. The results show that
the proposed control strategy can guarantee that the DSIB reaches the allowable depth errors of a target depth
under the ocean current disturbances within a finite time. They also provide a useful guide for establishing
an adjustment rule for the control gains under various current disturbances within a finite time.

INDEX TERMS Deep-sea self-holding intelligent buoy (DSIB), finite-time boundedness (FTB), depth
control, overshoot estimation in pole placements (OEIPP), ocean current disturbances.

I. INTRODUCTION
A DSIB (deep-sea self-holding intelligent buoy), which
is also known as a profiling float or a Lagrangian float,
dives, and ascends by changing its buoyancy [1], [2].
Marine data such as profiles of temperature, salinity, and
depth with vertical cycles can be measured by this device.
These data are transmitted to the ground through satel-
lites, as shown in Fig. 1. The DSIB is widely used to
provide information for ocean development and research,
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weather forecasting. and naval and military activities [1]–[4].
Recent observation-based studies demonstrated that the
warming of the deep oceans below 2000 m has significantly
contributed to the mean sea level rise [12]. Hence, it is nec-
essary to obtain a deeper observation data for expanding the
DSIB coverage into the deep ocean below 2000m. To achieve
this objective, a control method for depth positioning of the
DSIB is indispensable. Depth positioning is an important
function of a DSIB. However, the dynamics of the DSIB
have nonlinear relation with the environmental disturbances.
Several control methods for nonlinear depth positioning have
been proposed, which, however, render the depth positioning
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FIGURE 1. Observation scheme of DSIB.

method difficult to design [15], [16]. Many researchers have
extensively investigated various linear control approaches as
well, and their achievements have been acknowledged in the
current literature [7], [8], [13], [15], [16], [23].

For the DSIB, following methods are used to design the
depth positioning controller. One such earlier depth posi-
tioning method is the proportional-integral-derivative (PID)
feedback law [7], [13], which was successfully used in prac-
tice. The PID controller [7] was utilized to control the depth
and altitude above the bottom of the ocean. Although this
PID controller was effective, it was difficult to optimize
the control parameters in the depth control process. Simi-
larly, a discrete PID controller with a second-order low-pass
filter was used in depth positioning. However, the conver-
gence time of system need be improved in the foregoing
method [13]. Other studies available in literature [8], [23]
are related to the state–space feedback control algorithm.
The control algorithm proposed in [8] was used not only to
increase the accuracy of the float dynamics model, but also to
accomplish the control procedure for depth positioning and
altitude trajectory. However, this method had to be combined
with empirical motor efficiency data so that the tradeoffs
between the efficiency and the control performance could be
studied. On the other hand, DSIB in practice must also be
capable of operating in the depth positioning process subject
to ocean currents. However, few results on the ocean current
disturbances can’t be found in the above works [7], [8], [13].
In order to compensate the influence of the currents, a simple
feedback method called steady-state depth errors response
controller [23] was recommended for depth positioning under
current disturbances, but the complete applicability of this
control method was not authenticated. Another intelligent
control strategy based on the ocean model was used to
design the depth positioning strategy [15], [16]. Their ocean
model predictions were applied to facilitate a basic level
of autonomy [15]. In [16], an ocean-scale sensor web was
recommended on the basis of intelligent depth positioning.
Nevertheless, the two algorithms presented in [15], [16] were
dependent on a large-scale ocean model.

Although the control algorithms mentioned above [7], [8],
[13], [15], [16], [23] have shown adequate reliability in DSIB
depth positioning, the aforementioned control methods only
guaranteed asymptotical stability and performance criteria
defined over an infinite time from different depth control
perspectives. Before a DSIB can be deployed, the control
parameters and the finite control time need to be deter-
mined; however, the external current disturbances may lead
to unavoidable disturbances in the depth control process.
Moreover, the depth control system considerably depends on
the accuracy of the hydrodynamic model of the DSIB. The
external current disturbances tend to increase the complexi-
ties and difficulties in the float’s model, and can render the
float uncontrollable at a target depth during the finite control
time. Therefore, analyzing the transient state of the depth
control system precisely during the finite control time is nec-
essary. Compared with infinite-time depth control methods
presented in [7], [8], [13], [15], [16], [23], the closed-loop
system under the finite-time control law possesses strong
anti-jamming features and a fast convergence rate. Hence, this
control law has attracted the attention of a growing number
of researchers [14], [17]–[20], [25], [26].

Some early results based on the concept of finite-time
control law dated back to the 1960s, [17], [18], wherein,
the concept of FTS (finite time stability) was introduced.
To deal with the coordination control problem of spacecraft
formation flying [26], the six degree-of-freedom (6DOF)
FTS coordination control was proposed to suppress external
disturbances for a group of spacecraft; but, the FTS coor-
dination control was lost in the boundary layer. Moreover,
the FTS tracking control strategy was presented to tackle
the problem of trajectory tracking control for underactuated
unmanned underwater vehicles (UUVs) [20] and Lagrangian
profilers [14] with ocean current disturbances. However,
the upper bound of the FTS tracking control law wasn’t
given. In terms of this method, more precise values of the
different parameters weren’t investigated [14], [20]. In order
to obtain the boundary layer value of the FTS law, an FTB
(finite-time boundedness) method was initially proposed for
a linear system limited by uncertain parameters and unknown
constant disturbances [19]. Amato’s theorem [19] indicates
that a system is said to be finite-time stable, if given a bound
on the initial condition, once a specified time interval is fixed,
its state remains within a bounded region which does not
exceed a certain threshold during this specified time interval.
In addition, to solve the state feedback stabilization problem
of switched linear systems, a new method called ‘‘overshoot
estimation in pole placements’’ (OEIPP) was used to esti-
mation on the overshoots of the transition matrices [24];
however, some practical modes of switched systems were not
considered in their study. Based on the OEIPP method [24],
a mode-dependent average switching frequency method [25]
was proposed to solve the finite-time stabilization problem of
the switched nonlinear systems.

In the current work, we consider a spherical DSIB as the
research object. The challenge here is that the DSIB ascends

VOLUME 7, 2019 114671



Z. Qiu et al.: Depth Control for a DSIB Under Ocean Current Disturbances Based on FTB Method

FIGURE 2. Depth control system of the DSIB. (a) Schematic of the buoyancy-driven system; (b) Schematic of
the DSIB control system.

or dives at a certain speed from the initial depth to the
target depth under ocean current disturbances within a finite
time. Motivated by above considerations, the depth control
problem of the DSIB closed-loop control system is the typical
state feedback stabilization problem. Inspired by the control
technique from article [24] and FTB method [19], the OEIPP
method is used to establish the transition matrix of the DSIB
closed-loop control system. A FTB depth control strategy
with the OEIPPmethod is proposed to solve the depth control
problem of the DSIB dynamic model within a given finite
settling time. The difference from this control strategy and
the conventional control method [7], [8], [13], [15], [16], [23]
is that the depth error and transient time of the DSIB
closed-loop control system are improved under ocean cur-
rent disturbances. The upper bound of depth positioning
can be determined. Meanwhile, the satisfying control effect
can be obtained by carefully selecting relevant parameters.
This method decreases the influence of ocean current dis-
turbances and is suitable for solving the depth control prob-
lem. The overall organization of this paper is as follows:
Section 2 describes the depth control process of the DSIB.
In Section 3, a vertical dynamic model of the DSIB system
is deduced under the influence of the disturbing current.
In Section 4, the FTB depth control strategy with the OEIPP
method is designed. The designed depth control method
drives the state of the depth control system to converge to
the prescribed bound in a finite time. In Section 5, relevant
simulations and at-sea experiments demonstrate the appli-
cability of the proposed depth control method to current
disturbances in various scenarios. The adjustment rule of
the control gains under various current disturbances within

a finite time is verified. Finally, some conclusions are drawn
in Section 6.

II. DEPTH CONTROL PROCESS USING
BUOYANCY-DRIVEN SYSTEM
To achieve the depth control process from the sea sur-
face to 4000 m underwater, the DSIB is equipped with
a buoyancy-driven system. A schematic of the designed
buoyancy-driven DSIB system is presented in Fig. 2(a). In the
submerging process, the ball valve is opened by the steering
engineer. Hydraulic oil is allowed to flow from the exter-
nal bladder back into the internal reservoir [1], [4], [11].
As the volume of the external bladder diminishes, leading
to a decrease in the buoyancy, the DSIB dives to the pre-
defined depth. The DSIB is suspended at a target depth for
the scheduled period. In the floating process, the air pump
is opened to provide an appropriate pressure for the internal
reservoir. Hydraulic oil is injected into the internal reservoir
through a filter and a hydraulic pump which is driven by a
motor. Hydraulic oil is also pumped into the external bladder
through a one-way value that is closed at this time. The
one-way valve can prevent backflow of the hydraulic oil
through the hydraulic pump [1], [4], [11]. The buoyancy of
the DSIB is increased as the volume of the external bladder
expands. The external bladder is located at the exterior of the
spherical hull. The volume of external bladder is measured by
a displacement sensor. The DSIB ascends when the buoyancy
is greater than the gravity. The depth data are collected during
the ascent of the float to the surface. After the data are
transmitted, a new dive will be started for the next schedule,
and this process continues until the system battery runs out of
power.
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TABLE 1. DSIB specifications.

A schematic of the DSIB control system is shown in
Fig. 2(b). The control system is composed of a main control
board, executive elements, and a power supply. The execu-
tive elements include CTD (conductivity, temperature, depth)
sensors, an iridium module, a motor, an air pump, and a dis-
placement sensor. The power supply is made up of multiple
sets of batteries and the power is delivered to various exec-
utive elements according to the control program. The DSIB
control system functions as follows: The control program is
pre-written into the main control board. The control time is
set. The CPU (central processing unit) works according to
the control program. As per the collected depth information
from the CTD sensors and the displacement information from
the displacement sensor, a work or stop command is sent to
each executive element. The control system is used to make
cyclical operations such as diving, depth positioning, and
floating. The prototype of the DSIB is shown in Fig. 3, with
relevant specifications listed in Table 1.

FIGURE 3. Prototype of DSIB.

III. DSIB MOTION MODELING IN VERTICAL PLANE
According to Newton’s 2nd law of motion, when the DSIB
is floating or submerging from the initial depth to the target
depth, the acceleration of the DSIB is produced by a combi-
nation of forces, namely the weight, buoyancy, and the drag.
In the aforementioned process, the DSIB is influenced by
the currents all the time. While the gravity force is constant,
buoyancy, drag, and current velocity change with depth. The
change in the buoyancy force on the DSIB with depth is
due to pressure hull deformation. Thus, the pressure hull
deformation has a significant effect on the dynamic behavior
of the DSIB.

A. DEFORMATION OF SPHERICAL PRESSURE HULL
UNDER EXTERNAL PRESSURE
In our study, a spherical pressure hull is used in the
pressure-proof structure of the DSIB. Only the volume
changes induced by the deformation with increasing seawa-
ter pressure are considered. The deformation of the spheri-
cal pressure hull under seawater pressure condition slightly
reduces the active buoyancy of the DSIB [3]–[6]. Thus,
the deformation of the spherical pressure hull cannot be
ignored in deep sea. The volume compression of the spherical
pressure hull induced by the deformation at different pressure
is expressed as follows [9]:

1V =
4πr3Pz

E[r3−(r − δ)3]
[(1−2λ)r3+

1+λ
2

(r − δ)3] (1)

Explanation of the parameters in (1) and their values in
our study are as follows: r is the radius of the spherical
pressure hull (0.216 m), λ is the Poisson’s ratio (0.2), E is the
modulus of elasticity on the spherical pressure hull (63 GPa),
δ is the thickness of the spherical pressure hull (0.0135 m),
and Pz is the pressure at the target depth z(Pz = ρgz, g =
9.8m/s2). The material used for the spherical pressure hull is
glass. Substituting the values for the above parameters in (1),
we obtain the following:

1V = qρz (2)

where, q = 1.25E − 11.

B. DISTURBANCE MODEL OF THE OCEAN CURRENT
When a DSIB is submerged in deep sea, it is influenced by
several disturbance components including the currents, tides,
and the sea waves [14]. Among these disturbance factors,
only the effect of the currents is considered as a major factor
in this study. The characteristics of the current motion acting
on the DSIB mainly depend on the sea trial area. The South
China Sea (15.5◦N, 115.5◦E and 14◦N, 116◦E) is selected as
the sea trial area in this study.

For the deep-sea case, the currents below 200 m are
small [10]. To simulate these currents and their effects on the
float motion in the vertical plane, we make an assumption
that the velocity of the current decreases linearly only with
the increasing diving depth, and the velocity vector of cur-
rent is collinear with the velocity vector of the wave. Thus,
the velocity vector of the current can be taken as a graded
distribution along the diving depth in the vertical plane, and
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can be written [20] as

u = (u0 − kz) cos θ (3)

where, u is the current velocity at depth z, u0 is the current
velocity at the sea surface, k is the coefficient relative to
the sea trial area, and the coefficient k is measured to be
0.00013 by a current meter in the sea trial area. θ is the angle
between the current direction and the vertical direction. θ is
set as 60◦in this study.

C. DRAG ANALYSIS
The drag force on the DSIB is assumed to be a quadratic drag
law and is expressed as follows [5], [13]:

R =
1
2
CdAρv2 (4)

where, Ris the drag force , A is the effective cross-sectional
area of the DSIB, andCd is the drag coefficient. The effective
cross-sectional area can be obtained by the projection of the
3D model onto the vertical plane. In the current study, A is
calculated to be 0.301 m2, by using (4). Rearranging (1),
Cd can be expressed as

Cd =
2R
Aρv2

(5)

Different flow velocities from 0.1 m/s to 0.5 m/s are given
at the inlet of the computational domain to simulate the DSIB
by using the CFD (computational fluid dynamics) solver,
FLUENT R©6.3 in the ascending or diving process. The over-
all drag forces on the DSIB are calculated for both ascending
and diving motions at these velocities. The corresponding
drag coefficients are displayed in Tables 2 and 3.

TABLE 2. DRAG coefficient of the DSIB in the ascending process.

TABLE 3. DRAG coefficient of the DSIB in the diving process.

The average drag coefficients of the DSIB in ascending
and the diving processes are denoted by Cd−up and Cd−down,
respectively, and these are obtained by averaging the corre-
sponding drag coefficients shown in Tables 2 and 3. These
are calculated to be Cd−up = 0.73, and Cd−down = 0.66.
Equation (4) shows that the drag force is nonlinear, which
can be approximated to a linear expression at the velocity
equilibrium point. The velocity component of the drag term
is expressed as v |v| instead of v2. Considering the current
velocity, u, the drag can be linearized as

R =
1
2
CdAρ(v− u) |v− u| (6)

FIGURE 4. Relationship between the quadratic drag and the linearized
drag.

The relationship between the quadratic and linearized
drags is shown in Fig. 4. The horizontal axis is the motion
velocity of the DSIB, and the vertical axis is the drag
force. The drag law is approximately quadratic as indicated
by the red solid line, and the linearized drag is represented
by the blue solid line. Finally, the linearization velocity of
the DSIB (|v− u| = 0.1m/s) under the current disturbances,
is represented by the green point.

D. KINEMATIC EQUATION OF DSIB IN CURRENTS
The dynamic model of the DSIB in disturbing currents is
considered to be nonlinear and coupled in the vertical plane.
However, a linearized dynamic model can be used in this
study with linear techniques. Therefore, simplifying them at
the operating point based on special assumptions is necessary
as follows [21]–[23]:

1) The total mass of the DSIB is constant. The center of
mass and the center of buoyancy are axially collinear.
The DSIB is regarded as a spherical entity in the ver-
tical plane, and the direction of its movement is also
vertical.

2) The current is not negligible in the vertical plane, and
the drag force is considered to be linear.

Based on these special assumptions, the dynamic model of
the DSIB is established under the current disturbances in the
vertical plane. The DSIB ascends or descends at a velocity v
from the initial depth to the target depth. In the above process,
the relevant forces and relevant velocity vectors acting on
the DSIB include buoyancy F, gravity G, drag R, current
velocity u0, and motion velocity of the DSIB v, as illustrated
in Fig. 5. The angle between the current velocity direction
and the motion velocity direction of the DSIB is θ . In Fig. 5,
the floating (ascending) process is represented by the region
marked blue, and the submerging (diving) process is repre-
sented by the region marked red.

Based on the assumption that the DSIB reaches the prede-
fined target depth h, where, h is a fixed value, the associated
depth error is set as ẑ = z − h. This study focuses on the
changes of the depth error within a finite time based on the
depth control system of the DSIB. According to (3) and (6),
the floating and submerging processes of the DSIB are rep-
resented by the following force equilibrium equations (7)
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FIGURE 5. Significant forces acting on DSIB during floating (ascending)
and submerging (diving) processes.

and (8), respectively. Tables 4 and 5 respectively present the
dynamic variables and the non-dynamic constants.

M (v− u)′=ρ(ẑ+h)g(Vf −1V + Q)
−Mg− 1

2Cd−upAρ(ẑ+h)(v− u) |v− u|
˙̂z=v− (u0 − k(ẑ+h)) cos θ

(7)
M (v− u)′=Mg− ρ(ẑ+h)g(Vf −1V + Q)

−
1
2Cd−downAρ(ẑ+h)(v− u) |v− u|

˙̂z=v− (u0 − k(ẑ+h))cosθ
(8)

According to (7) and (8), the state-space equation of the
DSIB system can be obtained as follows:

1) IN THE ASCENDING PROCESS[
v̇
˙̂z

]
=

[
Ra1 Ra2
1 Ra3

] [
v
ẑ

]
+

[
Ra4
0

]
Q+

[
Ra2
Ra3

]
h+

[
Ra5
Ra6

]
(9)

where

Ra1 = −
Cd−upAρ(ẑ+h) |v− u|

2M
− k cos θ,

Ra2 = −k cos θ
Cd−upAρ(ẑ+h) |v− u|

2M
− k2 cos2 θ −

ρ2(ẑ+h)gq

M
,

Ra3 = k cos θ,Ra4 =
ρ(ẑ+h)g

M
, Ra6 = −u0 cos θ,

Ra5 = u0 cos θ
Cd−upAρ(ẑ+h) |v− u|

2M
+ ku0 cos2 θ

+
ρ(ẑ+h)gVf

M
− g.

2) IN THE DIVING PROCESS[
v̇
˙̂z

]
=

[
Rd1 Rd2
1 Rd3

][
v
ẑ

]
+

[
Rd4
0

]
Q+

[
Rd2
Rd3

]
h+

[
Rd5
Rd6

]
(10)

where

Rd1 = −
Cd−downAρ(ẑ+h) |v− u|

2M
− k cos θ,

R2d =−k cos θ
Cd−downAρ(ẑ+h) |v−u|

2M
−k2 cos2 θ+

ρ2(ẑ+h)gq

M
,

Rd3 = k cos θ, Rd4 = −
ρ(ẑ+h)g

M
,Rd6 = −u0 cos θ,

Rd5 = g+ u0 cos θ
Cd−downAρ(ẑ+h) |v− u|

2M
+ ku0 cos2 θ

−
ρ(ẑ+h)gVf

M

According to the state-space equations (9) and (10),
the motion state vector of the DSIB is x(t) =

[
v ẑ

]T ,
where v and ẑ are state variables. The predefined target
depth h is usually viewed as a constant. Thus, the state–space
equations of the DSIB system (9) and (10) can be considered
as the following time-invariant linear system:

ẋ(t) = Ax(t)+ BQ+ C, x(0) = x0 (11)

The state–space equation of the DSIB system (11) is the
dynamic open-loop system expression.

In the state–space equation of the ascending process:

A =
[
Ra1 Ra2
1 Ra3

]
, B =

[
Ra4
0

]
, C =

[
Ra2
Ra3

]
h+

[
Ra5
Ra6

]
In the state–space equation of the diving process:

A =
[
Rd1 Rd2
1 Rd3

]
, B =

[
Rd4
0

]
, C =

[
Rd2
Rd3

]
h+

[
Rd5
Rd6

]
where, A ∈ R2×2,B ∈ R2×1,C ∈ R2×1 are the given matri-
ces, Q is the control input, and C is the disturbances matrix.
In the given state variables of the DSIB model, the depth z
and hydraulic oil volume of the external bladder Q can be
measured directly.

Considering the DSIB system (11) to be unstable under
the currents, a state feedback controller K is designed in the
following form:

Q(t) = Kx(t) (12)

where, K ∈ R2×1.
The obtained state feedback control gains K make the

closed-loop depth control system of the DSIB stable. The
closed-loop depth control system state equation by connect-
ing (11) and (12) is as follows:

ẋ(t) = (A+ BK)x(t)+ C, x(0) = x0 (13)
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TABLE 4. Dynamic variables of the DSIB.

TABLE 5. Non-dynamic constants of the DSIB.

IV. FTB DEPTH METHOD DESIGN FOR THE DSIB
CLOSED-LOOP DEPTH CONTROL SYSTEM
Before the DSIB is deployed, the control time and control
gains of the depth control system are usually set to achieve the
depth control process of the DSIB. Owing to the disturbance
of the external current, the DSIB cannot be effectively con-
trolled in this process, and as a result, both convergence and
divergence states may occur. To observe the transient state of
the DSIB, it is necessary to study the relationship between the
control gains and current disturbance in a finite time, so that
the DSIB can be guaranteed to achieve the depth control
in a finite time under the influence of the external currents.
To solve the transient stability problem for the time-invariant
linear system given by (13) over a finite time interval [0,T],
the concept of FTB is introduced. Referring to the relevant
definition of FTB [19], the same for a closed-loop depth
control system can be defined as the following engineering
problem:
Definition 1: In the ascending or diving process, consider

three positive constants c1, c2, and T, and a positive definite
matrix R > 0. c1 is the area scope where the DSIB is located
at the initial time. c2 is the area scope where the DSIB is
allowed to locate over a finite-time interval [0,T]. At the
initial time, the motion state vector of the DSIB is x0 =[
v0 ẑ0

]T . At time t, the motion state vector of the DSIB is
x(t) =

[
vt ẑt

]T .Considering the closed-loop depth control
system formed from time-invariant linear system (13), if

xT0 Rx0 ≤ c1 ⇒ xT (t)Rx(t) < c2, ∀t ∈ [0,T ] (14)

then, the closed-loop depth control system (13) is character-
ized by FTB, which is given with respect to (c1, c2, T, R).
On the basis of Definition 1, a sufficient condition for the

solution of this engineering problem is given by the following
theorem:

Theorem 1: Given three positive constants c2, T, and M ,
and a positive definite matrix R > 0, for any λs > 0, if

λmax(R)(Mλn−1s e−λsT ‖x(0)‖ + ‖C‖T )2 ≤ c2 (15)

where, λmax(R) is the maximum eigenvalue of the positive
definite matrix R. Let n be the order of the positive definite
matrix R. Here, M is a constant, which is greater than 0 and
is independent of λs, and can be estimated precisely in terms
of Ai,Bi, and n.λs is the decay rate; T is a finite time interval;
c2 is the area scope where the DSIB is allowed to be located
over a finite-time interval [0,T]; ‖ x(0) ‖ is the norm of
the DSIB system state x (t) at the initial time; ‖ C ‖ is
the norm of the constant matrix for the disturbances of the
closed-loop depth control system (13). Then, the closed-loop
depth control system is finite-time bounded with respect to
(c2, T, R).

Proof:
To solve the FTB problem for the closed-loop depth control

system represented by (13), the criteria need be established
for the finite-time transformation matrix. Equation (13) can
be rewritten as follows:

x(t) = e(A+BK)x(0)+
∫ t

0
Cdt (16)

A newmethod, called ‘‘overshoot estimation in pole place-
ments’’ is used to estimate the transition matrix e(AiCBiK i)t .
Let Ai ∈ R2×2 and Bi ∈ R2×1 be constant matrices. If the

pair (A, B) is controllable, then, for any λs > 0, a matrix
K i ∈ R2×1 exists, which satisfies [24]∥∥∥e(Ai+BiK i)t

∥∥∥ ≤ Mλn−1s e−λst , t ≥ 0 (17)

where,M > 0 is a constant.M = nn+1 |F1|

∣∣∣F−1
1

∣∣∣N0, which
is independent of λs and can be estimated precisely in terms
of Ai, Bi, and n. Here, n is the order of the matrix Ai and λs is
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FIGURE 6. Planned mission scenario of the DSIB: (a) Position of the DSIB deployed in south
china Sea; (b) Deployment process of the DSIB.

the decay rate.

F1 = [An−1B · · ·AB B]


1 0 · · · 0

an−1 1 · · · 0
...

. . .
. . .

...

a1 · · · an−1 1

 ,
N0 ,

nn(n−1)/2∏
1≤i≤n−2 i!

(18)

If (17) states a sufficient condition for the FTB of the
closed-loop depth control system in the form (13), then∥∥∥e(A+BK)t∥∥∥ ≤ Mλn−1s e−λst , t ≥ 0 (19)

On the other hand,

λmin(R) ‖x(t)‖2 ≤ xT (t)Rx(t) ≤ λmax(R) ‖x(t)‖2 (20)

where λmax(R) is the maximum eigenvalue of the positive
definite matrix R.

‖x(t)‖ =

∥∥∥∥e(A+BK )x(0)+
∫ t

0
Cdt

∥∥∥∥ ≤ Mλn−1s e−λst ‖x(0)‖

+ ‖C‖
∫ t

0
dt (21)

Based on the definition of the FTBt ∝ T , the closed-loop
depth control system (13) can be rewritten as follows:

‖x(t)‖ ≤ Mλn−1s e−λst ‖x(0)‖ + ‖C‖T (22)

Thus, we have

xT (t)Rx(t) ≤ λmax(R)(Mλn−1s e−λsT ‖x(0)‖ + ‖C‖T )2 ≤ c2
(23)

Thus, the proof of Theorem 1 is completed.
In summary, a state feedback controller (12) exists

such that the closed-loop depth control system (13), under
the external disturbances is bounded over a finite-time
interval [0,T].

V. RESULTS AND ANALYSIS
To illustrate the theoretical results obtained in the previous
sections, both simulations and sea trials were conducted
to evaluate the performance of the proposed depth con-
trol method. During THE SEA TRIAL, THE DSIB WAS
CONSIDERED TO HAVE BEEN DEPLOYED IN TWO
POSITIONOF THE SOUTHCHINA SEA (15.5◦N, 115.5◦E
and 14◦N, 116◦E) (see Fig. 6). TheDSIBwas equippedwith a
CTD sensor (Sea-Bird Electronics, Inc., SBE 49) to measure
the depth, conductivity and temperature. These measured
values were used to calculate the seawater density. When the
depth was between 600 m and 800 m, the seawater density
range was between 1029.9kg/m3 and 1030.8kg/m3. When the
depth was between 2500 m and 2800 m, the seawater density
range was between 1039.4kg/m3 and 1040.5kg/m3.The mea-
sured depth rate was used to estimate the motion velocity of
the DSIB at the initial time. The mean vertical velocity of the
DSIB at the initial time was approximately 0.5 m/s in both
the ascending and diving processes in this study. The current
velocity data used in this work came from real measurements
at location with an HS-Engineers ISMart 6000 m current
meter. The current velocity at the sea surface was respectively
approximately 0.78m/s and 1.5m/s in two position of the
South China Sea (15.5◦N, 115.5◦E and 14◦N, 116◦E).

A. SIMULATION RESULTS AND ANALYSIS
Relevant simulations have been conducted to validate the
proposed depth control method under the current distur-
bances. To study the relationship between the control gains
and the current disturbances in the proposed depth control
method, the simulations are divided into those in shallow
water (restricted to a depth above 2000 m, and henceforth
referred to as scenario 1) and those in deep water (restricted to
a depth between 2000 m and 4000 m, and henceforth referred
to as scenario 2). Furthermore, two cases are considered in
each of these scenarios:
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a. Identical control gains are used in the FTB method
under different current disturbances as the DSIB
ascends or dives.

b. Varied control gains are used in the FTB method under
identical current disturbances as the DSIB ascends or
dives.

1) SCENARIO 1: RESTRICTION TO ABOVE 2000M
The DSIB ascends at a speed of 0.5 m/s at the initial time
from an initial depth of 800 m to a target depth of 600 m.
At the initial time, the motion state vector of the DSIB is
x(0) =

[
0.5 200

]T . In the above process, the control gains
K make the closed-loop depth control system converge to
an allowable depth error of 15 m around the target depth
within 2000 s under various current disturbances.

According to Scenario 1, the non-dynamic constants are
substituted into (9), and the initial conditions are as follows:

A =
[
−0.23 1.73E − 5

1 0.000065

]
,

B =
[
192.67

0

]
,

x(0) =
[
0.5
200

]
, h 600.

a. Identical control gains K = [−10,− 1] are used in the
FTBmethod under different current disturbances as the
DSIB ascends.

Based on the proposed Theorem 1, and [24], the calculated
values of c2, T, and M are 44100, 2000, and 16, respectively.
Let the state feedback control gains be K = [k1, k2]. From
|λI − (A+ BK)|, the eigenvalue, λ is< 0. For the calculated
control gains K = [−10, −1], the closed-loop depth control
system equations are (24) and (25) respectively, and are
finite-time bounded.

When u0 = 0.78m/s,[
v̇
˙̂z

]
=

[
−1926.93 −192.67

1 0.000065

] [
v
ẑ

]
+

[
−0.01662
−0.351

]
(24)

When u0 = 1.5m/s,[
v̇
˙̂z

]
=

[
−1926.93 −192.67

1 0.000065

] [
v
ẑ

]
+

[
0.08838
−0.711

]
(25)

b. Varied control gains are used under identical current
disturbances (u0 = 0.78 m/s) as the DSIB ascends.

Based on the proposed Theorem 1, in a similar way,
the calculated values of c2, T, and M are 44100, 2000, and
16, respectively. For the calculated control gains K = [−10,
−0.5], the closed-loop depth control system equation is (26)
and is finite-time bounded.[
v̇
˙̂z

]
=

[
−1926.93 −96.335

1 0.000065

] [
v
ẑ

]
+

[
−0.01662
−0.351

]
(26)

2) SCENARIO 2: RESTRICTION TO DEPTH BETWEEN
2000 M AND 4000 M
The DSIB dives at a speed of 0.5 m/s at the initial time from
the initial depth of 2500 m to the target depth of 2800 m.
At the initial time, the motion state vector of the DSIB is
x(0) =

[
0.5 300

]T . In the above process, the calculated

control gains K make the closed-loop depth control system
converge to an allowable depth error of 20m around the target
depth within 2000 s under the current disturbances.
According to the Scenario 2, the non-dynamic constants

are substituted into (10), and the initial conditions are as
follows:

A =
[
−0.21 −1.11E − 5

1 0.000065

]
,

B =
[
−194.54

0

]
,

x(0) =
[
0.5
300

]
, h = 2800.

a. Identical control gains K= [10,0.5] are used in the
FTBmethod under different current disturbances as the
DSIB dives.

Based on the proposed Theorem 1, and according to the
reference [24], the calculated values of c2, T, and M are
96100, 2000, and 15.75, respectively. Let state feedback con-
trol gains be K =[k1,k2]. From |λI − (A+ BK)|, the eigen-
value, λ is <0. For the calculated control gains K = [10,0.5],
the closed-loop depth control system equations are (27)
and (28), respectively, and these are finite-time bounded.
When u0 = 0.78m/s,[
v̇
˙̂z

]
=

[
−1945.61

1
−97.27
0.000065

] [
v
ẑ

]
+

[
0.10808
−0.208

]
(27)

When u0 = 1.5m/s,[
v̇
˙̂z

]
=

[
−1945.61

1
−97.27
0.000065

] [
v
ẑ

]
+

[
0.18538
−0.568

]
(28)

b. Varied control gains are used under the identical cur-
rent disturbances (u0 = 0.78 m/s) as the DSIB dives.

Based on the proposed Theorem 1, in a similar way, the cal-
culated values of c2, T, and M are 96100, 2000, and 15.75,
respectively. For the calculated control gains K = [10,0.25]
the closed-loop depth control system equation is (29), and is
finite-time bounded.[
v̇
˙̂z

]
=

[
−1926.93

1
−48.635
0.000065

] [
v
ẑ

]
+

[
0.10808
−0.208

]
(29)

Figs. 7 and 8 show the state trajectories of the closed-loop
depth control systems in the ascending and diving processes,
respectively. The horizontal axis is the time, and the vertical
axis is the motion states of the DSIB. The motion states of
the DSIB consists of the motion velocity of the DSIB v and
the depth error ẑ. As shown in Figs. 7(a) and 8 (a), identical
control gains are used in the FTB method under different
current disturbances. The identical control gains restrain the
chattering of the current disturbances in both the ascending
and diving processes. With the same control gains, the solid
lines represent the state trajectories of the closed-loop depth
control systems (24) and (27) under a current velocity
of 0.78 m/s, while the dotted lines represent the state trajec-
tories of the closed-loop depth control systems (25) and (28)
under a current velocity of 1.5 m/s. Figs. 7(b) and 8 (b)
show the results for the case b, where the FTB method is
achieved by adjusting the control gains under identical cur-
rent disturbances. The chattering of the current disturbances
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FIGURE 7. State trajectories of the closed-loop depth control system in ascending process: (a) Identical control gains used in different current
disturbances; (b) Different control gains and PID controller used in identical current disturbances.

FIGURE 8. State trajectories of the closed-loop depth control system in diving process: (a) Identical control gains used in different current disturbances;
(b) Different control gains and PID controller used in identical current disturbances.

is restrained both in the ascending and diving processes.
Under an identical current velocity of 0.78 m/s, the solid
lines represent the state trajectories of the closed-loop depth
control systems (24) and (27) with the control gains K =
[−10, −1] and K = [10,0.5], respectively. The dotted lines
represent the state trajectories of the closed-loop depth con-
trol systems (26) and (29) with the control gains K = [−10,
−0.5] and K = [10,0.25], respectively. A contrast simulation
is designed to verify the performance of the FTB method
compared to that of a standard PID controller. As shown
in Figures 7 (b) and 8 (b), FTB method and standard PID
controller are used in the depth control under identical current
disturbances. The both control method restrain the chattering
of the current disturbances in both the ascending and diving
processes. In order to realize the depth control of the DSIB
under a current velocity of 0.78m/s in the ascending process,
the relevant parameters of the standard PID controller are
established by a trial-and-error method as 5, 0.5, and 20 for
kp, ki, and kd, respectively. In the diving process, the relevant
parameters of the standard PID controller are set as 5, 0.2, and
30 for kp, ki, and kd, respectively. The dot dash lines represent
the state trajectories of the closed-loop depth control systems

with the PID controller in the ascending and diving processes,
respectively.

The depth simulation results for the closed-loop depth
control system are illustrated in Figure 9. In the ascending
process, the proposed FTB depth control method enables
the DSIB to reach the desired depth error of a target depth
of 600 m under current disturbances within 1200 s, and the
desired depth error is less than 15 m. In the diving process,
the FTB depth controller takes about 1800 s to reach a target
depth of 2800 m under current disturbances, and the desired
depth error is less than 15 m.

The key results of the simulations in the ascending and
diving processes are listed in Table 6. The depth error and
transient time are used to describe the performance of the
depth positioning. The maximum allowable error of depth
positioning based on the actual hydrographic survey is usu-
ally within 50 m [30]. The simulation control time is set to
2000 s. For the standard PID controller and FTB method,
the generated depth error and transient time meet the desired
requirement in the ascending and diving process, respec-
tively. Thus, the closed-loop depth control systems (24), (25),
and (26) are finite-time bounded in the ascending process,
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FIGURE 9. Depth simulation results for the closed-loop depth control system: (a) In ascending process; (b) In diving process.

TABLE 6. Comparison of key simulation results in ascending and diving process.

and the closed-loop depth control systems (27), (28), and (29)
are finite-time bounded in the diving process. In Table 6,
we can see that, under the same current velocity of 0.78 m/s
in the ascending process, by employing the control gains
K = [−10, −1] compared to the control gains K = [−10,
−0.5], the transient time is reduced from 1162 s to 826 s
and the depth error is reduced from 6.4 m to 3.6 m. The state
trajectories for the diving process and the ascending process
are similar. Under the same current velocity of 0.78 m/s,
the transient time and depth error with the control gains K =
[10,0.5] are 1268 s and 4.2 m respectively, while the transient
time and depth error with the control gains K = [10,0.25]
are 1752 s and 5.8 m, respectively. It is clear that various
transient states are obtained by adjusting the control gains
under the same current velocity of 0.78 m/s in the ascending
and diving process. However, with the identical control gains,
the transient state under a current velocity of 0.78 m/s is
more stable than that under a current velocity of 1.5 m/s.
Furthermore, under the current velocity of 0.78 m/s, the FTB
method takes about less time to reach the desired depth, which
is faster than the standard PID controller in the ascending and
diving process. After the steady state is attained, depth error
are analyzed. The depth error is less for the FTB method than

that for the standard PID controller. In summary, the transient
state for the FTB method is more stable than that for the
standard PID controller, which means that the proposed con-
troller is significantly better than the standard PID controller.
In addition, an adjustment rule of the control gains under
identical current disturbances within a finite time is obtained
through the simulation.

Figs. 10 and 11 show the phase plots of state x(t). The
horizontal axis is the motion velocity of the DSIB v, and the
vertical axis is the depth error ẑ.The inner circle c1 is the area
scope where the DSIB is located at the initial time, and the
outer circle c2 is the area scope where the DSIB is allowed to
locate over a finite-time interval [0, T].

According to Case a, the phase plot of state x(t) is shown
in Figs. 10(a) and 11 (a). With the same control gains, the red
dotted line represents the phase trajectory of the state of
the closed-loop depth control system represented by (24)
and (27), under a current velocity of 0.78 m/s, while the
blue solid line represents the phase trajectory of the state
of the closed-loop depth control system represented by (25)
and (28), under a current velocity of 1.5 m/s. In both the
ascending and diving processes, the states do not exceed the
outer circle c2 when the initial states are restricted to the inner
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FIGURE 10. Phase plot of state x(t) in ascending process: (a) Identical control gains used in different current disturbances; (b) Different control gains
used in identical current disturbances.

FIGURE 11. Phase plot of state x(t) in diving process: (a) Identical control gains used in different current disturbances; (b) Different control gains
used in identical current disturbances.

circle c1. The terminal states satisfy the requirements under
different current disturbances. It is evident that the phase
trajectories of the states with identical control gains under
different current disturbances are basically the same.

According to Case b, the phase plot of state x(t) is shown
in Figs. 10(b) and 11 (b). Under an identical current velocity
of 0.78 m/s, the red dotted line represents the phase trajectory
of state of the closed-loop depth control system represented
by (24) and (27) with the control gains K = [−10, −1] and
K = [10, 0.5], respectively. The blue solid lines represent
the phase trajectory of state of the closed-loop depth control
system represented by (26) and (29) with the control gains
K = [−10, −0.5] and K = [10, 0.25], respectively. In both
the ascending and diving processes, the states do not exceed
the outer circle c2 when the initial states are restricted to the
inner circle c1. The terminal states satisfy the requirements
with different control gains. The plots also reveal that the
variable degree of the convergence rate is reflected by the
phase trajectory of the states, when adjusting the control gains
under identical current disturbances.

B. AT-SEA EXPERIMENTAL RESULTS AND ANALYSIS
To verify the effectiveness of the aforementioned simulations,
the proposed depth control method was applied in a few

experimental scenarios to steer the DSIB between two given
positions. In the sea trial, the experiment process was as
follows:
Step 1: Before the DSIB was launched, the depth control

time and control gains of the depth control system were
set for several experimental scenarios. The depth control
time was set to 2000 s for the depth control process in this
study.
Step 2: To enable the DSIB to produce a certain initial

velocity at the initial depth, determining a predefined depth
was necessary. The difference value between the predefined
and initial depths was approximately 10–20 m. When the
DSIB was deployed, the DSIB dove to the neighborhood of
the predefined depth and was suspended at the neighborhood
of the predefined depth. The predefined depth was measured
by the CTD sensors.
Step 3: The buoyancy-driven system began to operate. The

DSIB began to ascend or it dove from the predefined depth
to the initial depth. When the DSIB ascended or dove to the
initial depth, the mean motion velocity of the DSIB at the
current timewas approximately 0.5m/s. The current timewas
then recorded as the initial time. At the initial time, the depth
control system commenced operation according to the depth
control time and control gains.
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FIGURE 12. Depth error experimental results for the closed-loop depth control system: (a) In ascending process, (b) In diving process.

FIGURE 13. Depth experimental results for the closed-loop depth control system: (a) In ascending process, (b) In diving process.

Step 4: The measured depth value was recorded within the
depth control time in the ascending or diving process. When
the depth control time was reached, the depth control system
operation was terminated.
Step 5: The DSIB was retrieved. The measured depth value

and target depth were then compared. The transient time and
depth error were obtained.
Step 6: According to the various cases and scenarios,

the aforementioned experimental process was repeated by
setting different control gains and different PID controller
parameters or by deploying different current conditions.

The experiment results of the depth and the depth error
from the sea trials are shown in Fig. 12 and Fig. 13, respec-
tively. There are two scenarios used for testing the course
of depth control. The experimental and simulation results
illustrate the same trend in the depth error change. However,
during the convergence process of the depth error, the fluc-
tuations of the experimental results are more heavily damped
than those of the simulation results. It is expected that the
fluctuations can be caused by other uncertain factors besides
the current disturbance, and the delay adjustment of the
buoyancy-driven system. To evaluate the changes in the depth
error during the steady state, the mean depth error was used.
The comparison of the key experimental results in the ascend-
ing and diving processes is shown in Table 7. Compared with

the simulation results, the DSIB took more time to converge
to the desired depth, and had more depth error in the sea trial.
In the ascending process, during the steady state, the depth
error converged to a small neighborhood of 0 within 1300 s,
and the mean depth error was less than 15 m. Whereas,
in the diving process, during the steady state, the depth error
converged to a small neighborhood of 0 within 2000 s, and
the mean depth error was less than 15 m. Considering the
maximum allowable error of depth positioning based on the
actual hydrographic survey [30] and the depth control time
of the depth control process, the above experimental results
are considered practically acceptable. In Table 7, under the
same current velocity of 0.78 m/s, in the ascending process,
the transient time and depth error with the control gains
K = [−10, −1] are 1078 s and 8.9 m, respectively. The
same parameters with the control gains K = [−10, −0.5] are
1258 s and 11.2 m, respectively, In other words, the transient
time and the depth error with the control gains K = [−10,
−1] are less than those with K = [−10, −0.5]. Similarly,
under the same current velocity of 0.78 m/s in the diving
process, the transient time and depth error with the control
gains K = [10,0.5] are less than those with the control gains
K= [10,0.25]. In addition, in the ascending process, the tran-
sient time and depth error with PID controller are 1406 s
and 15.6 m, respectively, which are larger than those with
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TABLE 7. Comparison of key experimental results in ascending and diving processes.

K = [−10, −0.5]. The same conclusion can be arrived at
in the diving process as well. Furthermore, in the ascending
process, the transient time and depth error with identical
control gain under a current velocity of 1.5 m/s are 1186 s and
13.6 m, respectively, which are larger than those under a cur-
rent velocity of 0.78 m/s. The same conclusion can be arrived
at in the diving process as well. Thus, it can be inferred that
compared to the PID controller under external disturbances,
the depth positioning of the DSIB can be achieved by the FTB
method with better accuracy and faster response in a finite
time. Thus, the experiments have verified the effectiveness
of the proposed depth controller. Thus, the experiments have
verified the effectiveness of the proposed depth controller.

Furthermore, the adjustment rule of the control gains under
the current disturbances in the simulations is verified by
the experiment results. The results from the simulations and
at-sea experiments are contrasted by using two different
motion directions of the DSIB and target depth. The control
gains are used to regulate the transient state of the state trajec-
tories under the current disturbances. The performance of the
depth positioning can be reflected by the depth error and the
transient time. Under the same current disturbances, when
the DSIB ascends with the control gains increasing or dives
with the control gains decreasing, the transient time increases;
the depth error grow larger; and the convergence rate of the
state trajectories slow down. Similarly, with the identical
control gains, when the DSIB ascends or dives with the
current disturbances decreasing, the transient time decreases;
the depth error grow smaller; the convergence rate of the
state trajectories speeds up. In summary, the aforementioned
analysis results provide an effective mechanism for adjusting
the control gains under various current disturbances within a
finite time.

VI. CONCLUSION
In this study, a buoyancy-driven DSIB was the object of
research interest. Based on the pressure hull deformation
of the DSIB, the dynamic model of the DSIB under ocean
current disturbances was modeled. In order to realize depth
control in a finite time, the method of OEIPP was introduced

to establish the finite-time transformation matrix of the
closed-loop depth control system. A FTB depth control strat-
egy was proposed to solve the problem of transient stability
under the cluttered current disturbances within a finite time.
According to the measured data of the seawater density and
current velocity in the South China Sea (15.5◦N, 115.5◦E and
14◦N, 116◦E), the performance of the proposed depth control
strategy was assessed and verified through simulations and
at-sea experiments. Results from the simulations and the
at-sea experiments establish that the proposed FTB depth
control method enables the DSIB to reach the allowable depth
error of 15 m under current disturbances within 2000 s. Thus,
the designed depth control strategy has been proved effec-
tive for the depth control process of the DSIB. Additionally,
the smaller depth error and faster convergence are achieved by
the FTB method in a finite time compared with the standard
PID controller. The FTB method performs better control per-
formance than the standard PID controller in the depth control
process. Furthermore, for the hydrologic survey of a hovering
depth from the sea surface to 4000 m underwater, the results
based on FTB depth control method provide a guideline for
adjusting the control gains of the depth control process under
various current disturbances within a finite time.
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