
Received July 23, 2019, accepted August 4, 2019, date of publication August 16, 2019, date of current version September 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2935798

Robust Secrecy Energy Efficiency Optimization for
Wireless Powered Heterogeneous Networks
Using Distributed ADMM Algorithm
BO ZHANG 1,2, BIN LI 3, KAIZHI HUANG 1,2, ZHOU ZHONG1,2,
LIJIAN ZHANG4, AND ZESONG FEI 5, (Senior Member, IEEE)
1Information Engineering University, Zhengzhou 450001, China
2National Digital Switching System Engineering and Technological Research and Developing Center, Zhengzhou 450001, China
3School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
4Institute of Systems Engineering, Beijing 100071, China
5School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Kaizhi Huang (huangkaizhi@tsinghua.org.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61871404, Grant 61701538, and
Grant 61871032, in part by the Innovation Group Project of the China National Natural Science Foundation under Grant 61521003, in part
by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) Fund, and in part by the Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) Fund.

ABSTRACT Under the case of imperfect channel state information (CSI), this paper investigates the
robust secrecy energy efficiency (SEE) optimization for the heterogeneous networks (HeNets) supported
by simultaneous wireless information and power transfer. Specifically, we first consider a two-tier HeNet
composed of a macrocell base station (MBS) and several femtocell base stations (FBSs), where the MBS
serves multiple macrocell users (MUs) while each FBS serves an information receiver (IR) and an multiple-
antenna energy receiver (ER). Meanwhile, a malicious multiple-antenna eavesdropper (Eve) attempts to
wiretap the downlink information of MUs and the ER acts as a potential Eve to eavesdrop the confidential
information for IR in the same femtocell. To enhance the secrecy performance, artificial noise (AN) is
injected into the downlink information beams of the MBS and FBSs. By considering the user fairness,
the problem of SEE maximization of the whole network is formulated via a cross-tier multi-cell coordinated
beamforming design. The resulting problem contains infinite constraints caused by CSI error, which is
nonconvex and cannot be solved directly. To this regard, we resort to the successive convex approximation,
S-procedure and semi-definite relaxation techniques to obtain a solvable form of it. Furthermore, to reduce
the overhead of information exchange among coordinated BSs, we develop a distributed solution based
on alternative direction multiplier method (ADMM) that can achieve a good approximation performance.
Finally, simulation results verify the validity of the proposed AN-aided cross-tier multi-cell coordinated
beamforming design and distributed ADMM-based design.

INDEX TERMS Heterogeneous networks, simultaneous wireless information and power transfer, secrecy
energy efficiency, imperfect CSI, convex optimization, alternative direction multiplier method.

I. INTRODUCTION
A. BACKGROUND
Since the dramatic increase of Internet-enabled smart devices
(e.g., smart phones and electronic tablets) has spurred the
explosive growth of high-rate multimedia wireless services,
it becomes difficult for mobile operators to utilize conven-
tional homogeneous networks to achieve higher capacity and

The associate editor coordinating the review of this article and approving
it for publication was Yuan Gao.

coverage for next-generation 5G wireless communications.
Increasing cell density for higher spatial spectrum reuse is
one viable solution to do so. In this regard, heterogeneous net-
works (HeNets) have been proposed as a promising network
densification architecture, where different types of overlaid
small cells are deployed under the coverage of conventional
macrocell and share the same spectrum resource [1], [2].
Nevertheless, the resulting increased cross-tier interfer-
ences also appear with the increase of spectral efficiency,
which may deteriorate the quality of service (QoS) of
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legitimate users. Consequently, to reduce/eliminate the
mutual interferences, the transmit signals should be designed
elaborately.

Meanwhile, to satisfy the high energy consumption result-
ing from the ever-increasing traffic needs in 5G, simultane-
ous wireless information and power transfer (SWIPT) acting
as a novel research frontier of combining wireless power
transfer and wireless communication, has envisioned as a
promising energy supply for the energy-constrained wireless
systems [3]. In SWIPT, wireless devices can harvest energy
from man-made radio frequency (RF) signals while ignoring
the content carried, which contributes to the case of applying
SWIPT into HetNets, i.e., HeNets with SWIPT, because the
inter-tier and intra-tier interferences in HeNets bears poten-
tials to enable more efficient wireless power transfer and
usage [4]. However, the broadcast nature of wireless chan-
nels and the more open network architecture of HeNets with
SWIPT make it vulnerable to resist spiteful wiretapping from
eavesdroppers (Eves). Therefore, it is of much concern facing
HeNets with SWIPT to secure wireless data transmission.
To address this concern, physical layer security (PLS) pro-
vides a newmethod to secure the wireless information, which
exploits the random characteristics of wireless channels and
acts as an important complement to the traditional high-layer
cryptographic methods. Most recently, with the assumption
of perfect channel state information (CSI), some progresses
on the PLS of HeNets with SWIPT have been achieved [5].

B. RELATED WORKS
Nevertheless, due to existence of quantization and estimation
errors in practical networks, it is very hard for the transmitter
to acquire the perfect CSI. Generally speaking, there are two
CSI error models, i.e., bounded CSI error model and prob-
abilistic CSI error model. The bounded CSI error model is
described by a bounded set, which has a low implementation
complexity but may under estimate the actual performance.
On the other hand, a probabilistic model is used to model the
probabilistic CSI errors, which is mainly applicable to the
delay-sensitive wireless application scenarios [6], [7]. With
the presence of CSI errors, the transmit signal design may
become inaccurate, which can make more confidential infor-
mation leak to Eves. As a result, studying the robust secure
communication for HeNets with SWIPT is of paramount
importance.

Over the past few years, some progresses have been
achieved to the issue of robust PLS in SWIPT systems. With
the existence of bounded CSI errors, robust power minimiza-
tion (PM) and secrecy ratemaximization (SRM) designs were
investigated in MISO SWIPT systems [8], [9], and were later
extended toMIMOSWIPT systems [10], relay networks [11],
respectively. In addition, robust harvesting energy maximiza-
tion (HEM) design and multi-objective optimization were
also studied for a secure MISO SWIPT system [12] and
cognitive radio network [13], respectively. On the other hand,
with the existence of probabilistic CSI errors, [14] and [15]
explored the robust SRM designs with outage constraints for

MISO SWIPT systems, and utilized Bernstein-type inequal-
ities (BTI), S-Procedure, and large deviation inequalities
(LDI) based conservative approximations to transform the
outage constraints into tractable forms. Afterwards, the robust
PM, SRM and HEM designs were investigated for MIMO
SWIPT systems in [16]–[18], respectively. Generally, these
above-mentioned studies only explored the robust PLS trans-
mission in single-cell coverage case, but ignored the deploy-
ment of SWIPT inHeNets. For robustly securingHeNets with
PLS, only a few works explored this topic and focused on the
secrecy model and performance evaluations in [19] and [20],
which ignored the delicate design of transmit signals.

A common of previous related works is to address the
robust secure issue separately in HeNets and SWIPT systems,
respectively. Recently, with the advantage of converting var-
ious interferences into power gain, applying the SWIPT into
HetNets, i.e., HetNets with SWIPT, has attracted increasing
interests, and the robust PLS was also subsequently explored
for this fusion case in [21] and [22], respectively. Specifi-
cally, the transmit beamforming (TBF) and artificial noise
(AN) vectors of the macro base station (MBS) and femto
base stations (FBSs) were jointly designed to maximize the
secrecy rate of system while considering the imperfect CSIs
of potential Eves with single antenna and the QoS con-
straints of legitimate users in [21]. Then, the worst-case based
solution was obtained with the aid of semi-definite relax-
ation (SDR), successive convex approximation (SCA) and
S-procedure techniques. Afterwards, [22] further explored
the similar topic while considering both the imperfect CSIs
of legitimate users and Eves, and reformulated the robust
quadratic matrix inequality (QMI) constraints as the linear
matrix inequality representations in light of S-procedure and
first-order Taylor series expansion.

C. MOTIVATIONS AND MAIN CONTRIBUTIONS
To the best of our knowledge, the study for robust secure
communications about HetNets with SWIPT is still largely
missing, and three existing weaknesses in this field still need
to be further strengthen: 1) all the mentioned-above works
only consider the single-antenna Eves, but the more danger-
ous case where Eves are equipped with multiple antennas is
ignored; 2) moreover, only one type of users, i.e., macrocell
user (MU) or femtocell user (FU), was considered but the
worse case that both MU and FU suffered from wiretapping
was ignored; 3) last but not least, the joint design in all the
above works is executed at a calculating center, which may
lead to inestimable processing stress for the calculating center
andmuch signaling overhead for the network especially when
the number of coordinated BSs is large. As far as the known of
authors, these weaknesses in the field have not been explored
jointly yet, which motivates our work in this paper.

In this paper, we consider a two-tier HetNet with SWIPT
with imperfect CSIs, and focus on the robust transmit opti-
mization while considering the security of various decoding
users towards green communications. To be specific, our
main contributions can be summarized as follows:
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1) We establish the robust PLS model of a two-tier HetNet
with SWIPT under the imperfect CSI case while facing
multiple-antenna wiretapping, where multiple FBSs are
deployed under the coverage of one MBS. The MBS
serves multiple MUs in the presence of a malicious
multiple-antenna Eve while each FBS serves a pair
of information receiver (IR) and energy receiver (ER),
where the multiple-antenna ER acts as a potential Eve
to wiretap the information of IR in the same femtocell.
To promote the secrecy performance and power transfer,
AN is aided into the downlink beam at both MBS and
FBSs simultaneously.

2) To achieve the secure and green communications,
we explore the joint TBF and AN design to maximize
the secrecy energy efficiency (SEE) while considering
the fairness among multiple cells under the imperfect
CSI case. More specifically, the formulated problem
containing infinite constraints is non-convex and hard
to solve directly. To address this challenge, we first
acquire an equivalent form of the original problem by
employing the SCA and SDR techniques; then, follow-
ing the worst-case robustness philosophy to deal with
the infinite constraints caused by CSI errors, we refor-
mulate the worst-case SEEmaximization problem into a
quadratic matrix inequality(QMI) problem in light of S-
procedure, and rely on the linearmatrix inequality (LMI)
reformulation for the semi-infinite QMI constraints to
construct solvable SOCP problems.

3) A distributed design based on the alternative direc-
tion multiplier method (ADMM) is further developed to
reduce the overhead of CSI exchange and release the
processing stress on the calculating center. Moreover,
this distributed design can draw near the optimal solu-
tion while allowing each BS to handle its local CSIs
only.

The remaining part of this paper is organized as follows.
In Section II, we introduce the system model and formulate
the optimization problem. Then, the robust TBF and AN
optimization in centralized design and distributed design with
ADMM are explored in Section III and Section IV, respec-
tively. Finally, Section V presents the simulation results to
validate the effectiveness of the proposed design, followed
by our conclusions in Section VI.

Notations: Boldface lowercase and uppercase letters
denote vectors and matrices, respectively. CN×1 represents
a N × 1 complex column vector. The transpose, conjugate
transpose and inverse of the matrix are denoted as AT , AH

and A−1, respectively, while A ≥ 0 indicates that A is
a Hermitian positive semidefinite matrix. Tr() is the trace
operator, ‖‖F represents the matrix Frobenius norm, Rank()
stands for the rank of a matrix. CN (u,8) denotes a complex
Gaussian variable withmean u and covariance8, while Pr{A}
and ⊗ are the probability of an event A and the Kronecker
product, respectively. In addition, for the convenience of
readers, the relevant symbols in the following sections of this
paper are summarized in Table1 to refer.

FIGURE 1. System model.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a two-tier HetNet with SWIPT, where N FBSs
can be deployed within the coverage of an MBS, as depicted
in Fig. 1. Each FBS serves a pair of femtocell users (FUs),
one of which receives information (i.e., IR) while another one
receives the energy (i.e., ER), respectively, and shares certain
spectral resources as MBS serving M MUs to improve the
spectrum efficiency. The MBS and each FBS are equipped
with NM > M and NF > 2 antennas, respectively, whereas
each MU and IR are equipped with a single receive antenna
while each ER has NER antennas. Meanwhile, a potential
Eve with NE antennas attempts to intercept the confidential
information intended for MUs. Furthermore, ERs may be
malicious for intercepting the information signal transmitted
by the FBS to IR without any attacks. Thus, ERs are seen as
potential Eves, and it is assumed that each ER only attempts
to overhear the IR in the same femtocell.

For the sake of simplicity, let us denote the n-th FBS as
FBSn, the m-th MU as MUm, the IR and ER of FBSn as FUn
and ERn, respectively. The channel vectors from the MBS to
MUm , Eve, FUn and ERn are denoted by hm ∈ CNM×1,HE ∈

CNM×NE , hMFn ∈ CNM×1 and HERn ∈ CNF×NER , respec-
tively. Likewise, The channel vectors from the FBSn to MUm,
Eve, FUn, ERn, FUt (t 6= n) and ERt (t 6= n) are denoted by
hn,m ∈ CNF×1, Hn,E ∈ CNF×NE , hFn ∈ CNF×1, HERn ∈

CNF×NER , hnFt ∈ CNF×1 andHnERt ∈ CNF×NER , respectively.
These channel coefficients are independent, and the elements
are independent and identically distributed (i.i.d.) complex
Gaussian random variables. To support secure communica-
tion and facilitate energy harvesting at ERs, AN is aided into
the downlink beam of the MBS and FBSs simultaneously.
Then, the received signal at MUm can be expressed as

ym = hHmwmsm + hHm (
M∑
p6=m

wpsp + z0)

+

N∑
n=1

hHn,m(wFnsFn + zn)+ nm, m ∈ [1,M ], (1)
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where wf ∈ CNM×1(f = m, p) and wFn ∈ CNF×1 denote the
beamforming vector from the MBS to MUf and that from the
FBSn to FUn, respectively; sf (f = m, p) with E {

∣∣sf ∣∣2} = 1
and sFn with E {|sFn|2} = 1 represent the message symbol
from the MBS to MUf and that from the FBSn to FUn,
respectively; z0 ∈ CNM×1 and zn ∈ CNF×1 stand for the AN
vectors at the MBS and FBSn, and they both follow Gaussian
distribution, i.e., z0 ∼CN (0,Z0) and zn ∼CN (0,Zn),Z0 and
Zn are the corresponding covariance matrix of z0 and zn; nm
indicates the additive white Gaussian noise (AWGN) atMUm.
If the downlink information of MUm is wiretapped by Eve,

then the received signal at Eve can be expressed as

yEm = HH
Ewmsm +HH

E (
M∑
p6=m

wpsp + z0)

+

N∑
n=1

HH
n,E (wFnsFn + zn)+ nE , m ∈ [1,M ], (2)

where nE indicates the AWGN at Eve.
Similarly, the received signal at FUn can be expressed as

yFn = hHFn(wFnsFn + zn)+
K∑
t 6=n

hHtFn(wFtsFt + zt )

+hHMFn(
M∑
m=1

wmsm + z0)+ nFn, n ∈ [1,N ], (3)

where nFn is the AWGN at FUn.
The received signal at ERn is denoted as

yERn = HH
ERn(wFnsFn + zn)+

N∑
t 6=n

HH
tERn(wFtsFt + zt )

+HH
MERn(

M∑
m=1

wmsm + z0)+ nERn, n ∈ [1,N ],

(4)

where nERn represents the AWGN at ERn. Without loss
of generality, we assume that all the AWGN in (1)∼(4)
follow the independent and identical Gaussian distribution,
i.e., CN (0, σ 2).
Based on the definition of secrecy rate, we let the sum

secrecy rate ofMUs as the secrecy performance of the macro-
cell. DefiningWm = wmwH

m andWFn = wFnwH
Fn, then it can

be expressed as

C0
S =

M∑
m=1

{log2(1+ SINRm)− log2 |REm| }
+, (5)

where {a}+ denotes max {a, 0}; SINRm represents the signal
to interference plus noise ratio (SINR) of MUm, and

SINRm =
Tr(HmWm)

N∑
n=1

Tr(Hn,mAn)+ Tr(HmCm)+ σ 2

, (6a)

REm = INE + (HH
EWmHE )× {HH

E (
M∑
p6=m

Wp+Z0)HE

+

N∑
n=1

HH
n,E (WFn + Zn)Hn,E + σ

2INE }
−1, (6b)

where Hm = hHmhm, Hn,m = hHn,mhn,m, Ai = WFi + Zi

(i = {n, t}), Cm =
M∑
p6=m

Wp+Z0.

Similarly, the secrecy performance of the n-th femtocell is
given by

Cn
S = {log2(1+ SINRIRn)− log2 |REIRn|}

+, n ∈ [1,N ],

(7)

where SINRIRn denotes the SINR of IRn, and

SINRIRn =
Tr(HFnWFn)

Tr(HFnZn)+ Tr(HtFnAt )+ Tr(HMFnB)+ σ 2 ,

(8a)

REIRn = INER + (HH
ERnWFnHERn)

×{HH
ERnAnHERn+HH

MERnBHMERn+σ
2INER}

−1
,

(8b)

where HFn = hHFnhFn, HtFn = hHtFnhtFn, HMFn = hHMFnhMFn,

B =
M∑
m=1

Wm + Z0.

For the EH process, we consider non-linear model
(NLM) [23] in this paper, then the harvested energy of ERn
is expressed as

Eh _out(n) =
A[1+ exp(ab)]

[1+ exp(−a(Eh _in(n)))] exp(ab)
−

A
exp(ab)

,

(9)

where A, a and b are the maximum output power of RF-to-
DC circuit, constant parameters depending on the hardware
components; Eh _in(n) represents the input RF signal power
at ERn and is expressed as

Eh_in(n) = Tr(HH
ERnHERnAn)+

N∑
t 6=n

Tr(HH
tERnHtERnAt )

+

M∑
m=1

Tr(HH
MERnHMERnB), n ∈ [1,N ]. (10)

B. PROBLEM FORMULATION
From (5), (7) and (10), we can see that the interference from
the MBS invokes a negative impact on the quality of wireless
transmission of both IR and ERs; meanwhile, it is beneficial
for EH at ERs. Similarly, FBSs also have effects on the
reception of MUs and Eves. As a result, it is not trivial to
design beamforming of the MBS and FBSs for guaranteeing
the secure transmissions of MUs and IRs in the presence of
potential Eves while having a minimal effect on MUs and
IRs. Meanwhile, it should be highlighted that the quality
of CSIs have significant effects on the joint design process.
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However, due to the existence of quantization and estimation
errors in practical networks, it is very hard for the transmitter
to acquire the perfect CSI. Thus, we consider the imperfect
CSIs with the deterministic CSI errors in this paper. Then,
the relation between actual and estimated CSIs can be respec-
tively expressed as

hm =
∧

h m + em, ‖em‖ ≤ εm, (11a)

hn,m =
∧

h n,m + en,m,
∥∥en,m∥∥ ≤ εn,m, (11b)

hFn =
∧

h Fn + eFn, ‖eFn‖ ≤ εFn, (11c)

htFn =
∧

h tFn + etFn, ‖etFn‖ ≤ εtFn, (11d)

hMFn =
∧

hMFn + eMFn, ‖eMFn‖ ≤ εMFn, (11e)

HE =
∧

H E + EE , ‖EE‖ ≤ εE , (11f)

Hn,E =
∧

H n,E + En,E ,
∥∥En,E∥∥ ≤ εn,E , (11g)

HERn =
∧

H ERn + EERn, ‖EERn‖ ≤ εERn, (11h)

HtERn =
∧

H tERn + EtERn, ‖EtERn‖ ≤ εtERn, (11i)

HMERn =
∧

HMERn + EMERn, ‖EMERn‖ ≤ εMERn, (11j)

where hm,
∧

h m and em are the actual channel vector, estimated
channel vector and channel error vector of MUm, respec-
tively; εm denotes the corresponding channel error bound; the
other channel vectors follow the same relation, so we do not
repeat it for the sake of simplicity.

Under such a scenario and to improve the average SEE
performance of the whole network, we focus on the joint
design of beamforming vectorswm,wFn and ANmatrixesZ0,
Zn to maximize the minimal SEE among all the cells. Hence,
the joint design problem is formulated as

max
{Wm},Z0,
{WFn},{Zn}

{ min
k∈[0,N ]

{SEE (k)}} (12a)

s.t. min
{EERn},{EtERn},
{EMERn}

{Eh _out(n)} ≥ θn, n ∈ [1,N ], (12b)

P0 ≤ PM , (12c)

Pn ≤ PF , n ∈ [1,N ], (12d)

Wm ≥ 0, WFn ≥ 0, Z0 ≥ 0,

Zn ≥ 0, m ∈ [1,M ], n ∈ [1,N ], (12e)

Rank(Wm) = Rank(WFn) = 1,

m ∈ [1,M ], n ∈ [1,N ], (12f)

where SEE (k) = Ck
S /(Pk/$ + Pε), P0 =

M∑
m=1

Tr(Wm) +

Tr(Z0), Pn = Tr(WFn) + Tr(Zn); $ ∈ (0, 1) is the ratio
between the total RF output power and the DC input power
while Pε denotes the power loss in hardware; θn indicates
the EH threshold of ERn; PM and PF represent the maxi-
mum output power of the MBS and each FBS, respectively.
Obviously, problem (12) is a non-convex problem and con-
tains infinite constraints caused by CSI errors, which cannot
be solved directly.

III. ROBUST TBF AND AN DESIGN IN
CENTRALIZED DESIGN
In this section, we explore the joint design in a centralized
approach. Specifically, FBSs first obtain their local CSIs
including estimated CSIs and error information, and send
them to the MBS. Then, the MBS acquires the global CSIs
and solves the problem (12) to acquire the optimal TBF and
AN matrixes. Finally, the MBS send the optimal design to
the FBSs.

A. EQUIVALENT TRANSFORMATION
OF ORIGINAL PROBLEM
In this section, we aim to transform the originally non-convex
problem into a solvable form. To be more specific, with the
aid of the SCA, first-order Taylor series expansion and SDR
techniques, we first get rid of the non-convexity of some con-
straints; then, following the worst-case robustness philosophy
to deal with the infinite constraints, we reformulate the worst-
case SEE maximization problem into a QMI problem in light
of S-procedure.

1) GETTING RID OF THE NON-CONVEXITY
To begin with, we aim to acquire the equivalent form of (12b).
Thus, in combination with (9) and (10), it can be rewritten as

min
{EERn},{EtERn},
{EMERn}

{Tr(HH
ERnHERnAn)+

N∑
t 6=n

Tr(HH
tERnHtERnAt )

+Tr(HH
MERnHMERnB) } ≥ B(θn), n ∈ [1,N ],

(13)

where B(θn) = b−ln[ A[1+exp(ab)]
(θn+A�exp(ab) ) exp(ab)

−1]/a. It should be
noted that we donot consider noise in the equation (13) due
to the small power of noise.

Further, to expose the hidden convexity of problem (12),
we rewrite it as

max
{Wm},Z0

{WFn},{Zn},{x,yk }

x (14a)

s.t. min
{em}{en,m}, { eFn},

{etFn},{eMFn},EE ,{En,E }
{EERn},{EtERn},{EMERn}

{{Ck
S } ≥ xyk}, k ∈ [0,N ],

(14b)
M∑
m=1

Tr(Wm)+ Tr(Z0) ≤ $ (y0 − Pε), (14c)

Tr(WFn)+ Tr(Zn) ≤ $ (yn − Pε), n ∈ [1,N ],

(14d)

(12c) (12f ), (13), (14e)

where x and yk are introduced variables. Intuitively, the equal-
ities in (14b)∼(14d) must hold at the optimal solution.
Otherwise, the equalities can always be acquirable by increas-
ing x and decreasing yk , which will not change the optimal
objective value.
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To further deal with the non-convexity of (14b), we intro-
duce some new auxiliary variables, i.e., {α0m}Mm=1, β0,
{χ0m}

M
m=1, {αn}

N
n=1, {βn}

N
n=1, {χn}

N
n=1, and reformulate it as

β0 −

M∑
m=1

log2(
1
χ0m

) ≥ xy0, (15a)

M∑
m=1

log2(α0m) ≥ β0, (15b)

1+ SINRm ≥ α0m, m ∈ [1,M ], (15c)

max
EE ,{En,E }

{|REm|} ≤
1
χ0m

, m ∈ [1,M ], (15d)

βn − log2(
1
χn

) ≥ xyn, n ∈ [1,N ] (15e)

log2(αn) ≥ βn, n ∈ [1,N ], (15f)
1+ SINRFn ≥ αn, n ∈ [1,N ], (15g)

min
{EERn},{EtERn},{EMERn}

{|REIRn|} ≤
1
χn
, n ∈ [1,N ]. (15h)

After the above procedures, (14b) is equivalently trans-
formed into many constraints in (15a)∼(15f). Fortunately,
we notice that (15a)∼(15d) and (15e)∼(15h) have a similar
structure so they can be processed in a similar way in the
following.

Taking (15c) as an example, with the aid of slack variables
{φm}

M
m=1, we can equivalently transform it into

min
{em}
{Tr(HmWm)} ≥ (α0m − 1)φm, (16a)

max
{em,en,m}

{Tr(HmCm)+
N∑
n=1

Tr(Hn,mAn)+ σ 2
} ≤ φm, (16b)

Similarly, (15g) can be rewritten as

min
{eFn}
{Tr(HFnWFn) } ≥ (αn − 1)φFn, n ∈ [1,N ],

(17a)

min
{eFn,etFn,eMFn}

{Tr(HFnZn)+
K∑
t 6=n

Tr(HtFnAt )

+ Tr(HMFnB)+ σ 2
} ≤ φFn, n ∈ [1,N ],

(17b)

where {φFn}Nn=1 are newly introduced variables. In what fol-
lows, we aim to acquire an equivalent form of (15d). Based
on this consideration, we introduce the following Lemma 1.
Lemma 1 [24]: For any positive semi-definite matrix A,

the following inequality holds

|I+ A| ≥ 1+ Tr(A), (18)

and the equality holds if and only if Rank(A) ≤ 1.
Resorting to the Lemma 1, (15d) can be reformulated as

max
EE ,{En,E }

{Tr{(HH
ECmHE +

N∑
n=1

HH
n,EAnHn,E + σ

2INE )
−1

× (HH
EWmHE )} + 1} ≤

1
χ0m

. (19)

With the introduced auxiliary variables u0m, v0m, t0m, x0m,
y0m and z0m, (19) can be further rewritten as

χ0m + u0mχ0m ≤ 1, (20a)

max
EE ,{En,E }

{Tr(HH
EWmHE )} ≤ v0m, (20b)

v0m ≤ ex0m , (20c)

u0m ≥ ey0m , t0m ≥ ez0m , (20d)

x0m ≤ y0m + z0m, (20e)

t0m ≤ min
EE ,{En,E }

{Tr(HH
ECmHE

+

N∑
n=1

HH
n,EAnHn,E )+ σ 2

}. (20f)

Similarly, (15h) can be reformulated as

χn + uERnχn ≤ 1, (21a)

max
EE ,{En,E }

{Tr(HH
ERnWFn HERn)} ≤ vERn, (21b)

vERn ≤ exERn , (21c)

uERn ≥ eyERn , tERn ≥ ezERn , (21d)

xERn ≤ yERn + zERn, (21e)

tERn ≤ min
{EERn},{EtERn}
{EMERn}

{ϒ + 0 +3+ σ 2
}, (21f)

where uERn, vERn, tERn, xERn, yERn and zERn are introduced
auxiliary variables.

At this moment, (14b) has been transformed into (15a),
(15b), (16a),(16b), (20a)∼(20f), (15e), (15f), (17a), (17b),
(21a)∼(21f). Meanwhile, (15a), (15e), (16a), (17a), (20a) and
(21a) have a same form of f (x, y) = xy, where the coupling of
variables all lie in the right hand side of a constraint with ≥.
Thus, with the aid of the SCA algorithm, new reformula-
tions of these six constraints can be acquired. Specifically,
the upper bound of f (x, y) = xy can be defined as gζ (x, y) =
ζ�2 x2+1�2ζ y2 for any ζ because gζ (x, y) ≥ f (x, y) always
holds. Moreover, if ζ = y�x , gζ (x, y) is equivalent to f (x, y).
Therefore, in the q-th SCA iterative approximation, these six
constraints can be respectively transformed into

β0 +

M∑
m=1

log2(χ0m) ≥ g(q)ζ0 (x, y0), (22a)

βn + log2(χn) ≥ g(q)ζn (x, yn), n ∈ [1,N ], (22b)

min
{em}
{Tr(HmWm) } ≥ g(q)ζ0m (α0m, φm)− φm, m ∈ [1,M ],

(22c)

min
{eFn}
{Tr(HFnWFn) } ≥ g(q)ζFn (αn, φFn)− φFn, n ∈ [1,N ],

(22d)

1 ≥ χ0m+g
(q)
ζ0Mm

(u0m, χ0m), m∈ [1,M ],

(22e)

1 ≥ χn + g
(q)
ζERn

(uERn, χn), n ∈ [1,N ],

(22f)
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where g(q)ζ0 (x, y0) =
ζ
(q−1)
0
2 x2 + 1

2ζ (q−1)0

y20, g
(q)
ζn
(x, yn) =

ζ
(q−1)
n
2 x2 + 1

2ζ (q−1)n
y2n, g

(q)
ζ0m

(α0m, φm) =
ζ
(q−1)
0m
2 α20m +

1
2ζ (q−1)0m

φ2m,

g(q)ζFn (αn, φFn) =
ζ
(q−1)
Fn
2 α2n +

1
2ζ (q−1)Fn

φ2Fn, g
(q)
ζ0Mm

(u0m, χ0m) =

ζ
(q−1)
0Mm
2 u20m +

1
2ζ (q−1)0Mm

χ2
0m, g

(q)
ζERn

(uERn, χn) =
ζ
(q−1)
ERn
2 u2ERn +

1
2ζ (q−1)ERn

χ2
n ; ζ

(q−1)
0 , ζ (q−1)n , ζ (q−1)0m , ζ (q−1)Fn , ζ (q−1)0Mm and ζ (q−1)ERn are

the (q−1)-th iterative approximation of y0�x , yn�x , φm�α0m ,
φFn�αn ,

u0m�χ0m and uERn�χn , respectively.

Meanwhile, it is easily seen that the constraints in (20d) and
(21d) are convex now. However, the constraints in (20c) and
(21c) are still nonconvex due to the fact that if a constraint
is such that a convex function is smaller than or equal to a
concave function, then the constraint is a convex constraint.
Fortunately, the functions ex0m and exERn on the right-hand
sides of (20c) and (21c) are convex. To this end, we define x(q)0m
and x(q)ERn as the (q−1) th iteration of the variables x0m and xERn
for an iterative algorithm given below. By applying first-order
Taylor series expansions on ex0m and exERn , i.e., ex

(q)
0m (x0m −

x(q)0m + 1) ≤ ex0m and ex
(q)
ERn (xERn − x(q)ERn + 1) ≤ exERn ,

the linearization of nonconvex constraints in (20c) and (21c)
are given by [25]

v0m ≤ ex
(q)
0m (x0m − x

(q)
0m + 1), m ∈ [1,M ], (23a)

vERn ≤ ex
(q)
ERn(xERn − x

(q)
ERn + 1), n ∈ [1,N ]. (23b)

After the above procedures, we further find that (15b), (15f),
(20d), (21d), (22a) and (22b) have logarithmic or exponential
forms, which results to high computational complexity and
the decrease of solving efficiency. Furthermore, (20d) and
(21d) can be further reformulated as

ln(u0m) ≥ y0m, ln(t0m) ≥ z0m, m ∈ [1,M ], (24a)

ln(uERn) ≥ yERn, ln(tERn) ≥ zERn, n ∈ [1,N ]. (24b)

Therefore, to facilitate tractability, we convert these loga-
rithmic constraints into convex second order cone (SOC)
representable constraints in the following.
Transformation of (15f) and (22b): (15f) is equivalent to

αnlog2(αn) ≥ αnβn, n ∈ [1,N ], (25)

The left hand side of ≥ is convex, so we have the following
inequality

αnlog2(αn) ≥ {α
(q−1)
n log2(α

(q−1)
n )+ (αn − α(q−1)n )

× (1+ log2(α
(q−1)
n ))

= αn(1+ log2(α
(q−1)
n ))− α(q−1)n }, (26)

where α(q−1)n is the (q−1)-th approximation of αn. Therefore,
(15f) in the q-th iteration can be replaced with

αn(1+ log2(α
(q−1)
n ))− α(q−1)n ≥ αnβn, n ∈ [1,N ]. (27)

Further, (27) can be written as the following SOC repre-
sentable form to improve efficiency∥∥∥∥[2√α(q−1)n , (αn + βn − 1− log2(α

(q−1)
n ))]

∥∥∥∥
2

≤ αn + 1+ log2(α
(q−1)
n )− βn, n ∈ [1,N ]. (28)

Similarly, (22b) can be rewritten as∥∥∥∥[2√χ (q−1)
n , (χn + g

q
ζn
(x, yn)− βn − 1− log2(χ

(q−1)
n ))]

∥∥∥∥
2

≤ χn + 1+ log2(χ
(q−1)
n )− gqζn (x, yn)+ βn, n ∈ [1,N ].

(29)

Transformation of (24a) and (24b): Following the sim-
ilar procedures, these two constraints can be transformed
into∥∥∥∥[2√u(q−1)0m , (u0m + y0m − 1− ln(u(q−1)0m ))]

∥∥∥∥
2

≤ u0m + 1+ ln(u(q−1)0m )− y0m, m ∈ [1,M ], (30a)∥∥∥∥[2√t (q−1)0m , (t0m + z0m − 1− ln(t (q−1)0m ))]

∥∥∥∥
2

≤ t0m + 1+ ln(t (q−1)0m )− z0m, m ∈ [1,M ], (30b)∥∥∥∥[2√u(q−1)ERn , (uERn + yERn − 1− ln(u(q−1)ERn ))]

∥∥∥∥
2

≤ uERn + 1+ ln(u(q−1)ERn )− yERn, n ∈ [1,N ], (31a)∥∥∥∥[2√t (q−1)ERn , (tERn + zERn − 1− ln(t (q−1)ERn ))]

∥∥∥∥
2

≤ tERn + 1+ ln(t (q−1)ERn )− zERn, n ∈ [1,N ]. (31b)

Transformation of (15b) and (22a): The procedures to
reformulate (15b) and (22a) are slightly different from the
above steps. Specifically, some slack variables {am}Mm=1 and
{bm}Mm=1 need to be introduced, then they can be finally
reformulated as

M∑
m=1

am ≥ β0, (32a)

∥∥∥∥[2√α(q−1)0m , (α0m + bm − 1− log2(α
(q−1)
0m ))]

∥∥∥∥
2

≤ α0m + 1+ log2(α
(q−1)
0m )− am, m ∈ [1,M ], (32b)

M∑
m=1

bm ≥ g
(q)
ζ0
(x, y0)− β0, (33a)

∥∥∥∥[2√χ (q−1)
0m , (χ0m + cm − 1− log2(χ

(q−1)
0m ))]

∥∥∥∥
2

≤ χ0m + 1+ log2(χ
(q−1)
0m )− bm, m ∈ [1,M ]. (33b)

Resorting to the SDR technique to abandon the rank-one
constraint, then in the q-th iterative approximation, original
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problem (12) can be expressed as

max
{Wm},Z0,
{WFn},{Zn},x

x (34a)

s.t.


(12c)∼ (12e), (13), (14c), (14d),{(33a),(33b)}, (32a),
(32b),(16b),(22c),(22e),(20b),(23a),(20e),(20f),(30a),
(30b),(29),(28), (17b),(22d),(22f),(21b),(23b),(31a),

(31b),(21e),(21f)


(34b)

where (33a), (33b), (32a), (32b), (16b), (22c), (22e), (20b),
(23), (20e), (20f), (30a), (30b), (29), (28), (17b), (22d) and
(22f), (21b), (23b), (31a), (31b), (21e), (21f) are the refor-
mulations of (15a) (15h), respectively. If the CSI errors are
not considered in this problem (34), then it is convex and can
be solved efficiently via state-of-the-art conic solvers, such
as CVX. Nevertheless, due to the existence of CSI errors,
there are infinite constraints so problem (34) still cannot be
solved directly. Therefore, we continue to process the infinite
constraints of this problem in the following section.

2) REFORMULATION OF INFINITE CONSTRAINTS
CAUSED BY CSI ERRORS
Obviously, (13), (16b), (22c), (20b), (20f), (17b), (22d) and
(21b), (21f) contain infinite constraints caused by CSI uncer-
tainty. To address this issue, we first introduce some auxil-
iary variables {{ξtERn}Nt 6=n}

N
n=1, {ξMERn}

N
n=1, {{ξn,m}

N
n=1}

M
m=1,

{ξn,E }
N
n=1, {{ξtFn}

N
t 6=n}

N
n=1 and {ξMFn}Nn=1, then reformu-

late them with the aid of equivalent transformation and
S-procedure.
Reformulation of (13), (21b) and (21f): For these three

constraints, we notice that they contain some common items,
so we can first reformulate (13) as (21f) and the following
expressions

min
EERn
{Tr(HH

ERnWFnHERn)} ≥ B(θn)− tERn + σ 2, (35a)

min
EERn
{Tr(HH

ERnHERnZn)} ≥ tERn −
N∑
t 6=n

ξtERn − ξMERn − σ
2,

(35b)

min
EtERn
{Tr(HH

tERnHtERnAt )} ≥ ξtERn, (36a)

min
EMERn

{Tr(HH
MERnBHMERn)} ≥ ξMERn. (36b)

To further deal with these constraints, we rewrite (36a) as

Tr(
∧

H H
ERnZn

∧

H ERn + EHERnZnEERn + 2Re{EHERnZn
∧

H ERn})

≥ tERn −
N∑
t 6=n

ξtERn − ξMERn − σ
2 (37)

Applying the following matrix identities

vec(M1M2M3) = (MT
3 ⊗M1)vec(M2),

Tr(MH
1 M2) = vec(M1)Hvec(M2) (38)

to reformulate (37) as
∧

h H
ERnZn

∧

h ERn + 2Re{eHERnZn
∧

h ERn} + eHERnZneERn

≥ tERn −
N∑
t 6=n

ξtERn − ξMERn − σ
2. (39)

where
∧

h ERn = vec(
∧

H ERn), eERn = vec(EERn), Dn =

INER⊗An. To further process (39), we introduce the following
Lemma 2.
Lemma 2 (S-Procedure) [10]: Let gk (x) = xHFkx +

2Re{gHk x}+ qk , k = 1, 2, where Fk ∈ HL , gk ∈ CL , qk ∈ R.

When g1(
∼
x ) < 0, then g1(

∼
x ) ≤ 0 ⇒ g2(

∼
x ) ≤ 0 holds if and

only if there is λ ≥ 0 and

λ

[
F1 g1
gH1 q1

]
−

[
F2 g2
gH2 q2

]
≥ 0. (40)

Resorting the Lemma 2, (36a) can be finally reformu-
lated as λERnINFNER + Zn Zn

∧

h ERn
∧

h H
ERnZn

∧

h H
ERnZn

∧

h ERn + eERn

 ≥ 0, (41)

where λERn ≥ 0 is the auxiliary variable, eERn =
N∑
t 6=n

ξtERn +

ξMERn + σ
2
− tERn − λERnε2ERn. Similarly, (36b), (36c) and

(35) are respectively reformulated asλtERnINFNER + Dt Dt
∧

h tERn
∧

h H
tERnDt

∧

h H
tERnDt

∧

h tERn − etERn

≥ 0,

(42a)λMERnINMNER + F F
∧

hMERn
∧

h H
MERnF

∧

h H
MERnF

∧

hMERn − eMERn

≥ 0,

(42b)λEERnINFNER +WFn WFn
∧

h ERn
∧

h H
ERnWFn

∧

h H
ERnWFn

∧

h ERn + eEERn

≥ 0,

(42c)

where λtERn ≥ 0, λMERn ≥ 0 and λEERn ≥ 0 are auxiliary

variables;
∧

h tERn = vec(
∧

H tERn),
∧

hMERn = vec(
∧

HMERn),Dt =

INER⊗At , F = INER⊗B, etERn = ξtERn+λtERnε
2
tERn, eMERn =

ξMERn+λMERnε
2
MERn,eEERn = tERn−B(θn)−σ 2

−λEERnε
2
ERn.

Reformulation of (16b) and (22c): Applying the Lemma 2,
we can respectively transform them into λmINM − Cm −Cm

∧

h m

−
∧

h H
mCm em −

∧

h H
mCm

∧

h m

 ≥ 0, (43a)

 λn,mINF − An −An
∧

h n,m

−
∧

h H
n,mAn en,m −

∧

h H
n,mAn

∧

h n,m

 ≥ 0, (43b)

 λMmINM +Wm Wm
∧

h m
∧

h H
mWm

∧

h H
mWm

∧

h m + eMm

 ≥ 0, (43c)
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where λm ≥ 0, λn,m ≥ 0 and λMm ≥ 0; em = φm −

σ 2
−

N∑
n=1

ξn,m − λmε
2
m, en,m = ξn,m − λn,mε

2
n,m, eMm =

φm − λMmε
2
m − g

(q)
ζ0m

(α0m, φm).

Reformulation of (20b) and (20f): Following the similar
procedures as (36a), they can be finally formulated as λEmINMNE − (INE ⊗Wm) −(INE ⊗Wm)

∧

h E

−
∧

h H
E (INE ⊗Wm) eEm −

∧

h H
E (INE ⊗Wm)

∧

h E


≥ 0, (44a) λn,EINFNER + Dn Dn

∧

h n,E
∧

h H
n,EDn en,E +

∧

h H
n,EDn

∧

h n,E


≥ 0, (44b) λEEmINMNE + (INE ⊗ Cm) (INE ⊗ Cm)

∧

h E
∧

h H
E (INE ⊗ Cm) eEEm +

∧

h H
E (INE ⊗ Cm)

∧

h E


≥ 0, (44c)

where
∧

h E = vec(
∧

H E ),
∧

h n,E = vec(
∧

H n,E ); λEm ≥ 0, λn,E ≥
0 and λEEm ≥ 0; eEm = v0m − λEmε2E , en,E = −ξn,E −

λn,Eε
2
n,E , eEEm =

N∑
n=1

ξn,E + σ
2
− λEEmε

2
E − t0m.

Reformulation of (17b) and (22d): Similar to the steps as
(16b) and (22c), they can be finally transformed into λFnINF − Zn −Zn

∧

h Fn

−
∧

h H
FnZn eFn −

∧

h H
FnZn

∧

h Fn

 ≥ 0, (45a) λtFnINF − At −At
∧

h tFn

−
∧

h H
tFnAt etFn −

∧

h H
tFnAt

∧

h tFn

 ≥ 0, (45b) λMFnINM − B −B
∧

hMFn

−
∧

h H
MFnB eMFn −

∧

h H
MFnB

∧

hMFn

 ≥ 0, (45c) λFFnINF +WFn WFn
∧

h Fn
∧

h H
FnWFn

∧

h H
FnWFn

∧

h Fn + eFFn

 ≥ 0, (45d)

where λFn ≥ 0, λtFn ≥ 0, λMFn ≥ 0 and λFFn ≥ 0;

eFn = φFn − σ 2
−

N∑
t 6=n

ξtFn − ξMFn − λFnε
2
Fn, etFn = ξtFn −

λtFnε
2
tFn, eMFn = ξMFn−λMFnε

2
MFn,eFFn = φFn−λFFnε

2
Fn−

g(q)ζFn (αn, φFn).

So far, in the q-th iterative approximation, problem (12)
can be finally expressed as

max
{Wm},Z0,
{WFn},{Zn},x

x (46a)

s.t.


(12c),(12d),(12e), (14c), (14d), {(33a),(33b)},
{(32a),(32b)},(43a),(43b),(43c),(22e),(23a),(20e),
(30a),(30b),(44a),(44b), (44c),(29), (28), (45a),

(45b),(45c),(45d),(22f),(23b),(31a),(31b),(21e), (41),
(42a),(42b),(42c)


(46b)

which can be solved efficiently via state-of-the-art conic
solvers, such as CVX [26]. However, it should be noticed
that the rank-one constraint has been abandoned by the SDR
technique, which means that the result of the rank-relaxed
problem serves as a performance upper bound for the original
problem if the rank of the optimal beamforming solution is
not one. Fortunately, we have the following proposition 1 to
prove that applying the SDR technique is tight, where the rank
of one beamforming vectors can always be acquired.
Proposition 1: If problem (46) is feasible, and {W∗m},
{W∗Fn} are the optimal beamforming solutions, there must be
Rank(W∗m) = Rank(W∗Fn) = 1, ∀m ∈ [1,M ], n ∈ [1,N ].

Proof: Please see the Appendix.

B. THE CENTRALIZED ALGORITHM WITH SCA ITERATION
In this section, Algorithm 1 concludes the steps of pro-
posed centralized algorithm with SCA iteration for solving
problem (12); subsequently, the convergence, computational
complexity and information change between coordinated BSs
in the algorithm are analyzed, respectively. For the sake of
simplicity, let us use {ϑj}

5M+6N+1
j=1 to represent some auxil-

iary variables, i.e., x, {yk}Nk=0, {α0m, φm}
M
m=1, {αn, φFn}

N
n=1,

{χ0m, u0m, t0m}Mm=1 and {χn, uERn, tERn}Nn=1. These variables
should be given initial value to start the SCA iteration and
updated during the iteration process.

Algorithm 1 The Centralized Algorithm With SCA Iteration
Initialization: set iteration index q = 0, maximum iteration
number Qmax and feasible points {ϑ (0)

j }
5M+6N+1
j=1 ;

Repeat:
solve the problem (46) and obtain their optimal solutions

{ϑ∗j }
5M+6N+1
j=1 ;

update the feasible points {ϑ (q+1)
j }

5M+6N+1
j=1 =

{ϑ∗j }
5M+6N+1
j=1 ;
q = q+ 1;

Until: q = Qmax or algorithm converges;
Output: Optimal beamforming and AN matrixes
{W∗m}

M
m=1, {W

∗
Fn}

N
n=1, {Z

∗
k}
N
k=0, and optimal SEE objective

value x∗.

1) ALGORITHM CONVERGENCE
For the (q + 1)-th iteration, its initial feasible points
can be acquired by {ϑ (q+1)

j }
5M+6N+1
j=1 = {ϑ∗j }

5M+6N+1
j=1 ,

where {ϑ∗j }
5M+6N+1
j=1 are the corresponding optimal variables

obtained in the q-th iteration. Intuitively, {ϑ (q+1)
j }

5M+6N+1
j=1

must be the feasible points to start the (q + 1)-th SCA
iteration because they satisfy corresponding constraints in
problem (46). Moreover, with the maximization objective,
the corresponding objective value is no less than that obtained
in the q-th iteration. Meanwhile, due to the power constraint
of the MBS and FBSs, the SEE must has an upper bound.
Therefore, the objective value generated by Algorithm 1must
converge to a stable and highest value with the increase of q.

VOLUME 7, 2019 116285



B. Zhang et al.: Robust SEE Optimization for Wireless Powered HeNets

TABLE 1. Computational complexity analysis.

2) COMPUTATIONAL COMPLEXITY
The computational complexity for solving problem (46)
based on Algorithm 1 is briefly discussed here. Since the pro-
posed Algorithm 1 is based on SDP, the computational com-
plexity is determined significantly by the number and size
of variables (i.e., design variables and slack variables) and
constraints (i.e., PSD constraints and slack constraints) [27].
Especially, the major computational complexity for problem
(46) is summarized in Table 1.

3) INFORMATION CHANGE
To make the MBS acquire the global CSIs, each FBS should
send the CSIs and CSI error bounds of their local users to the
MBS. In other words, each FBS should send NNF (1 + NF )
complex values and 2 real values to the MBS. After obtaining
the optimal design, the MBS will send optimal beamforming
and AN vectors, i.e., 2NF complex values to each FBS,
respectively.

In the Table 1, some parameters are respectively expressed
as: a1 = (M+1)N 2

M+2NN
2
F , a2 = 4N 2

+NM+13M+15N+
3, a3 = NMNE + 1, a4 = NMNER+ 1, a5 = NFNE + 1, a6 =
NFNER+1, a7 = N 2

+2N , a8 = NM+1, a9 = 2M+N 2
−N ,

a10 = NF+1, a11 = N 2
+N+NM , a12 = 2N 2

+NM+11M+
12N + 4, a13 = a1 − 2NN 2

F , a14 = a2 − 4N 2
− NM − 13N .

IV. ROBUST TBF AND AN DESIGN IN DISTRIBUTED
DESIGN WITH ADMM
In previous section, the MBS should gather all the CSIs of
coordinated BSs to perform the centralized algorithm. Never-
theless, in some scenes, it may be difficult to find a centralized
processing BS, such as: (1) The BSs have low trust relation
with each other so they are not willing to exchange their local
CSIs to other BSs; (2) The difference between BS’s process-
ing capability is minor so the centralized approach may pose
heavy overhead to the centralized processing BS. Therefore,
a distributed approach is developed where each BS only
needs to deal with its local CSIs is of significant necessity.
In this section, we first explore the robust distributed design
with ADMM. Subsequently, the ADMM-based distributed
approach is concluded.

A. ROBUST DISTRIBUTED DESIGN WITH ADMM
In ADMM, three mainly key steps should be executed: (1) To
guarantee the convergence, the penalty augmented problem is
constructed while a penalty parameter is set; (2) The decom-
position is conducted with dual variables introduced to make
the problem be solved in parallel at different BSs; (3) Three
kinds of variables are updated in an iterative manner until the
solution converges to an expected precision [27].

We first introduce the following slack variables as

ξtERn =
∼

ξ tERn = XtERn, t ∈ [1,N ], n ∈ [1,N ], t 6= n,

(47a)

ξMERn =
∼

ξ MERn = XMERn, n ∈ [1,N ], (47b)

ξn,m =
∼

ξ n,m = Xn,m, n ∈ [1,N ], m ∈ [1,M ], (47c)

ξn,E =
∼

ξ n,E = Xn,E , n ∈ [1,N ], (47d)

ξtFn =
∼

ξ tFn = XtFn, t ∈ [1,N ], n ∈ [1,N ], t 6= n,

(47e)

ξMFn =
∼

ξ MFn = XMFn, n ∈ [1,N ], (47f)

where all the variables above represent the inter-cell interfer-
ence (ICI) imposed by a BS on a user of another BS. More

specifically, {ξtERn,
∼

ξ tERn}, {ξMERn,
∼

ξ MERn}, {ξn,m,
∼

ξ n,m},

{ξn,E ,
∼

ξ n,E }, {ξtFn,
∼

ξ tFn} and {ξMFn,
∼

ξ MFn} represent a pair
of variables expressing the same ICI, respectively. Mean-
while, the element with a hat and that without a hat in each
pair of variables are the local variable stored at the BS of inter-
fered user and that stored at the interfering BS, respectively.
For example, ξtERn stored at the FBSt denotes the interference

from FBSt to ERn while
∼

ξ tERn stored at the FBSn represents
the same ICI. Moreover, the slack variables XtERn, XMERn,
Xn,m, Xn,E , XtFn and XMFn are introduced to ensure that the
copies of the same ICI stored at different BSs equal to each
other.

Based on above analysis and to facilitate tractability,
we rewrite problem (46) in a decomposable form as (48),
shown at the top of the next page, where λm ≥ 0, λEEm ≥ 0,
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max
{Wm},Z0,
{WFn},{Zn},x

x (48a)

s.t.


(12c),(12d),(12e), (14c), (14d), {(33a),(33b) }, {(32a),(32b) },
(43b),(43c),(22e),(23a),(20e),(30a),(30b),(44a),(44b),(29),
(28), (45b),(45c),(45d),(22f),(23b),(31a),(31b),(21e),(42a),

(42b),(42c)

, (48b)

 λmINM − Cm −Cm
∧

h m

−
∧

h H
mCm

∼
e m −

∧

h H
mCm

∧

h m

 ≥ 0, (48c)

 λEEmINMNE + (INE ⊗ Cm) (INE ⊗ Cm)
∧

h E
∧

h H
E (INE ⊗ Cm)

∼
e EEm +

∧

h H
E (INE ⊗ Cm)

∧

h E

 ≥ 0, (48d)

 λFnINF − Zn −Zn
∧

h Fn

−
∧

h H
FnZn

∼
e Fn −

∧

h H
FnZn

∧

h Fn

 ≥ 0, (48e)

 λERnINFNER + Zn Zn
∧

h ERn
∧

h H
ERnZn

∧

h H
ERnZn

∧

h ERn +
∼
e ERn

 ≥ 0, (48f)

λFn ≥ 0, λERn ≥ 0;
∼
e m = φm − σ

2
−

N∑
n=1

∼

ξ n,m − λmε
2
m,

∼
e EEm =

N∑
n=1

∼

ξ n,E + σ
2
− λEEmε

2
E − t0m,

∼
e Fn = φFn − σ 2

−

N∑
t 6=n

∼

ξ tFn −
∼

ξ MFn − λFnε
2
Fn,
∼
e ERn =

N∑
t 6=n

∼

ξ tERn +
∼

ξ MERn +

σ 2
− tERn − λERnε2ERn.
In the next, for the sake of simplicity, we denote all the BSs

in the network as BSk , k ∈ [0,N ], where BS0 and BSn(n ∈
[1,N ]) are the MBS and FBSn, respectively. To make it
that the constraints can be handled locally at BSk , all the
constraints are put in the set S(q)k , which is defined as

S(q)k

,


sk |



(12c), (12b), (12e), (14c), (14d), (34a),
(34b), (33a), (33b), (44b), (44c), (49c),
(22e), (23), (20e), (31a), (31b), (45a),
(45b), (49d), (30), (29), (46b), (46c),
(46d), (49e), (22f), (24), (32a), (32b),

(21e), (43a), (43b), (43c), (49f)




,

(49)

where

sn , [
{

xn,wFn, zn, yn, αn, βn, χn, φFn, uERn,
vERn,tERn, xERn, yERn, zERn, {λi}

4N+M+1
i=1 , JTn

}
]

includes all the local variables handled at FBSn, and that for
the MBS can be similarly denoted as

s0 , [


x0, {wm}

M
m=1, z0, y0, β0,

{φm, u0m, v0m,t0m, x0m, y0m}Mm=1,
{z0m, α0m, χ0m}Mm=1, {λj}

2N+4M
i=1 , JT0

],
where

{λi}
2N+M+4
i=1

=

{
λERn, {λtERn}

N
t 6=n, λEERn, λFn,

{λtFn}
N
t 6=n, λFFn, λn,E , {λn,m}

M
m=1

}
, (50a)

Jn

,





{ξn,m}
M
m=1, ξn,E , ξnER1, ξnF1, · · ·,

ξnER(n−1), ξnF(n−1), ξnER(n+1), ξnF(n+1),

· · ·, ξnERN , ξnFN ,
∼

ξ MERn,
∼

ξ MFn,
∼

ξ nER1,
∼

ξ nF1, · · ·,
∼

ξ nER(n−1),
∼

ξ nF(n−1),
∼

ξ nER(n+1),
∼

ξ nF(n+1), · · ·,
∼

ξ nERN ,
∼

ξ nFN





T

,

(50b)

{λj}
2N+4M
j=1

=

{
{λMERn}

N
n=1, {λm}

M
m=1, {λMm}

M
m=1,

{λEm}
M
m=1, {λEEm}

M
m=1, {λMFn}

N
n=1

}
, (50c)

J0

,

 {ξMFn}Nn=1, {ξMERn}Nn=1, {∼ξ 1,m}
M
m=1,

∼

ξ 1,E , · · ·, {
∼

ξ N ,m}
M
m=1,

∼

ξ N ,E

T , (50d)

where the elements in Jn and J0 are the ICIs relevant to the
FBSn and MBS, respectively. Similarly, Kn and K0 contain
the global versions of corresponding ICIs, respectively, which
are written as

Kn ,




{Xn,m}Mm=1,Xn,E ,XnER1,XnF1, · · ·,
XnER(n−1),XnF(n−1),XnER(n+1),XnF(n+1),
· · ·,XnERN ,XnFN ,XMERn,XMFn,XnER1,
XnF1, · · ·,XnER(n−1),XnF(n−1),XnER(n+1),

XnF(n+1), · · ·,XnERN ,XnFN




T

,

(51a)

K0 ,

[{
{XMFn}Nn=1, {XMERn}

N
n=1, {X1,m}

M
m=1,

X1,E , · · ·, {XN ,m}Mm=1,XN ,E

}]T
. (51b)

Thus, we can rewrite problem (46) in a more compact
form as

min
S,�
−

N∑
k=0

xk (52a)
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s.t. sk ∈ S(q)k , k ∈ [0,N ], (52b)

xk = x, k ∈ [0,N ], (52c)

Jk = Kk , k ∈ [0,N ], (52d)

where S = [s0, s1, ···, sN ],� = [x,KT
0 ,K

T
1 , ···,K

T
N ]. Inwhat

follows, it is in a position to describe the ADMM for solving
problem (46) in a distributed manner.

Firstly, the augmented Lagrangian function of problem
(52) is written as

L (S,�,2,9) =
N∑
k=0

{−xk +
f
2
((xk − x)2 + ‖Jk −Kk‖

2
2)

+2k (xk − x)+9T
k (Jk −Kk )}, (53)

where 2 , [20,2 1, · · ·,2N ], 9 , [9T
0 ,9

T
1 , · · ·,9

T
N ];

f
2 ((xk − x)

2
+ ‖Jk −Kk‖

2) denotes the quadratic penalty
term while f > 0 is the penalty parameter, which is to
provides strict convexity w.r.t. S and � for (52); 2k and 9k
are the Lagrange multipliers associated with (52c) and (52d),
respectively. Therefore, problem (53) is always solvable.

Then, we are in a position to execute the central parts
of the ADMM, which are to update the global variables
(i.e., �), the local variables (i.e., S), and the Lagrange multi-
pliers (i.e., 2 and 9) by the Gauss-Seidel method, respec-
tively. Specifically, by the update of global variables, all
BSs agree a common knowledge of corresponding ICI vari-
ables and the consensus SEE value at each iteration of the
ADMM. Then, each BS utilizes its local CSIs to solves its
own subproblem independently, and the involved variables
are derived into equality by updating its Lagrangemultipliers.
The specific steps of the updated procedures are shown in
following sections.

1) UPDATE OF GLOBAL VARIABLES
With the local variables fixed, an iteration begins with the
update of global variables through solving the convex prob-
lem min

�
L(q)

(
�,S(u),2(u),9(u)), where u denotes the itera-

tion number of ADMM part. Meanwhile, due to the fact that
L(q)

(
�,S(u),2(u),9(u)) is separable in x and {Kk}, the min-

imization problem can be divided into two subproblems,
which are respectively written as

x(u+1) = argmin
x

N∑
k=0

(
f
2
(x(u)k − x)

2
−2

(u)
k x), (54a)

K(u+1)
k = argmin

Kk

(−(9(u)
k )

T
Kk +

f
2

∥∥∥J(u)k −Kk

∥∥∥2
2
), (54b)

where x(u)k and J(u)k can be obtained by solving (54a) and
(54b) in the u-th ADMM iteration and are exchanged between
all coordinated BSs, respectively. Furthermore, according
to [28], the closed-form solutions to (54a) and (54b) are
respectively written as

x(u+1) =
1

N + 1

N∑
k=0

(x(u)k +
2

(u)
k

f
), (55a)

X (u+1)
n,m =

1
2
(ξ (u)n,m +

∼

ξ (u)n,m)+
1
2f

(9(u)
n,m +

∼

9(u)
n,m), (55b)

X (u+1)
n,E =

1
2
(ξ (u)n,E +

∼

ξ
(u)
n,E )+

1
2f

(9(u)
n,E +

∼

9
(u)
n,E ), (55c)

X (u+1)
nERt =

1
2
(ξ (u)nERt +

∼

ξ
(u)
nERt )+

1
2f

(9(u)
nERt +

∼

9
(u)
nERt ), (55d)

(u+1)
nFt =

1
2
(ξ (u)nFt +

∼

ξ
(u)
nFt )+

1
2f

(9(u)
nFt +

∼

9
(u)
nFt ), (55e)

X (u+1)
MERn =

1
2
(ξ (u)MERn +

∼

ξ
(u)
MERn)+

1
2
(9(u)

MERn +

∼

9
(u)
MERn),

(55f)

X (u+1)
MFn =

1
2f

(ξ (u)MFn +

∼

ξ
(u)
MFn)+

1
2f

(9(u)
MFn +

∼

9
(u)
MFn), (55g)

where {9u
n,m,

∼

9u
n,m } are the dual variables associated with

the primal variables {ξun,m,
∼

ξun,m }of the u-th ADMM iter-
ation in (55b), respectively. Meanwhile, the other vari-
ables in (55c) (55g) follow the similar relation, and
we do not repeat it for the sake of simplicity. More-
over, it should be noticed that (55a),(55f),(55g) and (55a)
(55e) are independently carried out at the MBS and
FBSn, respectively. Therefore, {x(u+1),X

(u+1)
MERn,X

(u+1)
MFn } and

{x(u+1),X (u+1)
n,m ,X (u+1)

n,E ,X (u+1)
nERt ,X

(u+1)
nFt } can be obtained at

the MBS and FBSn, respectively. In other words, each BS
can compute xu+1 by running an average consensus algo-

rithm [29] in (55a). Meanwhile, {X (u+1)
n,m , X (u+1)

n,E , X (u+1)
MERn,

X (u+1)
MFn } and {X

(u+1)
nERt ,X

(u+1)
nFt ,X (u+1)

tERn ,X
(u+1)
tFn } are acquired at

the FBSn after gathering 1
2

∼

ξ
(u)
n,m +

1
2f

∼

9
(u)
n,m , 1

2

∼

ξ
(u)
n,E +

1
2f

∼

9
(u)
n,E ,

1
2ξ

(u)
MERn +

1
2f 9

(u)
MERn, X

(u+1)
MFn =

1
2ξ

(u)
MFn +

1
2f 9

(u)
MFn from the

MBS and 1
2

∼

ξ
(u)
nERt +

1
2f

∼

9
(u)
nERt ,

1
2

∼

ξ
(u)
nFt +

1
2f

∼

9
(u)
nFt ,

1
2ξ

(u)
tERn +

1
2f 9

(u)
tERn and 1

2ξ
(u)
tFn +

1
2f 9

(u)
tFn from the FBSt . In the simi-

lar way, {X (u+1)
MERn,X

(u+1)
MFn ,X

(u+1)
n,m ,X (u+1)

n,E } are obtained at the

MBS after collecting 1
2

∼

ξ
(u)
MERn +

1
2f

∼

9
(u)
MERn ,

1
2

∼

ξ
(u)
MFn +

1
2f

∼

9
(u)
MFn ,

1
2ξ

(u)
n,m +

1
2f 9

(u)
n,m and 1

2ξ
(u)
n,E +

1
2f 9

(u)
n,E from the FBSn. Notice

that these information exchange between coordinated BSs
are all real-valued so the amount of exchanged signaling
overhead is significantly lower than the complex-value CSIs
sharing.

2) UPDATE OF LOCAL VARIABLES
The update of local variables S is performed by solving the
following convex problem

S(u+1) = argmin
sk∈S

(q)
k ,k∈[0,N ]

L(q)
(
�(u+1),S,2(u),9(u)

)
(56)

According to the distributed feature of ADMM, the aug-
mented Lagrangian function can be decomposable in sk .
Succinctly speaking, by decomposing problem (56) indepen-
dently, it can be solved in parallel at each BS. Thus, with its

116288 VOLUME 7, 2019



B. Zhang et al.: Robust SEE Optimization for Wireless Powered HeNets

local CSIs, BSk only needs to solve the following subproblem

s(u+1)k

= argmin
sk∈S

(q)
k ,k∈[0,N ]

{−xk +
f
2
((xk−x(u+1))

2
+

∥∥∥Jk−K(u+1)
k

∥∥∥2)
+2

(u)
k (xk − x(u+1))+ (9(u)

k )
T
(Jk −K(u+1)

k )},

k ∈ [0,N ], (57)

where x(u+1) and K(u+1)
k denote the global variables, which

have been updated in the (u + 1)-th ADMM iteration.
Subproblem (57) is convex so it can be solved directly by
existing convex solvers.

3) UPDATE OF LAGRANGE MULTIPLIERS
Finally, the Lagrange multipliers are updated by

2
(u+1)
k = 2

(u)
k + f (x

(u+1)
k − x(u+1)), k ∈ [0,N ], (58a)

9
(u+1)
k = 9

(u)
k + f (J

(u+1)
k −K(u+1)

k ), k ∈ [0,N ]. (58b)

BSs have acquired all the global and local variables after
the previous two steps A and B. Therefore, no extra signaling
overhead of BSs is needed in this step.Moreover, if the primal
residual 4(u) is below a threshold 4th, i.e., 4(u) < 4th,
the ADMM iteration is thought as convergence, where 4(u)

is defined as

√
N∑
k=0

∥∥∥∥[x(u)k , (J(u)k )
T
]
T
− [x(u), (K(u)

k )
T
]
T
∥∥∥∥2
2
to

indicate the convergence in the u-th ADMM iteration. Then,
it comes to the (q+ 1)-th SCA iteration.

B. THE DISTRIBUTED ALGORITHM
WITH ADMM ITERATION
The steps of distributed algorithm with ADMM iteration are
summarized in Algorithm 2, where the outer and the inner
loop are the SCA-based and ADMM-based iterative proce-
dure, respectively. Subsequently, the computational complex-
ity and the information change between BSs are analyzed,
respectively.

1) PER BS COMPLEXITY ANALYSIS
The computational complexity of each iteration in
Algorithm 2 is mainly determined by solving the sub-
problem (58) at each BS. Therefore, the computational
overhead can be acquired with the similar way as that in
Algorithm 2. Note that the processing stress of whole network
is averaged on N + 1 BSs so the computational overhead is
affordable for each BS.

2) INFORMATION EXCHANGE
The information exchange mainly occurs in the step 5 and 6,
just as shown in Algorithm 2. To be more specific, x(u)k and
2

(u)
k are broadcasted by each BS in step 5; then, in step 6,

M + 3 real values are sent to each FBS by the MBS while
4 andM + 3 real values are sent to the other N − 1 FBSs and
the MBS by each FBS, respectively. Meanwhile, notice that

Algorithm 2 Distributed Algorithm With ADMM Iteration
1: Initialization: set iteration index q = 0, u = 0 and chose
feasible initial points {ϑj}

5M+6N+1
j=1 of SCA outer loop, and

feasible initial points of ADMM inner loop {x(0)k }, {J
(0)
k },2

(0),
9(0);
2: Repeat : (SCA outer loop)
3: while 4 ≥ 4th do :(ADMM inner loop)
4: for k ∈ [0,N ] do:
5: BSk updates x

(u+1)
k through an average consen-

sus algorithm;
6: BSk updates K

(u+1)
k by (55b) (55g);

7: BSk updates s
(u+1)
k by (57);

8: BSk updates the Lagrange multipliers 2(u+1)
k ,

9
(u+1)
k by (58a) and (58b), respectively;

9: end for
10: u = u+ 1;
11: end while
12: obtain the optimal solutions {ϑ∗j }

5M+6N+1
j=1 ;

13: update {{x(0)k }, {J
(0)
k },2

(0),9(0)
} = {{x∗k }, {J

∗
k},

2∗,9∗} and the SCA iteration points {ϑ (q+1)
j }

5M+6N+1
j=1 =

{ϑ∗j }
5M+6N+1
j=1 ;

14: q = q+ 1, u = 0;
15: Until: algorithm converges;
16: Output: optimal SEE objective value, beamforming and
AN matrixes {W∗m}

M
m=1, {W

∗
Fn}

N
n=1, {Z

∗
k}
N
k=0.

these information exchange between coordinated BSs are all
real-valued so the amount of exchanged signaling overhead
is significantly lower than the complex-value CSIs sharing.

V. SIMULATION RESULTS AND ANALYSIS
In this section, simulation results are provided to evaluate
the performance of proposed robust design. We consider that
two coordinated FBSs are deployed under the coverage of
the MBS, where two MUs and an Eve are randomly dis-
tributed in a macrocell with a radius of 300m while an IR
and an ER are scattered randomly in each femtocell with a
radius of 100m. Meanwhile, the path loss and shadowing are
modeled as β(dB) = 38log10(d) + 34.5 + CN (0, 8) [28],
where d represents the distance from transmitter to receiver
in the corresponding channel while the small-scale fading
coefficients all follow Gaussian distributed. Moreover, unless
otherwise specified, the specific antenna settings areNM = 8,
NF = 5 and NE = NER = NEve = 2, respectively; the total
transmit power of the MBS and each FBS are PM = 48dBm,
PF = 38dBm, power loss and power amplifier efficiency are
Pε = 33dBm and $ = 0.8, respectively; EH threshold of
ERs is θ = θn= − 20dBm, ∀n ∈ [1,N ]; all the CSI errors
have the same bound ε = 0.01; the penalty parameter f =
0.05. All simulation results are averaged over 1000 randomly
generated channel realizations.

In our simulations, two compared designs, i.e., zero-force
AN design and non-AN design, are presented simultaneously
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FIGURE 2. SEE performance versus the CSI error bound.

to analyze the performance of proposedmethod.More specif-
ically, non-AN design means that no AN is injected into the
transmit beam of the MBS and FBSs while zero-force AN
design denotes that AN is injected into the zero space of
channel of legitimate users. Firstly, the comparison of these
three methods with respect to the impact of the CSI error on
SEE performance is displayed in Fig. 2. With the increase
of ε, the SEE performance of them all tends to decrease. This
can be explained that the deviation of downlink beamforming
and AN at the MBS and FBSs occurs due to the existence of
CSI error, which will surely bring about the waste of transmit
power and the decrease of secrecy performance. Meanwhile,
under the same parameters setting, we find that our proposed
design always has the most SEE performance while zero-
force AN design is second to it. This phenomenon indicates
that the aided AN can better promote the SEE performance
because AN carries the RF power for ERs while interfering
with potential Eves, which utilizes the transmit power more
efficiently; moreover, the ANwith unfixed structure has more
superior performance than AN with fixed structure, which
validates the effectiveness of our method.

Next, we pay attention to the effect of maximum output
power at BSs on the SEE performance. Considering that the
power supply is usually sufficient at the MBS, we mainly
focus on the FBSs in this part, as presented in Fig. 3. As it
describes, the SEE performance of three methods all increase
with the growth of PF . The reason is that as PF grows,
some extra transmit power will be saved when achieving the
comparative SEE performance. Then, these extra power can
be allocated for improving the SEE performance of macrocell
and femtocells.

Similarly, considering that the MBS is deployed in sched-
ule, whichmeans that its antennas setting is usually sufficient,
we mainly focus on the impact of the number of antennas
at each FBS on the SEE performance, just as presented
in Fig. 4. Specifically, as NF grows, the SEE performance
also increases simultaneously because the resolution ratio of
achievable space can be improved bymore antennas available

FIGURE 3. SEE performance versus the transmit power at each FBS.

FIGURE 4. SEE performance versus the antennas number at each FBS.

at each FBS, and then the diversity between legitimated
channels (i.e., from FBSs to IRs) and wiretapping channels
(i.e., from FBSs to ERs) is guaranteed more easily with
less AN injected. Furthermore, our proposed design always
has the most superior performance under the same parame-
ters settings, which further validates the effectiveness of our
design.

As shown in Fig. 5, the SEE performance tends to decrease
as the increase of θ , and our proposed method always has the
best performance among three methods. This phenomenon
can be explained that the increase of θ leads to more power
consumption utilized for power transfer, which will lead
to the decrease of secrecy performance of femtocells and
the average SEE performance of whole network because
of the SEE fairness requirement between multiple cells and
the transmit power limit. Meanwhile, we notice that if the
potential Eve is equippedwithmore antennas, the SEE perfor-
mance of our proposed design becomes lower, which results
from the increasedwiretapping performance of potential Eves
and leads to the decrease of secrecy performance.
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FIGURE 5. SEE performance versus the EH threshold of ERs.

FIGURE 6. Convergence of the centralized and distributed design.

FIGURE 7. SEE performance on random channel realizations.

Fig. 6 illustrates the convergence performance versus the
iteration number in the centralized and distributed design
under the same channel. As can be observed, the SEE
curve of centralized design converges to a stabilized value
within about 10 iterations. As for the distributed design, the

converging rate is slower than the centralized design, which
is unsurprising for the distributed solving manner. Moreover,
the ADMM-based inner loop also slows down the converging
rate.

The performance comparison between the centralized and
distributed design is provided in Fig. 7 in terms of the SEE
over 20 random channel realizations. As it shows, the dis-
tributed design can almost converge to the optimal solution
obtained by the centralized design under most of the channel
realizations. Moreover, only small disparity exists between
the optimal solution obtained by the centralized and dis-
tributed design in the 3, 7 and 15 channel realization, which
further implies the validity of distributed design.

VI. CONCLUSION
In this paper, with the existence of CSI errors, we inves-
tigated the robust TBF and AN design for secure SWIPT
in a two-tier HetNet, where both the MUs and IRs are in
faced with potential secrecy leakage. To achieve green com-
munications and promote the average secrecy performance
robustly, we explored the joint design problem for SEE maxi-
mization while considering the fairness among multiple cells.
Specifically, with the aid of the SCA, SDR techniques and
S-procedure, we successfully transform it into a series of
convex forms. Moreover, to further release the processing
stress on the calculating center and the signaling overhead
of the network, we proposed a distributed approach based
on ADMM that allows each BS to deal with its local CSI.
Simulation results verified the performance of robust TBF
and AN design and the validity of the proposed distributed
approach.

APPENDIX
To prove the Proposition 1, we denote the Lagrange func-
tion of (46) as L. Due to the fact that there are too many
constraints and some of them are not relevant to the proof
process, the complete expression of L must be too long
and not necessary. Therefore, we only present part of L,
which are relevant to the proof process. In the following,
we will first prove Rank(W∗m) = 1,∀m ∈ [1,M ] in the
subsection A, then we can follow the similar process to prove
Rank(W∗Fn) = 1,∀n ∈ [1,N ] in the subsection B.

A. THE PROOF OF Rank(W∗m) = 1
From (46) and the Karush-Kuhn-Tucker conditions, we have

∂L
∂W∗m

= A∗m − X∗m + [INM
∧

h m]T∗Mm[INM
∧

h m]
H
= 0

⇒ A∗m = X∗m − [INM
∧

h m]T∗Mm[INM
∧

h m]
H
, (A1)

where

X∗m = (f ∗ + i∗)INM +
N∑
n=1

[INM
∧

hMFn]T∗MFn[INM
∧

hMFn]
H

+

NM∑
j=1

R∗(j,j)Em −

N∑
n=1

NM∑
j=1

R∗(j,j)MERn,
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A∗m ≥ 0, f ∗ ≥ 0, i∗ ≥ 0, T∗MFn ≥ 0, T∗Mm ≥ 0
indicate the optimal Lagrange multipliers associated
with (12e), (12c), (14c), (45c) and (43c), respectively;
R∗(j,j)Em ∈ HNM

+ , R∗(j,j)MERn ∈ HNM
+ are the diago-

nal block sub-matrices of [INM
∧

h E ]�∗Em[INM
∧

h E ]H and

[INM
∧

hMERn]�∗MERn[INM
∧

hMERn]H , respectively. In particular,

[INM
∧

h E ]�∗Em[INM
∧

h E ]H

=

R∗(1,1)Em · · · R∗(1,NM )
Em

· · · · · · · · ·

R∗(NM ,1)Em · · · R∗(NM ,NM )
Em

, (A2)

[INM
∧

hMERn]�∗MERn[INM
∧

hMERn]H

=

R∗(1,1)MERn · · · R
∗(1,NM )
MERn

· · · · · · · · ·

R∗(NM ,1)MERn · · · R
∗(NM ,NM )
MERn

, (A3)

In what follows, we first prove the rank of [I
∧

h m]T∗Mm
[I
∧

h m]H is no more than one, i.e., Rank([I
∧

h m]T∗Mm
[I
∧

h m]H ) ≤ 1. In this regard, we have the following defi-
nition expressed as

[INM 0][INM
∧

h m]H = INM

[INM 0]
[
λ∗MmINM 0
0eMm

]
= λ∗Mm[[INM

∧

h m]− [0
∧

h m]], (A4)

At the optimal solution, according to the KKT condition,
we have the following expression[
λ∗MmINM 0
0e∗Mm

]
T∗Mm +

[
INM
∧

h m

]H
W∗m

[
INM
∧

h m

]
T∗Mm = 0

(A5)

Let [INM 0] and
[
INM
∧

h m

]
H multiply the left and right side

of (A5), respectively, and combining with (A4), then we can
acquire

[INM 0]
[
λ∗MmINM 0
0e∗Mm

]
T∗Mm[INM

∧

h m]H

+ [INM 0]
[
INM
∧

h m

]H
W∗m

[
INM
∧

h m

]
T∗Mm[INM

∧

h m]H = 0

⇒ λ∗Mm([INM
∧

h m]− [0
∧

h m])T∗Mm[INM
∧

h m]H

+W∗m

[
INM
∧

h m

]
T∗Mm[INM

∧

h m]H = 0

⇒ λ∗Mm[0
∧

h m]T∗Mm[INM
∧

h m]H

= (λ∗MmINM +W∗m)
[
INM
∧

h m

]
T∗Mm[INM

∧

h m]H , (A6)

Due to λ∗Mm ≥ 0 andW∗m ≥ 0, we see (λ∗MmINM +W∗m) ≥ 0.
Furthermore, at the optimal point, W∗m = 0 is not consistent
with the optimization objective. Therefore, there must be
W∗m > 0 ⇒ (λ∗MmINM + W∗m) > 0. Then, combining

with (A6), we can get

Rank(
[
INM
∧

h m

]
T∗Mm[INM

∧

h m]H )

= Rank((λ∗MmINM +W∗m)
[
INM
∧

h m

]
T∗Mm[INM

∧

h m]H )

= Rank(λ∗Mm[0
∧

h m]T∗Mm[INM
∧

h m]H )

≤ Rank([0
∧

h m]) ≤ 1, (A7)

Therefore, we can get Rank([I
∧

h m]T∗Mm[I
∧

h m]H ) ≤ 1.
In the next, we aim to prove that the rank of A∗m is

Rank(A∗m) = NM − 1. To begin with, combining (A1) and
(A7), we have

Rank(A∗m) ≥ Rank(X∗m)− Rank([I
∧

h m]T∗Mm[I
∧

h m]H )

= Rank(X∗m)− 1, (A8)

and then we continue to analyze the following two cases:
1) If Rank(X∗m) = NM , there is Rank(A∗m) ≥ NM − 1.

However, if Rank(A∗m) = NM , i.e., A∗m is of full-rank, then it
meansW∗m = 0, which is not consistent with the optimization
objective and can not be the optimal solution. Therefore,
we can get Rank(A∗m) = NM − 1 and Rank(W∗m) = 1 under
this case;

2) If Rank(X∗m) ≤ NM − 1, we denote5m = [π1,π2, . . . ,

πNM−RX∗m
] with 5H

m5m = INM−RX∗m as the orthogonal basis
for the null space of X∗m, i.e., X

∗
m5m = 0. Then, we can

acquire

πHi A
∗
mπ i = π

H
i (X

∗
m − r

∗
mHm)π i

= −r∗m
∥∥∥hHmπ i∥∥∥2≤0, i ∈ [1,NM − RX∗m ], (A9)

where r∗m = 0 occurs if and only if

Tr(HmWm) ≤ g
q
ζ0m

(α0m, φm)−φm, m ∈ [1,M ], (A10)

which means that the secrecy rate of MUs can not be guaran-
teed, which contracts with the formed equivalently constraint
(13b) and the optimal design objective. Therefore, there must
be r∗m > 0. Since A∗m ≥ 0 and r∗m > 0, it follows from (A9)
that

∥∥hHmπ i∥∥2 = 0. Considering X∗m5m = 0, we have

hmhHm5m = 0⇒ A∗m5m = 0, (A11)

which indicates that all π i′s lie in the null space of hmhHm
and no information will be transferred to MUm [30]. Hence
positive secrecy rate can not be satisfied, which contradicts
with the objective of optimization SEE under this case

In summary, according to the two cases analyzed above,
Rank(A∗m) = NM − 1 must hold. According to A∗mW

∗
m = 0,

we have

Rank(W∗m) ≤ 1. (A12)

Based on above analysis, Rank(W∗m) = 0 is not con-
sistent with the design objective. Therefore, there must be
Rank(W∗m) = 1.
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B. THE PROOF OF Rank(W∗Fn) = 1
Following the similar procedures, we can also prove
Rank(W∗Fn) = 1. To avoid redundancy, we do not present
the specific proof process in this section.
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