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ABSTRACT In the fields of physics, mathematics, communication, control, biology, etc., chaos is widely
used, and it plays an important role in modern science and technology. In this paper, a new seven-
dimensional hyperchaotic system is proposed and some related features of the hyperchaotic system are
analyzed, including equilibrium stability, dissipation, bifurcation and Lyapunov exponent. The results show
that the proposed hyperchaotic system exhibits hyperchaotic, chaotic, quasi-periodic and periodic dynamic
behaviors. The seven-dimensional hyperchaotic system is implemented through experiments, and the phase
diagrams of the circuit simulation are consistent with those of the numerical simulation, which verifies
the physical realization of the hyperchaotic system. In view of chaos in some important fields, such as
communication security and complex systems, the seven-dimensional hyperchaotic system is applied to
signal encryption and decryption circuit design. Firstly, the proposed seven-dimensional hyperchaotic system
is scaled and transformed into a hyperchaotic system that is easy to implement. Then an improved chaotic
circuit module design is adopted. Finally, the seven-dimensional hyperchaotic circuit is designed to form a
hyperchaotic secure communication circuit. The electronic circuit realizes the confidential communication
and its experimental results prove the effectiveness of the designed scheme.

INDEX TERMS Seven-dimensional hyperchaotic, secure communication, circuit realization.

I. INTRODUCTION
Chaotic system refers to the existence of seemingly ran-
dom irregular motion in a deterministic system. Its behavior
is characterized by uncertainty, non-repeatable and unpre-
dictable. This is chaotic phenomenon. Chaos is an intrinsic
property of nonlinear dynamic systems and a ubiquitous
phenomenon in nonlinear systems. Chaos theory is about
the theory that a nonlinear system exhibits bifurcation under
certain parameters, and the periodic motion and the aperi-
odic motion are entangled with each other, so that it leads
to some aperiodic ordered motion. In 1963, when design-
ing a three-dimensional model for atmospheric convection,
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Lorenz accidentally discovered the first chaotic system.
Rössler discovered a three-dimensional chaotic system with
more simple algebra than the Lorenz system in 1976. There
are also many well-known three-dimensional chaotic sys-
tems, such as Arneodo system, Sprottsystems, Chen system,
Lü-Chen system, Liu system, Cai system, T system, etc..
In recent years, with the wide application of chaos theory,
people have conducted extensive research on chaos theory
and achieved many new results [1]–[15].

In the study of secure communication using chaotic
encryption, researchers have found that high-dimensional
hyperchaotic systems are more difficult to interpret than low-
dimensional chaotic systems [16]–[17]. The reasons are as
follows: First, the chaotic signal band of a low-dimensional
system is very narrow, so it is easy to lose the encryption
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protection function when using a digital filter to separate the
transmitted signal. Second, the chaotic dynamics of high-
dimensional chaotic systems are more complex, and the fre-
quency range of chaotic sequence signals is wider, so it is
more difficult to be separated by filters when used for secure
communication [18]–[21]. Chaotic sequence signals have
very important application value for information encryp-
tion. Since Rossler proposed the concept of hyperchaos
in 1979 [22], hyperchaos and basic systems have attracted
much attention due to their irregularities and unpredictability.
Reference [23] shows the basic questions about the Lyapunov
exponent. To prove the actual sign of the Lyapunov exponent
of the hyperchaotic system, three different algorithms are
used to calculate the Laypunov exponent. In [24], a new
hyperchaotic temperature fluctuation model is proposed, and
the characteristics of the new hyperchaotic temperature fluc-
tuation model are studied, such as phase portrait, static point,
symmetry, invariance, Lyapunov characteristic exponent, and
bifurcation analysis. In [25], two new practical and complex
unbalanced hyperchaotic systems are designed firstly. Then,
the synchronization method of the new system is designed by
using the contraction theory. Finally, the proposed method is
applied to verify the proposed method.

Hyperchaos has more complex features than chaos, includ-
ing more unpredictability and higher order, more unusual
attractors. Therefore, hyperchaotic signals can promote and
enhance the security of chaos-based communication and dig-
ital audio encryption. For the above reasons, hyperchaos has
become a research hotspot in the field of nonlinear control.
At present, hyperchaotic research has been widely used in
various aspects and has made significant progress.

In [26], Yang, et al. used return map-based methods
to unmask some chaotic secure communication systems.
In [27], Zheng, et al. proposed a digital chaotic secure
communication by introducing a magnifying glass concept,
which was used to enlarge and observe minor parameter
mismatches to increase the sensitivity of the system. In [28],
Álvarez, et al. described the security weakness of a recently
proposed secure communication method based on parameter
modulation of a chaotic system and an adaptive observer-
based synchronization scheme. In [29], an implementation
of a digital image encryption scheme based on a mixture
of chaotic systems was reported. In [30], a system-oriented
analysis of the encryption efficiency of chaotic commu-
nication systems consisting of lasers subject to all-optical
feedback was presented. In [31], a pseudorandom binary
sequence was mixed within the chaotic dynamics in such
a way that a mutual concealment was performed. In [32],
Jing et al. reported an improved chaotic masking scheme
based on the Lorenz system for secure communication.
In [33], Liu, et al. proposed a chaotic secure communica-
tion method, namely, the partial series of a chaotic system
for parameter estimation and the other series for secure
communications. In [34], Wang, et al. developed a novel
higher-dimensional digital chaotic system utilizing a chaos
generation strategy controlled by random sequences. In [35],

an experimental study of the practical realization of the
transmission of information using chaotic oscillators was
presented. In [36], a unified chaotic system and a hyper-
chaotic Rössler system with uncertain parameters were cou-
pled, constrained and used as a new hyperchaotic system
in a secure communication scheme. In [37], Oden, et al.
proposed a chaotic communication scheme based on a
chaotic optical phase carrier generated with an opto-
electronic oscillator with nonlinear time-delay feedback.
In [38], Chen, et al. initiated a systematic methodology for
6-D real domain chaos-based video encryption and decryp-
tion communications.

The above literatures are the application of chaos in
secure communication, and then the literature [39] considers
that a high dimensional model (map/ode system) is not a
good choice for secure communication due to the scope of
multistability. The authors think high-dimensional chaotic
systems have more complex dynamic behaviors, better ran-
domness and unpredictability. The high-dimensional chaotic
system is used in the fields of secure communication, image
encryption, text encryption and voice encryption, and will
have a larger key space and higher security.. In [40], Sprott
proposed the standard for constructing a new chaotic sys-
tem, therefore, this paper proposes and introduces a new
type of seven-dimensional hyperchaotic system. The pro-
posed hyperchaotic system has satisfactory performance.
It has only one control parameter and can be conveniently
switched between hyperchaotic, chaotic, quasi-periodic, peri-
odic, quasi-periodic and periodic states. Furthermore, the sys-
tem parameters are large in scope, eliminating the risk of a
sudden transition to an undesirable state. In view of chaos
in some important fields, such as communication security
and complex systems, the seven-dimensional hyperchaotic
system is applied to signal encryption and decryption circuit
design, and a physical circuit is tested to achieve secure
communication.

II. CONSTRUCTION OF THE SEVEN-DIMENSIONAL
HYPERCHAOTIC SYSTEM
In [41], a six-dimensional hyperchaotic system was proposed
and defined by

•
x = a(y− x)+ w− u− v
•
y = cx − y− xz
•
z = −bz+ xy
•
w = dw− yz
•
u = ev+ yz
•
v = rx

(1)

where x, y, z,w, u, v are the system state variables and
a, b, c, d, e, r are real coefficient, where dots indicate a
derivative of time t .

The above system enters the hyperchaotic state when
a = 10, b = 8/3, c = 28, d = −1, e = 8, r = 3.
Based on this literature, we add a nonlinear controller ṗ to the
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FIGURE 1. Hyperchaotic system phase diagrams for (a) x-y-z; (b) x-y-w; (c) x-y; and (d) x-v.

above system. The novel seven-dimensional hyperchaotic
system is obtained as

•
x = a(y− x)+ w− u− v
•
y = cx − y− xz− p
•
z = −bz+ xy
•
w = dw− yz
•
u = ev+ yz
•
p = fx + yz
•
v = rx

(2)

From Ref. [17], regarding the hyperchaotic system,
some principles need to be satisfied: (1) the system
should have dissipativity; (2) the dimension of the sys-
tem should be at least 4; and (3) the system should
have at least two equations that enhance the instability,
and the two equations should have at least one nonlinear
term.

Here, if a = 10, b = 8/3, c = 28, d = −1, e = 8,
f = 1, r = 5, then the Lyapunov exponents are

L1 = 0.58845, L2 = 0.178183, L3 = 0, L4 = −0.139483,

L5 = −0.404591, L6 = −0.80156, L7 = −14.088129

At this point, the Lyapunov exponent of the system has two
positive, one zero and five negative. The sum of all Lyapunov
exponents is L = −13.86557, obviously, it is less than zero.
Therefore, the system is now in a hyperchaotic state. The
related phase portraits between x, y, z,w and v are shown
in Fig. 1.

In Fig. 1, (a), (b), (c), and (d) correspond to the phase
diagrams of the attractors for x-y-z, x-y-w, x-y, and x-v,
respectively.

III. THEORETICAL ANALYSIS OF THE PROPOSED
HYPERCHAOTIC SYSTEM
Compared to chaotic systems, hyperchaotic systems have
the following advantages. First, two or more of the
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Lyapunov exponents of the hyperchaotic system are greater
than zero. Second, its dynamic behavior is more complicated
and the phase trajectories are separated in more directions.
Based on this, hyperchaotic signals can improve the security
of chaotic information encryption and chaotic secure commu-
nication.The dynamic behavior of the hyperchaotic system
is analyzed as follows: the stability and balance analysis of
the hyperchaotic system is first demonstrated, and then the
dissipation of the system is verified. Finally, the proposed sys-
tem is analyzed by the bifurcation diagram and the Lyapunov
exponent spectrum.

A. STABILITY, EQUILIBRIUM AND DISSIPATIVITY
1) STABILITY AND EQUILIBRIUM
As introduced above, the equations of stability are

a(y− x)+ w− u− v = 0
cx − y− xz− p = 0
−bz+ xy = 0
dw− yz = 0
ev+ yz = 0
fx + yz = 0
rx = 0

(3)

Solving the system of equations (3), the equilibrium point
O(0, y∗, 0, 0, ay∗,−y∗, 0), y∗ ∈ R can be obtained, which is
independent of the value of the parameters b, c, d, e, f , r . The
Jacobian matrix of system (2) at the equilibrium point O is

J =



−a a 0 1 −1 0 −1
c −1 0 0 0 −1 0
y∗ 0 −b 0 0 0 0
0 0 −y∗ d 0 0 0
0 0 y∗ 0 0 0 e
f 0 y∗ 0 0 0 0
r 0 0 0 0 0 0


(4)

As |J − λI | = 0, the characteristic equation is:

−λ7+[(d − a− 1) λ6

+[(c+d−b−1) a+b (d − 1)+d−r]λ5

+[(d−b−f +bc+bd-cd) a−(1+b+e−d) r − 2y
∗2]

λ4 + [(bd−bf +df −bcd) a+(dr−er−r) b+er

(d−1)+dr+y∗2 (d−a−2)]

λ3+[(dr+br+bdf ) a+er (d−b+bd)+dy∗2 (a+1)]

λ2 + bderλ = 0

When y∗ = 0, the characteristic equation change as:

λ(d − λ)(λ+ b)[λ4 + (a+ 1)λ3 + (a+ r)λ2

+(af + r − er − acf )λ− er] = 0 (5)

When a = 10, b = 8/3, c = 28, d = −1, e = 8,
f = 1, r = 5, the seven eigenvalues are

λ1 = 11.534686, λ2 = 0.513269, λ3 = −2.66667,

λ4 = 0, λ5 = −0.29768, λ6 = −1, λ7 = −22.750328

Obviously, two eigenvalues are positive, one eigenvalue is
zero and the others are negative. It can be concluded that O is
an unstable saddle point when y∗ = 0.

2) DISSIPATIVITY
Assuming ψ is a region in the smooth surface R7 and V (t) is
the volume of ψ (t). We obtain

V̇ (t) =
∫
ψ(t)

(
∇
∗V
)
dxdydzdwdudpdv. (6)

Through equation (6), we can calculate the dissipation of
hyperchaotic systems.

∇
∗V =

∂
•
x

x
+
∂
•
y

y
+
∂
•
z

z
+
∂
•
w

w
+
∂
•
u

u
+
∂
•
p

p
+
∂
•
v

v
= −a− 1− b+ d = γ (7)

where V is the seven-dimensional hyperchaotic system and
a, b, c, d, e, f and r are real parameters. The above equation
is rewritten as

V̇ (t) =
∫
ψ(t)

γ dxdydzdwdudpdv = γV (t) . (8)

Therefore, we can obtain V (t) = eγV (0) , if ∇∗V < 0,
then system (2) is dissipative, and the state of the system is
bounded by the state of the system. When a = 10, b = 8/3,
c = 28, d = −1, e = 8, f = 1, r = 5, γ = − 44

3 < 0,
a volume element for the initial V (0) gradually converges to
V (0)e−

44
3 t at time t . When t → ∞, every trajectory of the

system converges to 0 with a rate of − 44
3 . Eventually, as all

system trajectories will eventually be limited to a set of zero
volumes, the progressive motion of the system will be fixed
at the attractors.

B. BIFURCATION AND THE LYAPUNOV EXPONENT
SPECTRUM
Bifurcation is a kind of special nonlinear phenomenon related
to hyperchaos, chaos and mutation. The common way to
obtain bifurcation is with the maximum of a parameter. For
hyperchaos and chaos, the Lyapunov exponents are essential,
which indicate a diverging rate of trajectory. In addition,
the Lyapunov exponents is a useful tool to analyse and
judge hyperchaos. For our proposed 7D hyperchaotic system,
the bifurcation diagram and the Lyapunov exponent spectrum
with linear control coefficients r ∈ [0, 90] (The other param-
eters are fixed at a = 10, b = 8/3, c = 28, d = −1,
e = 8, f = 1) and an initial condition (x0, y0, z0,w0, u0,
p0, v0) = (1, 1, 1, 1, 1, 1, 1) are shown in Fig. 2. At the
same time, the three largest Lyapunov exponents of the
7D hyperchaotic system are shown in Fig2(c).

As illustrated above Fig. 2(a), when the nonlinear coef-
ficient r is increased, Xmax varies from an unstable to a
stable status, and bifurcation clearly occurs. In Fig. 2(b),
the Lyapunov exponent L1 varies from positive values to zero
and then to negative values, and L2 drops from a positive
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FIGURE 2. Systematic bifurcation diagram and the Lyapunov exponent spectrum: (a) bifurcation diagram; (b) Lyapunov
exponent spectrum; (c) The main Lyapunov exponents.

value to a negative value, then mutates to zero and finally
decreases to a negative value. This indicates that with an
increase in the nonlinear control coefficient r , the positive
maximum Lyapunov exponent L1 tends to decrease linearly,
and L2 tends to decrease linearly at first, but when the linear
control coefficient r increases to 49, L2 suddenly increases
to zero and then decreases linearly. Accordingly, the condi-
tion of the proposed seven-dimensional hyperchaotic system
changes from hyperchaotic, chaotic, quasi-periodic attrac-
tion, periodic attraction, quasi-periodic attraction to periodic
attraction.

To estimate the validity of our proposed seven-dimensional
hyperchaotic system, six nonlinear states are introduced in
detail. When 0 < r < 25.5, the system has two positive
Lyapunov exponents, and the system is in a hyperchaotic
state. When 25.5 < r < 31.82, the system has a positive
Lyapunov exponent, and the system is in a chaotic state.
When 31.82 < r < 35.8, the system is in a quasi-periodic

state. When 35.8 < r < 49, the system is in a periodic state.
When 49 < r < 57.6, the system resumes to a quasi-periodic
state. When 57.6 < r < 90, the system is in a periodic state.

1) HYPERCHAOS
Hyperchaos has more complex features than common chaos
due to the presence of multiple attractors. As shown in Fig. 2,
hyperchaos occurs in our proposed seven-dimensional hyper-
chaotic system when 0 < r < 25.5. The phase diagrams of
x-y, x-z, y-z and x-w are shown in Fig. 3. To show its chaotic
character further, the 3D projections of phase diagram are also
shown in Fig. 3(e) and Fig. 3(f). It is known that hyperchaos
exists in the systemwhen at least two Lyapunov exponents are
positive. According to the calculation, the seven Lyapunov
exponents are L1 = 0.58845,L2 = 0.178183,L3 = 0,
L4 = −0.139483,L5 = −0.404591,L6 = −0.801560,
L7 = −14.088129.

125590 VOLUME 7, 2019
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FIGURE 3. Phase diagram of the system when r = 5: (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) x-w-p; and (f) x-y-v.

Obviously, two maximum Lyapunov exponents are
positive, and the sum of the Lyapunov exponents
is −14.663665<0. According to above explanations,

the proposed seven-dimensional hyperchaotic system is
in a hyperchaotic state when the nonlinear coefficient
r = 5.
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FIGURE 4. Phase diagram of the system when r = 30: (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) x-w-p; and (f) x-y-v.

2) CHAOS
As shown from the bifurcation, a chaotic phenomenon clearly
appears when 25.5 < r < 31.82. The phase diagrams

of x-y, x-z, y-z and x-w are shown in Fig. 4. To show
its chaotic character further, the 3D projections of phase
diagram are also shown in Fig. 4(e) and Fig. 4(f).
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According to the calculation, the seven Lyapunov
exponents are: L1 = 0.390444,L2 = −0.002648,
L3 = −0.057088,L4 = −0.279529,L5 = −0.449534,
L6 = −0.932220,L7 = −13.336128.

The sum is −14.60715. Compared with the above hyper-
chaotic system, obviously, only one Lyapunov exponent is
positive, and the others are zero or negative. It can be con-
cluded that the system now exhibits a chaotic state when the
nonlinear coefficient r = 30.

3) QUASI-PERIODIC ATTRACTION
When the linear control parameter is continuously increased,
the seven-dimensional hyperchaotic system is changed to
a quasi-periodic state. The dynamic behaviour of the
proposed system maintains the quasi-period state when
31.82 < r < 35.8. When r = 35.5, the dynamic behaviour
of the proposed system is that of the quasi-periodic attrac-
tor state. Similarly, the Lyapunov exponents are L1 = 0,
L2 = 0,L3 = −0.05355,L4 = −0.09956,L5 =
−0.34054,L6 = −0.93871,L7 = −13.22658.
The related phase portraits of the system parameters are

shown in Fig. 5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d).
In Fig. 5(e) and Fig. 5(f), the 3D projections of phase dia-
gram are also shown to show its chaotic character further.
According to the above introductions, the proposed seven-
dimensional hyperchaotic system changes from a chaotic
state to a periodic attraction state.

4) PERIODIC ATTRACTION
When 35.8 < r < 49, the system is in a state of peri-
odic attraction. Therefore, the related phase portraits in the
system are explained in Fig. 6(a), Fig. 6(b), Fig. 6(c) and
Fig. 6(d) with r = 49. Simultaneously, in Fig. 6(e) and
Fig. 6(f), the 3D projections of phase diagram are also
shown to show its chaotic character further. According to
the calculation, the Lyapunov and exponents are L1 = 0,
L2 = −0.081799,L3 = −0.082942,L4 = −0.228819,
L5 = −0.230043,L6 = −0.936582,L7 = −13.107841.
The sum is −14.668026<0. Obviously, the system is now

in a periodic attraction state.

5) QUASI-PERIODIC ATTRACTION
When the linear parameter r increases to 49, the Lyapunov
exponent L2 changes from a negative value to zero, causing
the system to return from the periodic state to the quasi-
periodic state. The related phase portraits in the system are
explained in Fig. 7(a), Fig. 7(b), Fig. 7(c) Fig. 7(d) with
r = 50. Simultaneously, in Fig. 7(e) and Fig. 7(f), the
3D projections of phase diagram are also shown to show
its chaotic character further. The seven Lyapunov exponents
of the system are L1 = 0,L2 = 0,L3 = −0.30887,
L4 = −0.309484,L5 = −0.45356,L6 = −0.96081,
L7 = −12.63748.

6) PERIODIC ATTRACTION
When the linear parameter r increases to 57.6, the system
enters the periodic state. When 57.6 < r < 90, the

system has a period-invariant state. When r = 80, the related
phase portraits in the system are explained in Fig. 8(a),
Fig. 8(b), Fig. 8(c). and Fig. 8(d). Simultaneously, in Fig. 8(e)
and Fig. 8(f), the 3D projections of phase diagram
are also shown to show its chaotic character further.
According to the calculation, the Lyapunov exponents
are: L1 = 0,L2 = −0.248482,L3 = −0.249183,
L4 = −0.334730,L5 = −0.950542,L6 = −1.119606,
L7 = −11.765346.
Obviously, the system is now in a state of periodic

attraction.

C. COMPLEXITY ANALYSIS
The complexity of chaotic systems refers to the degree to
which chaotic sequences are close to random sequences
using correlation algorithms. The greater the complexity
value, the more difficult it is for the sequence to be restored
to the original sequence, and the corresponding security
is higher. Algorithm complexity can be generally divided
into behavior-based complexity algorithms (FuzzyEn algo-
rithm and LMC algorithm) and structural complexity-based
algorithms (SE complexity algorithm and C0 complexity
algorithm).
At present, there are many algorithms for calculating the

behavioral complexity of chaotic pseudo-random sequences,
which are based on the Kolmogorov method and Shannon
entropy. Such algorithms are fast and accurate. However,
it does not apply to pseudo-random sequences with high
dimensionality. Therefore, here we use the C0 complexity
algorithm.

The complexity of different dimensions of the systemwhen
the parameter r changes is calculated separately, and the
result is shown in Fig. 9. When calculating the complexity,
the calculation step is 0.05s, and the sequence length is
50000. The complexity decreases with the increase of r value
and is consistent with Figure 2(b). It can be seen that the
C0 complexity can reflect the system. Dynamic character-
istics. When 0 < r < 25.5, it can be clearly seen that
C0 complexity is greater than other moments. At this time,
the system has two positive Lyapunov exponents, which are
in hyperchaotic state. When 25.5 < r < 31.82, the C0
complexity has decreased, but it is still significantly greater
than zero. At this point the system has a positive Lyapunov
exponent, in a chaotic state. At r > 31.82, the C0 com-
plexity gradually approaches 0 and eventually tends to zero.
At this point, the system does not have a positive Lya-
punov exponent, lingering between the quasi-period and the
cycle.

IV. THE CIRCUIT REALIZATION OF THE SEVEN-
DIMENSIONAL HYPERCHAOTIC SYSTEM.
Circuit verification of the proposed hyperchaotic system is
a crucial step to ensure its correctness. Furthermore, the key
issue in circuit implementation is how to transform the theo-
retical expression of the seven-dimensional hyperchaotic sys-
tem into a realistic circuit expression using electronic devices,
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FIGURE 5. Phase diagram of the system when r = 35.5: (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) x-w-p; and (f) x-y-v.

such as resistors and capacitors. To verify the effective-
ness of the seven-dimensional hyperchaotic system, a circuit
implementation is designed and simulated using the cir-
cuit simulation software NI Multisim (ver. 2014), and the

simulation results are also explained in detail in this section.
Only the processes that verify the system effectiveness
when the system is in a state of hyperchaos are listed
here.

125594 VOLUME 7, 2019
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In Sec. 2, we propose a seven-dimensional hyperchaotic
system. This paper only discusses the process of verifying
the system validity when r = 5.
Because of the large dynamic range of system vari-

ables, it is necessary to perform a proportional compression
transformation for better display on an oscilloscope. After
uniformly compressing 10 times, the parameters are substi-
tuted into equation (2).

•
x = 10(y− x)+ w− u− v
•
y = 28x − y− 10xz− p
•
z = −8/3z+ 10xy
•
w = −1w− 10yz
•
u = 8v+ 10yz
•
p = 1x + 10yz
•
v = 5x

(9)

To facilitate the observation of the operation result of the
circuit on the oscilloscope, it is also necessary to change the
time step of the model for a time scale conversion. Letting
τ = τ0t, τ0 = 100, We find

•
x = −1000x − 1000(−y)− 100(−w)

−100u− 100v
•
y = −2800(−x)− 100y− 1000xz− 100p
•
z = −800/3z− 1000(−x)y
•
w = −100w− 1000yz
•
u = −800(−v)− 1000(−y)z
•
p = −100(−x)− 1000(−y)z
•
v = −500(−x)

(10)

The approximation expression of the hyperchaotic system
can be obtained by using adders, integrators, multipliers and
inverters. However, the accuracy of its circuit simulation and
experimental results cannot be met. Therefore, the improved
chaotic circuit module design is adopted. The related cir-
cuit implementation is shown in Fig. 9. Moreover, these
circuits consist of resistors, capacitors, the analogy multiplier
AD633 with ±15V , and the operational amplifier TL085
with ±35V .

The chaotic circuit of this system is shown in Fig. 9.
The parameters of each component are given in the
circuit diagram. Based on Kirchhoff’s law, Ohm’s law,
the virtual short circuit, the virtual open circuit and the
reverse integration circuit, the following expression can

be obtained.

•
x = −

R7
C1R1R6

x −
R7

C1R2R6
(−y)−

R7
C1R3R6

(−w)

−
R7

C1R4R6
u−

R7
C1R5R6

v

•
y = −

R13
C2R8R12

(−x)−
R13

C2R9R12
y−

R13
C2R10R12

xz−
R13

C2R11R12
p

•
z = −

R17
C3R14R16

z−
R17

C3R15R16
(−x)y

•
w = −

R21
C4R18R20

w−
R21

C4R19R20
yz

•
u = −

R25
C5R22R24

(−v)−
R25

C5R23R24
(−y)z

•
p = −

R29
C6R26R28

(−x)−
R29

C6R27R28
(−y)z

•
v = −

R32
C7R30R31

(−x)

(11)

The chaotic circuit of this system is shown in Fig. 10. The
parameters of each component are given in the circuit dia-
gram. Based on Kirchhoff’s law, Ohm’s law, the virtual short
circuit, the virtual open circuit and the reverse integration
circuit, the following expression can be obtained. Combining
equations (10) and (11), when the values of the capacitors are
taken as C1 = C2 = C3 = C4 = C5 = C6 = C7 = 10nF,
the values of all the resistors can be found as:

R1= 100k�, R2 = 100k�, R3 = 1000k�,

R4= 1000k�, R5 = 1000k�,

R6= 100k�, R7 = 100k�, R8 ≈ 35.712k�,

R9= 1000k�, R10 = 10k�,

R11= 1000k�, R12 = 100k�,

R13= 100k �,R14 = 375k�, R15 = 10k�,

R16= 100k�, R17 = 100k�,

R18= 1000k �,R19 = 10k�, R20 = 100k�,

R21= 100k�, R22 = 125k�,

R23= 10k�, R24 = 100k�, R25 = 100k�,

R26= 1000k�, R27 = 10k�, R28 = 100k�,

R29= 100k�, R30=200k�, R31=100k�, R32=100k�.

After the circuit simulation is implemented, the rele-
vant phase diagram of the state variables in the circuit is
shown in Fig. 11. The two attractors of x-y appear clearly
in Fig. 11(a), and the phase portraits such as the butterfly
portrait of x-z, are easily recognized in Fig. 11(b), which
are similar to those in Fig. 3(a) and Fig. 3(b). Furthermore,
the phase portraits, such as the circles of y-z, are identical
to those in Fig. 3(c). In addition, the phase pattern y − z in
Fig. 11(c) resembles a circle, which is the same as in Fig. 3(c).
The phase pattern of Fig. 11(d) is a sphere that is somewhat

VOLUME 7, 2019 125595



W. Yu et al.: Design of a New Seven-Dimensional Hyperchaotic Circuit and Its Application

FIGURE 6. Phase diagram of the system when r = 40: (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) x-w-p; and (f) x-y-v.

divergent at the upper and lower ends, similar to the phase
diagram in Fig. 3(d). The results indicate the correctness and
validity of the proposed hyperchaotic system, demonstrating

that our proposed seven-dimensional hyperchaotic system
indeed generates hyperchaotic phenomena using the given
parameters.
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FIGURE 7. Phase diagram of the system when r = 50: (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) x-w-p; and (f) x-y-v.

V. APPLICATION OF CHAOTIC SYSTEM IN SECURE
COMMUNICATION
A. CHAOTIC SYNCHRONIZATION
Chaotic synchronization can realize the complete reconstruc-
tion of the chaotic state of the two systems. In general,

it belongs to the category of chaos control. At the same
time, chaotic synchronization is the key to realize chaotic
secure communication. Chaotic synchronization can be real-
ized, making chaotic communication possible. Common
methods for implementing chaotic synchronization include
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FIGURE 8. Phase diagram of the system when r = 80: (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) x-w-p; and (f) x-y-v.

adaptive synchronization, coupled synchronization, pulse
synchronization, and drive response synchronization.
Among them, the driver response synchronization has

the advantages of good compatibility, strong self-
synchronization and only one encryption. Inspired by
the literature [42]–[44], driver response synchronization
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FIGURE 9. The C0 complexity of each dimension.
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FIGURE 10. Circuit design for a new 7D hyperchaotic system.

is employed to implement information encryption in this
paper.

In the state equation (12) of the drive system, xd is selected
as the drive variable.

•
xd = a(yd − xd )+ wd − ud − vd
•
yd = cxd − yd − xd zd − pd
•
zd = −bzd + xdyd
•
wd = dwd − yd zd
•
ud = evd + yd zd
•
pd = fxd + yd zd
•
vd = rxd

(12)

When the drive signal is xd , the state equation of the
synchronous system is:

•
xr = a(yr − xd )+ wr − ur − vr
•
yr = cxd − yr − xd zr − pr
•
zr = −bzr + xdyr
•
wr = dwr − yrzr
•
ur = evr + yrzr
•
pr = fxd + yrzr
•
vr = rxd

(13)

Comparing equations (12) with equation (13), it can be
seen that the response system and the state equation of the
drive system have the same form, but the chaotic signal xr of
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FIGURE 11. Chaotic system circuit simulation phase diagram: (a) x-y; (b) x-z; (c) y-z; (d) x-w.

the response system is replaced by the chaotic signal xd in the
drive system. When the drive system and the synchronization
system are in an asynchronous state (At this time a = 10,
b = 8/3, c = 28, d = −1, e = 8, r = 3, the initial condition
of the drive system are x = y = z = w = u = p = v = 1,
and the initial condition of the synchronization system are
x = 7, y = 0.01, z = 8,w = 19, u = 88, p = 7, v = 78.),
the errors between the drive system and the synchronization
system are ex = xd − xr , ey = yd − yr , ez = zd − zr , ew =
wd−wr , eu = ud−ur , ep = pd−pr , ev = vd−vr . In Fig. 12,
the variation of the errors ex , ey, ez, ew, eu, ep, ev with time
can be clearly seen.

From the simulation results, even if the initial state of
the drive system and the synchronous system is relatively
large or even in a completely asynchronous state, the error
is rapidly reduced to zero within 8 seconds by synchronous
control. This shows that stable chaotic synchronization can be
realized quickly, and the system can meet the requirements of
secure communication.

B. CHAOTIC SYNCHRONIZATION SECURE
COMMUNICATION CIRCUIT IMPLEMENTATION
Based on the drive response synchronization, the chaotic
masking method to realize chaotic secret communication is

used in this paper. The general diagram of a chaotic syn-
chronous secure communication circuit is shown in Fig. 13.
The detailed sub-circuit of a driving hierarchy block is basi-
cally identical to the circuit shown in Fig. 10 The difference
is that the oscilloscope has been removed and two off-page
connectors have been added to derive the X and Y signals to
the main circuit. The encrypted signal is S1 = − (Y (1)+ S),
where S is the signal generated by the square wave signal
generator, and Y (1) is the chaotic signal in the drive system.
The decrypted signal is S2, S2 = − (S1+ Y (2)), where
Y (2) is the chaotic signal corresponding to Y (1) in the
response system.

In the preliminary test, the square wave was selected as the
initial signal, and the initial values of the response system
and the drive system were arbitrarily selected. The circuit
simulation results are shown in Fig. 14, Fig. 15 and Fig. 16,
when the input signal is S = 0.1V , the frequency is 8 Hz.
Fig. 14 is a graph showing changes in a square wave signal
with time. Fig. 15 is a graph showing the voltage signal varia-
tion over time after encryption, and Fig. 16 shows the voltage
signal variation over time after decryption. To validate the
comment that the original message is exactly recovered
from the encrypted signal, the error between the original
message and the decrypted message may is shown in Fig. 17.
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FIGURE 12. Error versus time graph.
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FIGURE 13. Chaotic synchronous secure communication circuit.

The physical diagram of the communication seven-
dimensional hyperchaotic encryption and decryption cir-
cuit designed and implemented in this paper is shown
in Fig. 18-19.

It can be seen from Figure 14-19 that when the system
reaches chaotic synchronization, the original signal is basi-
cally consistent with the decrypted signal. It shows that the
new chaotic circuit system can realize the encryption and
decryption of the square wave voltage signal.

In order to verify the high adaptability of the secure com-
munication of the hyperchaotic system proposed in this paper,
the square wave signal S in the above circuit is replaced by a
more complex signal S5, and the initial values of the drive

system and the synchronization system are still arbitrarily
selected.

The complex signal as the initial signal is superimposed by
the sinusoidal signal S3 and the CHIRP signal S4. Due to its
amplitude and frequency as a function of time, it is somewhat
representative of some of the signals that actually exist. The
maximum voltage value of the sinusoidal signal is 0.1V, and
its frequency is 5Hz. The starting frequency of the CHIRP
signal is 0.1 Hz, the final frequency is 60 Hz, the starting
voltage is 0.1 V, the final voltage is 0.15 V, and the duration
is 8 seconds.

The circuit diagram of the two signals superimposed is
shown in Fig. 20. Fig. 21 is a graph showing changes in
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FIGURE 14. Voltage signal variation over time at the square wave signal
generator.

FIGURE 15. Voltage signal changing with time after encryption.

FIGURE 16. Voltage signal variation over time after decryption.

FIGURE 17. The error between the original message and the decrypted
message.

voltage signals of complex signals over time. Fig. 22 is a
graph showing changes in voltage signals over time after
complex signal encryption, and Fig. 23 is a graph showing
changes in voltage signals over time after decryption of com-

FIGURE 18. True encryption waveform.

FIGURE 19. True decoded waveform.

FIGURE 20. The circuit diagram of the two signals superimposed.

plex signals. The error between the original message and the
decrypted message may is shown in Fig. 24.

As shown in Fig. 20-22, when the system reaches chaotic
synchronization, the comparison shows that the decrypted
signal is basically the same as the original signal, indicat-
ing that the new chaotic circuit system also has encryp-
tion and decryption capabilities for more complex signals.

125604 VOLUME 7, 2019



W. Yu et al.: Design of a New Seven-Dimensional Hyperchaotic Circuit and Its Application

FIGURE 21. Voltage signals of complex signals over time.

FIGURE 22. Voltage signals over time after complex signal encryption.

FIGURE 23. Voltage signals over time after decryption of complex signals.

In Fig. 24 we can see that there is still some error between the
original signal and the decrypted signal. However, the origi-
nal signal is 1000 times larger than the error signal, indicating
that the original signal is consistent with the decrypted signal
within the allowable range. Since this encryption and decryp-
tion circuit is almost the same as that proposed above, the
encryption and decryption process of complex signals S5 is
only realized by simulation.

C. SECURITY ANALYSIS
Take the encryption of the S5 signal as an example. Since
the chaotic mask encryption method is adopted in this paper,

FIGURE 24. The error between the original message and the decrypted
message.

FIGURE 25. Complex signal voltage signal after processing changes with
time.

FIGURE 26. Decrypted voltage signal decrypted in an unauthorized
manner.

the ratio of the voltage amplitude of the chaotic signal to the
original signal affects the security performance of the secret
circuit. Therefore, when encrypting, we can also use differ-
ent resistance resistors in the addition circuit to reduce the
original signal amplitude, which improves the security perfor-
mance. Here, we change the resistance of resistor R34 from
10k to 0.1k. After the change, the voltage amplitude of the
signal S5 is reduced by a factor of 100.

When unauthorized, the receiving end cannot know the
specific resistance of the driving circuit, so the response
circuit it has is inevitably difficult to be consistent with the
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FIGURE 27. The error voltage signal of the original signal and the
decrypted signal is decrypted in an unauthorized manner over time.

driving circuit, which may even have a huge gap. In the study,
we found that the larger the difference between the resis-
tance of the response circuit and the drive circuit, the lower
the approximation of the signal waveform obtained after
decryption and the original signal waveform. In this paper, in
extreme conditions, only one resistor has a slight difference
to perform circuit simulation.

When authorized, we can know the resistance of all resis-
tors in the response circuit:

R39 = 100k�, R40 = 100k�, R41 = 1000k�,

R42 = 1000k�, R43 = 1000k�, R44 = 100k�,

R45 = 100k�, R46 ≈ 35.712k�, R47 = 1000k�,

R48 = 10k�, R49 = 1000k�, R50 = 100k�,

R51 = 100k�, R52 = 375k�, R53 = 10k�,

R54 = 100k�, R17 = 100k�, R18 = 1000k�,

R19 = 10k�, R20 = 100k�, R21 = 100k�,

R22 = 125k�, R23 = 10k�, R24 = 100k�,

R25 = 100k�, R26 = 1000k�, R27 = 10k�,

R28 = 100k�, R29 = 100k�. R30 = 200k�,

R31 = 100k�, R32 = 100k�.

When not authorized, it is assumed that under extreme
conditions, only resistor R48 fails to impart the correct resis-
tance, R48 = 10.1k�, with a deviation of only 1%. The pro-
cessed complex signal and the unauthorised decryption mode
decrypted signal are respectively shown in Fig. 25 and 26,
and the error voltages of both are shown in Fig. 27. In Fig. 27,
the amplitude of the error voltage can bemore than 20mV, and
the amplitude of the complex signal voltage after processing
is at most 2.5mV, which fully indicates that in this case,
the decryption circuit of the unauthorized mode completely
loses the decryption capability.

VI. CONCLUSION
This paper presents a novel seven-dimensional hyperchaotic
system.

1.By designing a suitable controller, a seven-dimensional
hyperchaotic system is obtained; The proposed hyperchaotic
system has seven equations with only one equilibrium point.

2.The seven-dimensional hyperchaotic system has rich
dynamic behavior including the equilibrium stability, dissi-
pation, bifurcation and Lyapunov exponents. By adjusting the
linear control parameters, various dynamic behaviors occur,
and the shortcomings of the hyperchaotic parameter range can
be eliminated.

3. The numerical simulation is consistent with the circuit
simulation results, and the obtained phase image is the same
as the experimental simulation results. The results verify
the correctness and effectiveness of the proposed seven-
dimensional hyperchaotic system and indicate the correctness
and physical achievability of the seven-dimensional hyper-
chaotic system design.

4.The chaotic secure communication circuit is composed
of 7D chaotic circuit with optimized design, and the secure
communication is realized by analog electronic circuit. The
experimental results prove the effectiveness of the designed
scheme.
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